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Abstract: Many scientists are convinced that the Modern Synthesis – the current paradigm in evolutionary biology – 
needs to be expanded within the framework of an Extended Evolutionary Synthesis (EES). A major task for the EES is to 
provide an explanation for the origins and extant features of biological complexity. Here we address this issue, focusing 
our investigation on genetic network architectures, motifs, and dynamical behaviour, by developing an intuitive and essen-
tially parameter-free evolutionary model of transcriptional regulation where the self-replicating digital organisms are Boo-
lean networks, and where fitness is determined by their information-processing capacities. We validate our choice of fit-
ness function by demonstrating that our evolved networks exhibit typical biological features of extant genetic regulatory 
networks: sparse connectivity, scale-free out-degree (within our range of measurement) and exponentially decaying in-
degree distributions, significant clustering, a high proportion of feed-forward loop (FFL) network motifs, a prominence of 
canalising logic at the promoter, plasticity, and distributed robustness to mutation. In addition, the dynamics of our 
evolved networks feature simple attractor cycles that are robust to perturbations and exhibit self-organised criticality. In 
networks evolved without gene duplications, we show that the key architectural signatures noted above are absent. Sur-
prisingly, the canalising fraction is much higher in comparison with networks evolved with gene duplications. These re-
sults suggest network properties of extant gene networks require gene duplications in order to evolve, and that these prop-
erties undergo positive selection, where they contribute to the global stability of the networks. By demonstrating that net-
works evolved without gene duplications are robust and, like their scale-free counterparts, also exhibit self-organised 
criticality, this work highlights the interplay between contingent mechanism, such as gene duplications, and selection, in 
determining evolutionary outcomes. 
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INTRODUCTION 

 A major challenge for evolutionary theory is to explain 
how and why organisms develop complex features as a con-
sequence of selection, mutation, and other non-selective 
forces [1,2,3]. Although the reconstruction of phylogenies by 
integrating information from palaeontology, ‘evo-devo’ and 
modern systems biology has met with partial success [4,5], 
efforts to trace population and molecular events in detail are 
undermined by a lack of historical data. Moreover, attempts 
to determine which features of biological systems perform 
vital roles, and which are incidental to physical or evolution-
ary mechanisms, are confounded by the singular origin of all 
extant life on Earth. 

 To be sure, the latter uncertainty is exemplified by con-
sidering the architectural signatures associated with genetic 
regulatory networks: why, for example, are out-degree (see 
Table 1 for a glossary of terms) distributions scale-free? Are 
these architectures performing an indispensable biologic 
function, or are they simply a relic secondary to the mecha- 
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nisms of genome expansion? While some authors have sug-
gested such architectures confer biologic advantage, such as 
robustness or efficient information transfer [6,7,8], and 
therefore may be selected for, others have offered more pe-
destrian explanations: for example, it has been suggested that 
large-scale network structures can arise during neutral evolu-
tion [9], or can develop passively as a consequence of ge-
nome expansion via gene duplications [10,11,12]. Evolution-
ary modelling has also been invoked: previous work has 
shown that the development of scale-free architectures, per-
haps not surprisingly, can develop in evolutionary runs asso-
ciated with preferential attachment mutations [6,13,14]. At 
the intermediate level of gene network organisation, the pre-
ponderance of specific network motifs, such as the feed-
forward loop motif [15], also demand explanation. While 
some authors have suggested they arise locally and in re-
sponse to selective forces [16], others have argued, analo-
gously to the argument associated with the development of 
scale-free degree distributions, that the frequency of such 
motifs can be explained by the mechanisms of genome ex-
pansion [17].  

 Previous work has shown many genes are regulated at the 
promoter by transcription factors in a combinatorial manner 
[16,18], and the logic has been shown to belong to a class of 
functions that possess the canalising property [18]. What is 
the origin and purpose of this class of combinatorial logic in 
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extant biological networks? Do they exist, as suggested by 
Kauffman [19], to sustain global ordering of the networks’ 
behaviour, or, can their increased frequencies be attributed to 
additional or alternative explanations: for example, to facili-

tate mutational robustness? From the dynamical perspective, 
it has been shown by a number of investigators that the be-
havioural responses of genetic regulatory networks are criti-
cal: perturbations to gene expression lead to cascades of gene 
expression changes where the magnitudes of those changes 
follow a power law [20]. While it may seem likely that dy-
namic behaviour of this kind has evolved to facilitate robust 
yet flexible signalling responses, the origins of such cellular 
responses are less clear. An important question thus arises: 
are the scale-free architectures found in biological networks 
a necessary condition for critical dynamics to evolve?  

Table 1. Glossary of terms 

Cellular Automata A grid of cells, connected to a variable number of 
nearest neighbours, where each cell can exist in 
two or more states, and where the state of each cell 
is updated as a function of the set of states of its 
connected nearest neighbours. 

Random Boolean 
Network (RBN) 

A generalised cellular automata where the archi-
tecture of connections between cells is random, 
and where the updating Boolean rules for each cell 
are chosen at random. 

Connectivity The density of connections between cells in a 
RBN, usually defined as the number of connec-
tions divided by the number of possible connec-
tions. 

In-degree The pattern of connectivity of an RBN – its archi-
tecture – is usually represented as a directed 
graph; that is, the output of one cell is input to 
another cell, not necessarily vice versa. The in-
degree of a cell is its number of input connections. 

Out-degree The number of output connections from a given 
cell. 

Clustering Coeffi-
cient 

The likelihood that two connected cells are both 
connected to a third cell, averaged over all con-
nected pairs. 

Canalising Rules A type of Boolean rule where the state of a cell is 
determined by the input from only one or more 
input cells, regardless of the states of the other 
input cells. 

Attractors Patterns of network states in an RBN that can be 
unchanging (fixed point), recurrent (oscillatory) or 
non-repeating (chaotic). 

Avalanche Size The number of iterations required for a RBN to 
reach an attractor following a single cell perturba-
tion to an RBN settled on an existing attractor. 

Self-organised 
Criticality 

A system where the dynamics evolve toward a 
state where the distribution of avalanche sizes 
follows a power law. 

Mutational Ro-
bustness 

Fraction of non-viable offspring following random 
mutations; to reduce statistical error the robustness 
of a given network is calculated following 1000 
independent random mutations. 

Evolvability Fraction of offspring with increased fitness fol-
lowing random mutations; to reduce statistical 
error the evolvability of a given network is calcu-
lated following 1000 independent random muta-
tions. 

Plasticity Fraction of offspring with either no change or 
increased fitness following rewiring mutations. 

 Taken together, the examples above highlight an unre-
solved problem with regard to the structure and behaviour of 
biological networks: contingency versus necessity. In the 
following sections we develop an evolutionary model with 
the aim of gaining insight into this problem, paying attention 
to the development of architectural signatures, dynamical 
behaviour, robustness, and evolvability. We are motivated by 
the utility of evolutionary modelling: indeed, it is well rec-
ognised that a complementary approach to the investigation 
of life’s evolutionary history is to study the evolution of digi-
tal organisms or in-silico genetic networks; the advantages of 
these methodologies have been described elsewhere [21,22].  

 Following Kauffman [19] and a large number of subse-
quent investigators, we model genetic regulatory networks 
with Boolean networks. A model genetic regulatory network 
based on Boolean logic is a type of generalised cellular 
automata, where the genes, represented by vertices in a di-
rected graph, can be either in on or off states, corresponding 
to expression or repression of those genes. Gene states are 
updated simultaneously and discretely. Regulation at the 
promoter is modelled using Boolean logic: the state of vertex 
VA at time T = t +1 is determined by the state(s) of its input 
vertices (VB, VC, VD ,…) at time T = t, calculated using a 
fixed Boolean rule associated with vertex A. For example, a 
simple Boolean rule associated with gene A with inputs from 
genes B and C might be as follows: if any or both of the in-
put genes B and C are expressed at T = t, then gene A is ex-
pressed at time T = t + 1, otherwise gene A is repressed at 
time T = t + 1. Fig. (1a) shows a five-vertex network, while 
Fig. (1b) shows a pattern of gene expression associated with 
this network. In Fig. (1b) time progresses down the page, 
and each gene is either expressed (yellow) or repressed (pur-
ple). Note that the state of the network at any time is repre-
sented by a horizontal row, and that this state repeats after t 
= 4 updates. The repeating pattern of network states forms an 
attractor of the network. In general, there can be many at-
tractors associated with a given network (where the latter is 
defined by its architecture and list of associated Boolean 
rules). The basin of attraction of a given attractor is the set 
of states of the network that will evolve toward that attractor 
and stay there. Basins of attraction are not usually of equal 
size; from a random initial state, a network is more likely to 
evolve to particular attractors. 

 A Boolean network is then considered an ‘agent’; to 
model the evolution of a population we track the changes in 
a cohort of networks over time. Briefly, each network among 
a population is assigned a fitness value based on its attractor 
pattern; at each replication round, individual networks are 
chosen randomly with a frequency proportional to fitness. 
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Fig. (1). The Boolean representation of transcriptional regulatory networks. Shown is a five vertex network representing a simple five 
gene regulatory network (a). Note that the graph is directed, indicating transcription factors derived from one gene act in one direction on the 
promoter regions of other genes, controlling their output via Boolean logic. Each vertex is then associated with a Boolean rule that 
determines the on-off status of the vertex at the next time step as a function of the status of the in-coming connected vertices. For example, in 
(a) vertex 5 has only one input; since there are four potential rules in this case (on / on; on / off; off / on and off / off ) for each respective on / 
off input, the Boolean rule specifies a choice between one of these four alternatives. Accordingly, it is 2L = 2 bits long, where L is the number 
of incoming edges. An attractor pattern associated with network (a) is shown (b), where a yellow square represents an 'off' gene and a purple 
square represents an 'on' gene. The mutual information associated wth this attractor pattern is then used to calculate the fitness of (a). When a 
mutation occurs (see Table 1) a different network will be generated (c). In this case a mutation at the promoter of vertex 1 has led to a new 
binding site for the product of vertex 5, leading to a new directed edge from vertex 5 to vertex 1. Note the Boolean rule associated with 
vertex 1 needs to change to accommodate the new edge; it is now 4 bits long and is chosen at random. Network (c) now has a new attractor 
(d), determined at its inception from a random initial state, which, in this case, is longer than (b). Even though the mutual information 
measure of (d) may be greater than (b), according to our 90% attractor homology rule, the fidelity of reproduction fails here; the mutation to 
(a) has produced non-viable offspring (c).  

The chosen network is then duplicated and replaces another 
network from the population at random. The duplicated net-
work may remain identical to its parent, or, with a certain 
probability, mutate. A mutation can affect the offspring by a 
change to the Boolean logic at a single vertex, or it may af-
fect the offspring by a change to the wiring pattern associ-
ated one or more vertices (see Table 2 and Fig. 1). The im-
portant steps in calculating the fitness of a network are two-
fold: first, defining an attractor pattern associated with the 
network; and second, the methodology that calculates fitness 
based on that attractor pattern. We define the attractor pat-
tern associated with a given network as the attractor pattern 
associated with a random choice of initial state, calculated 
immediately after the new network is generated by the re-
production process. We denote this attractor as a network’s 
functional attractor1. While this procedure may occasionally 
lead to an attractor pattern associated with a small basin of 
attraction, over evolutionary time, it will select for attractors 
associated with large basins of attraction. Finally, to calcu-
late fitness, we use a measure from information theory – 

                                                                                                 
1 These attractor patterns must be reached with high probability following mutations in 
order for its associated network to remain viable, hence they will, for a successful 
species, be associated with disproportionately large basins of attraction.  

mutual information – which, in a non-technical sense, can be 
considered the loss of uncertainty about the expression pat-
tern of gene B when the expression pattern of gene A is 
known (or vice-versa). As we discuss in more detail in the 
Methods, the mutual information between two gene expres-
sion patterns is a measure of both the complexity of the pat-
terns and the correlation between patterns. To calculate the 
fitness of the network we simply sum the mutual information 
of all gene pairs: calculating the fitness of the five-vertex 
attractor pattern shown in Fig. (1b) thus involves summing 
the mutual information of N (N – 1) / 2 or (5 x 4) / 2 = 10 
gene pairs (Fig. 2).  

 Here we identify our networks or ‘agents’ as network 
modules – relatively isolated groups of interconnected genes 
and transcription factors that are generally associated with a 
particular function [15]. There exist a number of reasons 
why our modelling approach is fundamentally different from 
the large body of work that preceeds it: first, it is associated 
with an unbiased2 mutation look-up table (Table 2); second, 
the use of mutual information as a fitness measure facilitates 

 
2 An unbiased mutation look-up table keeps the same probabilities for gene additions or 
deletions, keeps the same probabilities for the removal or addition of single links 
between genes, and does not invoke preferential attachment or deletion.  
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relatively unconstrained evolution by avoiding teleology3; 
and third, although we employ the abstract nature of infor-
mation as a measure of fitness, we combine this with the 
high semantic value of our networks’ attractor states, the 
latter of which is essentially coded environmental informa-
tion.  

 Here we validate our choice of fitness function by show-
ing that many of the small and large-scale architectural and 
dynamic features of extant genetic regulatory networks can 
be reproduced in a simple and unbiased evolutionary model 
comprising mutation, selection and reproduction. In the sec-
tions that follow we introduce the term contingent mecha-
nism and show why gene duplications are a prime example. 
We demonstrate that, within the context of our model, while 
gene duplications are required to generate extant biological 
network features, outcomes could have been different – simi-
larly performing networks can evolve without duplications or 
scale-free architectures. Finally, we discuss the implications 
of our findings with respect to network robustness and 
evolvability. 

                                                 
3 We suggest that any evolutionary model that incorporates teleology is somewhat 
flawed since natural systems do not evolve toward some future pre-determined goal; 
they can only respond to the present. 

METHODS 

 
Fig. (2). Calculating the fitness of a network from its attractor 
pattern. In this example, in contrast to the 256 sequential states 
sampled in the simulations, we restrict the number of consecutive 
states to 24 for simplicity. We consider a five gene network. To 
begin, we calculate the mutual information between genes A and B, 
by calculating the entropy HA of A and the entropy HB of B (using 
ten iterations of the network dynamics – this then corresponds to 
the fifteen time series patterns shown by the arrowed lines). WE 
then calculate the joint entropy HAB of A and B (as before, by using 
the fifteen time series patterns corresponding to the arrowed lines). 
The mutual information between genes A and B is then HA + HB – 
HAB. We then repeat this calculation for all gene pairs (AB, AC, 
AD, AE, BC, BD, BE, CD, CE, DE). The fitness of the network is 
then given by the sum of all mutual information gene pair values.  

Boolean Networks 

 Our digital organisms are self-replicating Boolean net-
works that compete for computer memory among a 250 net-
work population. We model the transcriptional network us-
ing the representation G = (VN : EM) where G is a directed 
graph containing N vertices and M edges. Each vertex Vi with 
Li input edges is associated with a binary vector of length 2L 
corresponding to a Boolean rule that determines the status of 
the vertex at the next step as a function of the status of its 
incoming connected vertices (Fig. 1). Although the Boolean 
approach to modelling transcriptional regulation has limi-
tations, such as its simplistic on-off representation of gene 
activity, or its inability to accommodate non-Boolean logic at 
the promoter, it has many advantages; the most important is 
that it allows for the modelling of global behaviour when 
there are many interconnected elements [19].  

Fitness Function  

 The existence of modular functions, such as morphoge-
netic events that can be tweaked without affecting the whole 
organism [23], allow us to justify imposing a suitable fitness 
function on our evolving population. We define our fitness 
function f as the sum of mutual information (MI) between all 
pairs of vertices on the network, given by  

ji
i j

ji HHHf ,  

where the entropies H are calculated using the frequencies of 
the individual and joint vertices’ 10-state sequential temporal 
patterns, sampled over 256 iterations of the networks’ func-
tional attractor (Fig. 2). This multi-information measure [24] 
thus assigns fitness as a measure of functional complexity – 
which we identify as isomorphic with coupling and coordi-
nation in gene expression [25]. Finally, we assume that a 
network with more vertices has the potential for more infor-
mation processing.  

 We justify our fitness function on several grounds. First, 
the evolution of multi-cellularity, and presumably fitness 
gains, has involved an expansion in the information process-
ing of developmental regulatory modules: for example, the 
intercalation of regulatory elements within a simpler system 
has underpinned the evolution of the metazoans’ develop-
mental control kernels [26]. Second, increased diversity of 
an organism’s physiologic capabilities, such as the sensory 
transduction repertoire of bacteria living in complex envi-
ronments, facilitates reproductive success and requires 
greater regulatory sophistication [27]. Third, and as briefly 
noted in the Introduction, in contrast to other evolutionary 
models, where the fitness of digital organisms is equated 
with their ability to perform specific information processing 
tasks [21], or pattern-matching [28,29,30], we do not impose 
a specific evolutionary goal on the population; rather, the 
environment is defined implicitly by the particular attractor 
pattern exhibited by our networks. In other words, while the 
semantic value of the particular pattern exhibited by a net-
work’s functional attractor is high, the population of net-
works are not evolving toward some pre-determined ‘fitter’ 
pattern. Analogous to the ideas introduced by Adami [31] we 
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interpret the sequence of specific states of the networks’ 
functional attractors as coded environmental information. 
Since we do not simulate a single-goal optimisation process, 
we capture the essence of co-evolution and hence avoid the 
problem of coupling evolution and teleology. Finally, our 
fitness function has the realistic and desirable property of not 
corresponding to a well-defined metric in genome space. 

Monte Carlo Updating Scheme 

 At each replication round, a network is chosen at random 
with a frequency proportional to fitness and replicates. The 
daughter network mutates with probability p = mN / 
(1+mN)4 where m is the mutational burden and N is the ver-
tex count. The types of mutations that can occur and their 
associated probabilities are shown in Table 2; although these 
rules and their frequencies are chosen heuristically, they are 
simple, biologically relevant [15], and, as noted above, unbi-
ased.  

 If a mutation occurs, the daughter network’s first attrac-
tor to be reached from random initial conditions is used to 
calculate its fitness, thus, as noted in the Introduction, we 
implicitly select for networks with highly non-uniform sized 
basins of attraction. To remain viable, the daughter network 

                                                 

is constrained to share greater than 90% attractor homology 
with its parent since gene expression patterns need to be 
similar otherwise they will not function as before. We apply 
our 90% attractor homology rule as follows: an attractor pat-
tern can be written as a matrix of dimensions N x 256, where 
N are the number of vertices and 256 the number of sequen-
tial network states sampled. When comparing attractors be-
tween the old network and the newly mutated network, we 
find an alignment between the two matrices that maximises 
the number of correct matches at all positions. The fraction 
of matching positions is then is a measure of attractor ho-
mology. Finally, the new network’s attractor length is re-
quired to be less than 256 states. Fig. (1) shows an example 
of this process for a simple network of size N = 5. Irrespec-
tive of whether a mutation occurs, the daughter network then 
replaces another network within the population at random. If 
the mutated network fails to satisfy our constraints it is ren-
dered non-viable and assumes a very low fitness. The con-
straints on viability ensure that the particular attractor pat-
terns exhibited by our networks – which, as we noted above, 
are meaningful in the context of their environments – are 
preserved with high fidelity, and serve to exclude long pe-
riod attractors, which could potentially include chaotic at-
tractors, as biologically viable. Indeed, both long and shorter 
length chaotic attractors are not expected to evolve since the 
likelihood of a chaotic network mutating from either a cha-

Table 2. Mutation-type look up table. Note how we have paid careful attention to the interplay between the types of mutations and 
their effects on the networks' architecture and logic. For example, while a mutation to a promotor will lead to a new Boo-
lean rule at that promoter, a mutation to a transcription factor's gene will not lead to new logic at its target promoter; in 
such cases although the deletion of the corresponding edge requires a new bit length for the rule at that target promoter, 
is must be identical to the previous rule assuming absense of the lost transcription factor 

Network Change 
Mutation Type 

Architectural Change Rule Change 
Probability 

No change New random rule 0.40 

New edge New random rule 0.175 

Deletion of edge New random rule 0.0875 

Promoter mutation 

Loss of all incoming edges New random rule 0.075 

Deletion of edge Same rule as per pre-mutated transcrip-
tion factor absent 

0.0875 Transcription factor mutation 

Loss of all outgoing edges Same rules as per pre-mutated transcrip-
tion factor absent 

0.075 

All outgoing edges as per duplicated vertex. 
New random incoming edge 

Same rules for outgoing edges. New 
random rule for incoming edge 

0.02 Duplication  

All incoming edges as per duplicated ver-
tex. New random outgoing edge 

Same rules for incoming edges. New 
random rule for outgoing edge 

0.02 

Horizontal t/fer 

a. External promoter mutation 

b. External transcription factor 
mutation 

 

a. New ingoing edge to new vertex 

b. New outgoing edge from new vertex 

 

a. New random rule 

b. Same rule as per new transcription 
factor absent. New random rule for new 
vertex 

 

a. 0.005 

b. 0.005 

Deletion  Loss of all incoming and outgoing edges Same rules as per deleted transcription 
factor absent 

0.05 

4 This simple and monotonically increasing relation ensures p < 1 for any m and N. 



6    The Open Evolution Journal, 2012, Volume 6 Gilmore and Green 

otic or non-chaotic network with 90% or greater attractor 
homology is essentially zero. For the seed population where 
N = 4, calculating fitness by sampling over 256 iterations of 
its functional attractor ensures chaotic behaviour is associ-
ated with fitness values close or equal to zero.  

Table 3. Network characteristics of the fittest network and 
their respective values calculated from 28 independ-
ent evolutionary simulations for m = 0.0025. See Fig. 
2 for the distribution of values for features 2, 5, 6, 7, 
8 and 9. 

Feature 

 Mean SD 

1.    Size 50.67 0.98 

2.    Fitness 3824 720 

3.    Functional attractor length 50.25 37.25 

4.    Connectivity 0.05 0.005 

5.    In-degree   

        – maximum 

        – degree distribution p-value of log-log plot 

        – degree distribution regression coefficient of 
log-log plot 

 

6.92 

0.16 

0.63 

 

1.58 

0.16 

0.18 

6.    Out-degree   

         – maximum 

         – degree distribution p-value of log-log plot  

         – degree distribution regression coefficient of 
log-log plot 

         – degree distribution scaling exponent 

          

12.4  

0.01 

0.84  

1.48    

 

3.21 

0.01 

0.09 

0.13 

7.    Clustering coefficient 0.15 0.04 

8.    Feed-forward loop motif count 34.5 17.0 

9.    Fraction of canalising functions 0.40 0.08 

10.   1000 normal evolution frequency mutations 

         – fraction increased fitness 

         – fraction non-viable 

         – average fitness 

 

0.23 

0.31 

0.68 

 

0.10 

0.11 

0.11 

11.   1000 duplication / horizontal transfer muta-
tions  

         – fraction increased fitness 

         – fraction non-viable 

         – average fitness 

 

0.52 

0.20 

0.76 

 

0.11 

0.09 

0.09 

12.   1000 deletion mutations  

         – fraction increased fitness 

         – fraction non-viable 

         – average fitness 

 

0.02 

0.31 

0.65 

 

0.02 

0.11 

0.10 

13.   1000 single vertex perturbations  

         – fraction new attractor  

         – average avalanche size 

         – avalanche magnitude distribution p value 
of log-log plot 

         – avalanche magnitude distribution regres-
sion coefficient of log-log plot 

         – avalanche magnitude distribution scaling 
exponent 

 

0.20 

4.60 

0.0002 

 

0.80 

1.60 

 

0.07 

1.99 

0.001 

 

0.09 

0.42 

Simulations 

 We begin all simulations with a seed population of 250 
randomly generated 4-vertex networks and calculate the fit-
ness for each. Although this procedure allows different net-
works and attractors to be viable, this variation is small com-
pared with the space of all possible 4-vertex networks. For 
networks that grow from 4 to 50 vertices, our mutation prob-
ability expression p with m = 0.0025 yields a probability of 
mutation per replication event ranging from p = 0.01 to p = 
0.11, consistent with a network module embedded within a 
primitive genome of 400 genes operating near its error 
threshold5 [32]. We therefore take m = 0.0025 as our base-
line mutation load, and terminate our simulations when any 
member of the evolving population reaches N = 50. To be-
gin, we run 28 independent and randomly seeded evolution-
ary histories from N = 4 to N = 50 at m = 0.0025. To investi-
gate whether evolved network properties are augmented by 
further increases in network size, we take 7 of our m = 
0.0025 networks at N = 50 and allow their evolution to con-
tinue, terminating the simulation when network growth be-
came very slow. We then investigate the temporal evolution 
of network features by extracting the fittest network from 6 
of our 28 m = 0.0025 evolutionary runs every 500 genera-
tions up to N = 50, and then, in some cases, continuing the 
evolutionary runs until generation 4500. To investigate how 
the properties of our evolved networks depend on the muta-
tion load we run 8 independent randomly seeded evolution-
ary histories from N = 4 to N = 50 for m = 0.04, 0.02, 0.01 
and 0.005 respectively. Finally, we use our model to perform 
three specific investigations: first, we run 9 randomly seeded 
evolutionary histories without gene duplications; second, we 
investigate network plasticity (the ability of a network to 
maintain or increase fitness following rewiring mutations) by 
measuring a single evolved network’s average robustness 
following 1000 independent single random edge additions; 
and third, we investigate the fitness-robustness properties of 
two N ~ 50 populations derived from running our model for 
each of the different mutation rates noted above.  

 All features shown in Table 3 are calculated from the 
fittest network extracted from the population at the end of 
each of 28 evolutionary runs at N = 50. For the nine fitness 
measures, we take average values following 1000 repeated 
random mutations (of the particular type). For the dynamical 
stability investigations, we perform 1000 independent single-
vertex random perturbations from random states on the net-
works’ functional attractors, and determine the magnitudes 
of the respective subsequent avalanches.  

RESULTS  

 We first investigate the characteristics of the fittest N = 
50 networks of each of our 28 populations that evolved at m 

                                                 
5 For evolutionary systems, the approximate error threshold occurs when there is one 
mutation per organism per replication event. Higher mutation rates lead to irreversible 
information loss. For a primitive genome of 400 genes, the probability of mutation p at 
the error threshold for N embedded network modules’ genes is given by p = N / 400. If 
N = 4, p = 0.01, and if N = 50, p = 0.12, as required. 
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Fig. (3). Histogram showing distribution of feature values for the fittest member of 28 populations evolved at m = 0.0025 where N = 
50. Fitness is shown in (a) while maximum in and out-degree are shown in (b). Note the maximum out-degree is always greater than the 
maximum in-degree. p values (c) reveal that the straight line regression plot of log frequency versus log magnitude for the in-degree does not 
reach significance for any realisation; this result is in contrast to the out-degree distribution. Clustering coefficient (d) and number of feed-
forward loop motifs (e) are significantly greater than their corresponding values for random graphs of the same connectivity. The fraction of 
canalising Boolean inputs (f) is much higher than would be expected from the random generation of logic strings.  

= 0.0025 from N = 4 until N = 50; the results are shown in 
Table 3 and Fig. (3). Remarkably, all networks exhibit quali-
tatively similar architectural and dynamic features without 
parameter tuning or mutational bias: sparse connectivity, 
significant differences in the magnitudes of the in and out-
degrees (p < 10-8, Wilcoxon Rank Sum test (WRS), see Fig. 
3b), scale-free out-degree distributions (with an average 
scaling exponent of 1.48, and a caveat that our use of the 
term scale-free pertains to our relatively limited range of 
measurement; average value of the linear regression log-log 
plot: p = 10-2; see Fig. 3c), exponentially decaying in-degree 
distributions, prominent clustering (<CC> = 0.15 versus 
<CC > = 0.09   0.01 for the same number of randomly con-
structed networks with the same connectivity, p < 10-8, 
WRS, see Fig. 3d), increased prevalence of feed-forward 
loop motifs (<FFL> = 34.5 versus <FFL> = 13.1   4.4 for 
the same number of randomly constructed networks with the 
same connectivity, p < 10-8, WRS, see Fig. 3e), a high frac-
tion of canalising input functions compared with randomly 
generated Boolean rules with the same length distribution (p 
< 10-9, WRS, see Fig. 3f), distributed robustness to mutation, 
and attractor dynamics that evolve to power-law avalanches 

of altered expression (with an average scaling exponent of 
1.60 and an average p-value of the straight line regression of 
the log-log plot < 10-3) in response to single vertex perturba-
tion – the hallmark of self-organised criticality.  

 We next investigate the possible relations between each 
of our 28 measured parameters (Table 3) among the 28 fittest 
networks by creating a 28 x 28 correlation matrix. We find 
one important result: a negative correlation between the net-
works’ fraction of canalising functions and the magnitude of 
the networks’ maximal out-degree (linear regression, p = 10-

2). We come back to this point in the Discussion.  

 We then take 7 of our 28 m = 0.0025 N = 50 networks 
and let their evolution continue until network growth became 
very slow. Mean network size for these networks is 70. We 
find similar features in these larger networks in comparison 
with our N = 50 networks. Fig. (4) shows the key properties 
of the fittest network (N = 73) from one of these populations 
at generation 4500: scale-free out-degree distributions (linear 
regression log-log plot; p < 10-6) and self-organised critical 
dynamics (linear regression log-log plot; p < 10-15) are the 
two key signatures present in this network. Fig. (5) high-
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Fig. (4). Evolved characteristics for a N = 73 network. Network graph (a) showing a highly connected region at top right. Histogram of in 
(b) and out (c) degree distributions reveal a fat tail for the out-degree distribution. This latter finding is reflected in (d), which shows a log-
log plot of frequency versus outgoing connection counts. Over the scale of the plot, the relationship follows a straight line, with scaling 
exponent 1.33. This same relationship is evident in (e), where, following single vertex perturbation to random attractor states, the log-
frequency of avalanche size is plotted against the log of avalanche size. Over the scale of measurement, the plot follows a straight line, 
indicating the dynamic behaviour of the network exhibits self-organised criticality. Here the scaling exponent is 1.71. 

  

Fig. (5). Mutational robustness of networks for N ~ 70. Here we investigate the robustness of the 7 fittest networks extracted from 7 
independently evolved populations at m = 0.0025. In (a), we represent evolvability by the fraction of 1000 random mutations that lead to 
increased fitness; in (b) we show the fraction of 1000 random mutations that lead to non-viability, while in (c) we show the average fitness of 
the network following 1000 random mutations. For each trio of columns, the first represents the frequency of mutation types as per the 
evolutionary run, while the second and third columns represent duplication / horizontal transfer and deletion mutations repectively. 

lights the evolved robustness of these seven networks to mu-
tations.  

 To investigate the temporal evolution of network features 
we sample the fittest member of 6 m = 0.0025 populations 
every 500 generations up to generation 4500; the important 
results are shown in Fig. (6). We note that while mutational 
robustness (the fraction of mutated networks that remain 
viable) increases slowly with time, significant robustness 
exists in small networks. Overall, evolvability (the fraction 
of mutated networks with increased fitness) remains un-
changed as network size increases. Do any of the features 
found in Table 3 exhibit any dependence on the mutation 
load during evolution? We find that none of our network 

features are influenced by varying mutation rates with the 
exception of fitness; in this latter case there is a mild de-
crease in fitness for N = 50 networks that evolve at mutation 
rates greater than baseline. Surprisingly, network robustness 
does not vary with mutation rate: evolvability, the non-viable 
fraction following mutations, and the average fitness follow-
ing mutations does not change with mutation rate (data not 
shown).  

 We next perform three specific investigations: 9 evolu-
tionary runs from N = 4 to N = 50 at m = 0.0025 without 
gene duplications (in this case the duplication probabilities 
shown in Table 2 are replaced by horizontal transfer), an 
investigation of network plasticity, and a detailed investiga-
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tion of two N = 50 populations that we recover from our 
simulations at each mutation load reported above. Fig. (7) 
reveals that scale-free out-degree distributions are not pre-
sent in networks evolved without gene duplications (a com-
parison between maximal out-degree; p < 10-3, WRS). In 
addition, we find network clustering and the feed-forward 
loop motif count are much reduced in comparison to net-
works evolved with duplications (p < 10-3, WRS); these re-
sults are similar to those expected from random graphs with 
the same connectivity. Fig. (7) also demonstrates an unex-

pected finding: networks evolved without duplications – and 
hence without scale-free architectures – exhibit greater muta-
tional robustness (p < 10-2, WRS), and contain a very high 
fraction of canalising functions (p < 10-2, WRS). We find 
that despite these differences, networks evolved without du-
plications – like their evolved-with-duplication counterparts 
– also evolve to a self-organised critical state.  

 We now demonstrate the plasticity of our evolved net-
works. Following 1000 random and independent edge addi-
tions to a single large network, we find that while 19% mu-

 

Fig. (6). Evolution of network features as a function of generation. Since our evolving populations contain 250 networks, each generation 
is equivalent to 250 Monte Carlo reproductive events, sampled from the population with a frequency proportional to fitness. Note fitness (a) 
grows faster than network size (b). Although robustness to mutation, on average, slowly increases with increasing complexity of the 
networks, one particular network was less robust compared with its much smaller ancestor. Evolvability does not increase during the 
evolution from very small to much larger networks. 

 

Fig. (7). Features of networks evolved with or without duplication events. Box-and-whisker plots demonstrating the differences between 
the two groups (duplications, N = 28, and no duplications, N = 9) with respect to maximal out-degree (a), canalising fraction (b), clustering 
coefficient (c) and mutational robustness (average fitness following 1000 random mutations, expressed as a fraction) (d). The differences 
between the two groups are all significant: p < 0.001 (a-c); p < 0.003 (d) (Wilcoxon rank sum test). 
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tants are non-viable, the remainder are associated with an 
average fitness equal to 98% of the network’s initial fitness. 
Moreover, 6% of mutants exhibit a gain in fitness. These 
results, which are strikingly similar to those obtained with E. 

l

thetical boundary in fitness-
 [34].  

ges well, and will fre-
e

e (or, possibly, 
maximise) both robustness and evolvability.  

ynamics. It 
is this latter consideration to which we now turn. 

tive idea that selection effects 
a

                                                

co i [33], indicate that this network is highly evolvable. 

 Finally, we investigate the correlations between fitness 
and mutational or dynamic robustness of all members be-
longing to two N = 50 populations evolved at each of the five 
mutation rates noted above. For nine populations, we find no 
evidence of intra-population correlations. One population 
demonstrates a correlation between fitness and mutational 
fragility; this result is shown in Fig. (8a) (linear regression, p 
< 10-2). There is no evidence, however, that the distribution 
of members in any of our ten populations is evolving toward 
the efficient frontier, a hypo
robustness phase space

DISCUSSION 

 Here we establish the validity of our model by demon-
strating that the important large and small-scale architectural 
features of extant gene regulatory networks can be repro-
duced in an evolutionary setting that lacks any pre-
determined bias for the development of these features 
[16,21,35]. Our networks are evolvable, are robust to muta-
tion, and their functional attractors are generally short (see 
Table 3), a result consistent with the observed simplicity of 
single-gene switching events in eukaryotes [36]. By repro-
ducing the E-coli re-wiring experiment of Isalan et al., [33], 
we find similar quantitative results: our networks, like the 
genetic regulatory network in E-Coli, are plastic; that is, they 
can tolerate network re-wiring chan
qu ntly benefit from such changes.  

 Our networks also exhibit self-organised criticality, a 
feature that evolves gradually with network growth, and is 
considered a general feature of cellular dynamics [20]. In the 
Boolean representation of genetic regulatory networks, al-
though ‘edge of chaos’ dynamics are generally thought to 
require large frozen components [19,21], our networks are 
associated with attractor patterns where the majority of verti-
ces oscillate. This contrary finding has important impli-
cations for the evolvability of networks [37]: homeostatic yet 
flexible dynamics can exist without functional redundancy. 
While it has been suggested that scale-free architectures may 
facilitate a reduction in functional redundancy [38], recent 
work suggests that criticality may maximise both robustness 
and evolvability [39]. Our results support all three of these 
contentions: first, since our fitness function implicitly selects 
for networks with low functional redundancy, we might ex-
pect all our networks to exhibit criticality: indeed, this is the 
case; and second and third, since our networks are critical 
even when small, we cannot refute the idea that this dynamic 
signature evolves readily in order to enhanc

Real-World Fitness  

 Does the success of our model in reproducing biologic 
network structure imply that within-network information 
processing is an important fitness measure in real biological 
systems? Although we have drawn from a large body of 

work to justify our fitness measure (see Methods), clearly the 
abstract nature of the mutual information content of gene 
expression patterns implies that it cannot, on its own, be the 
sole determinant of fitness. Details matter, and although we 
incorporate semantic details in our model by constraining the 
fidelity of reproduction, mutations in real biological systems 
may at times be associated with increased fitness and a re-
duction in functional complexity. One possible solution to 
this shortcoming would be to introduce an evolutionary algo-
rithm where certain attractor patterns near to the current at-
tractor6 could be assigned a higher fitness, independent of 
the magnitude of the mutual information associated with the 
new attractor. However, giving greater fitness weightings to 
specific patterns (analogously to pattern-matching evolution-
ary algorithms) introduces teleology: evolution is con-
strained and becomes predictable, a less than desirable out-
come. In any case, our overarching goal is not to gain insight 
with regard to real-world fitness measures; rather, we are 
motivated to develop a model that allows us to gain insight 
into the evolution of network architectures and d

The Origin of Large and Small-scale Network Structure 

 While the origins and functions of extant biological gene 
regulatory network characteristics remain uncertain, there 
have been many investigations, both experimental and theo-
retical, that have attempted to address this issue, yielding a 
variety of explanations. In particular, the origins of scale-free 
out-degree distributions in biologic networks have been at-
tributed, by various authors, to maximising information flow 
[7,8], to facilitate mutational robustness [6,40], as a conse-
quence of neutral selection [9], and finally, as a by-product 
of gene duplications during evolution [10,11,12]. The latter 
explanation is still controversial; evidence obtained from the 
investigation of paralogous genes have also been used to 
argue that gene duplications are not responsible for the de-
velopment of scale-free networks [41]. It is only the first 
explanation – maximising information flow within networks 
– that dovetails with the intui
sh pe biological phenotypes.  

 By demonstrating that networks grown without duplica-
tion mutations do not exhibit any of the typical architectural 
signatures found in extant genetic regulatory networks, we 
provide evidence that suggests duplications are an essential 
prerequisite for the evolutionary development of such fea-
tures. Furthermore, the negative correlation between the 
maximal out-degree and the fraction of canalising inputs 
(demonstrable in our 28 networks grown from N = 4 to N = 
50 (Fig. 8b) as well as in the comparison between networks 
grown with or without duplications (Fig. 7a, b) suggests – if 
we assume canalising inputs act to stabilise network dyna-
mics at criticality – that scale-free architectures also contrib-
ute to the overall stability of the networks’ dynamics. This 
result suggests that in biological systems, scale-free out-
degree distributions are subject to positive selection. Indeed, 
the notion that positive selection for scale-free out-degree 
distributions may occur is augmented by a second line of 
evidence: when a hub regulates many genes, we may expect 
those regulated genes to regulate a number of common genes 

 
6 One method of quantifying the ‘nearness’ of two attractor patterns in a cellular auto-
mata is by calculating the Hamming distance.  
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Fig. (8). Intra and inter-population correlations. Fitness-robustness phase space (a) for a population of N = 50 networks evolved at m = 
0.0025. Each point represents identical members of the population. Note the correlation between mutational fragility and fitness, and the 
absense of evidence for the aggregation of points around the efficient frontier, a hypothetical boundary that would trace a line upward and to 
the right. For our 28 populations evolved at m = 0.0025, there exists a negative correlation between the maximal out-degree and the 
canalising fraction (b). Results shown in Fig. 7a, b are strongly suggestive of a similar interpretation. 

since it is likely the duplicated genes are those that the hubs 
regulate. However, when we examine our networks with 
respect to the genes regulated by the genes that are in turn 
regulated by the hubs, we find no evidence for gene com-
monality; indeed, all the second-tier regulated genes are 
equivalent to a cohort of genes selected at random. This re-
sult indicates that our evolved networks are subject to sig-
nificant rewiring following duplication events, and implies 
the maintenance of hubs is an architectural feature subject to 
positive selection. While the authors of two papers advocat-
ing duplications as a cause of scale-free network architec-
tures argue against positive selection, they do not rule out 

is

oba-
bly the latter two, are then subject to positive selection.  

t conclusions with regard to their 

 
phase space that members of populations cannot cross [34].  

th  possibility [11,12].  

 Perhaps surprisingly, our networks evolved without du-
plications – and therefore without scale-free out-degree dis-
tributions, prominent clustering or increased numbers of 
feed-forward loop motifs – perform just as well (or better) 
than networks evolved with duplications: in particular, muta-
tional robustness is enhanced (Fig. 7d). The networks also 
exhibit self-organised criticality, indistinguishable from their 
scale-free counterparts. These results suggest evolution could 
have led to very different network structures, demonstrate 
that scale-free architectures are not a necessary prerequisite 
for the evolution of critical dynamics, and imply that gene 
duplications are an example of contingent mechanism. Our 
results allow us to draw some tentative biological conclu-
sions: the molecular machinery that allows segments of 
DNA to be duplicated is not then a prerequisite for fully 
functioning networks to evolve, but since it occurs, it leads 
to certain architectural features – scale-free out-degree dis-
tributions, network clustering and increased numbers of 
feed-forward loop motifs – of which the former, and pr

The Evolution of Network Robustness and Evolvability 

 In contrast to the paradigm that scale-free architectures 
confer mutational robustness to networks, we have found 
that scale-free architectures are less mutationally robust than 
their counterparts evolved without gene duplications. We 
expect this result is due to the higher canalising fraction in 
the networks evolved without duplications, potentially aug-
mented by the susceptibility of networks with hub genes to 

be subject to catastrophic failure. We conclude that there is a 
significant trade-off between the maximal out-degree and the 
fraction of canalising inputs with respect to the mutational 
robustness of evolved networks, a result that suggests canal-
ising inputs do not just stabilise global dynamics, but play a 
significant role in conferring mutational robustness. The in-
terplay between network architecture and logic implies that 
the properties of network architectures, if examined in isola-
tion, may yield incorrec
functional significance.  

 Is robustness a key driver for the evolution of complex 
features? While a previously reported conclusion based on 
the results of a fitness-free evolutionary model suggests that 
selection for robustness may play a non-trivial role in shap-
ing network architecture and dynamics [21], other authors 
have suggested selection for robustness may facilitate net-
work growth [42,43]. Selection for robustness is likely to 
play an important role in the evolution of the phage lambda 
genetic regulatory circuit [44], and may be analogous to 
‘survival of the flattest’ [45]. Many of the above findings are 
perhaps not surprising. After all, robustness is, in a sense, the 
ultimate basis for fitness. We might think of robustness as 
the stage on which the ballet of neutral and fitness-driven 
evolution is played out. Many fundamental properties of 
gene network architecture and logic are likely to be deter-
mined by an absolute requirement for mutational robustness. 
But the evolutionary relationships between network features 
that confer robustness on one hand, and fitness on the other, 
are less clear. If robustness were a key driver of the evolu-
tion of the complex features that in turn augment network 
fitness then we would expect that, within evolving popula-
tions, a positive correlation between fitness and robustness 
should exist, and very few, if any, members of populations 
with both low fitness and low robustness should be present. 
On the other hand, if robustness drives the evolution of com-
plex features that are deleterious to fitness, we would expect 
a within-population trade-off between fitness and robustness. 
This latter possibility is analogous to the idea of an efficient 
frontier, noted previously and introduced by Kitano, where 
such a trade-off defines a boundary in fitness-robustness
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 Yet there exists a third possibility: complex features con-
ferring robustness to networks may only have marginal ef-
fects on fitness – they are essentially neutral. What do our 
results suggest? First, with the exception of one population 
evolved at m = 0.0025 (Fig. 8a), none of our other nine intra-
population fitness-robustness scatter plots provide any evi-
dence for fitness-robustness correlations, or evidence that the 
populations are evolving toward the efficient frontier. Sec-
ond, we cannot demonstrate any inter-population correlations 
between fitness and robustness when we examine our 28 
independent simulations at m = 0.0025. Finally, we have 
shown that significant robustness is already present in small 
networks (Fig. 6c), and that evolvability does not increase 
with increasing network complexity (Fig. 6d). Taken to-
gether, this line of evidence suggests robustness and evolva-
bility are not major drivers for the evolution of the complex 
features associated with either fitness gains or losses. Our 
results thus support the neutral hypothesis, Fig. 8a notwith-
standing. It is important to note that the term ‘complex fea-
ture’ is not precise; in this regard we suggest the existence of 
robustness and evolvability in networks may be due to subtle 
large or small-scale architectural organisation – complex 
features, nonetheless – that only have marginal effects on 
fitness and hitherto remain unidentified. 
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