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Abstract: This paper presents a dominant height and basal area response function for juvenile (ages 2-8) loblolly pine 
stands that have been fertilized with a combination dose of 200 lbs/ac of nitrogen and 50 lbs/ac of phosphorus. The data 
used to construct the response functions originated from the Region-wide 2 Study of the North Carolina State University 
Forest Nutrition Cooperative. The data set included field plots from three physiographic regions and states spanning the 
southeastern United States from Alabama to Delaware. The dominant height response model is a function of the time 
elapsed since fertilization (years since treatment) and soil drainage of the Coastal Plain soils. The basal area response 
model is a function of years since treatment. The response functions must be used sequentially since basal area response is 
understood as an incremental gain in basal area over the increase in basal area already explained by the response in domi-
nant height. The response in dominant height typically ranges from 1-2 feet, six to eight years after treatment on all soils 
except the well drained Coastal Plain soils. The total increase in basal area ranges from 10-12 ft2/ac, six to eight years af-
ter treatment on all soils except the well drained Coastal Plain soils. The parameters of both models were estimated using 
the Mixed Models with Repeated Measures methodology. 
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1. INTRODUCTION 

 Bailey et al. [1] were among the first modellers to con-
struct fertilization response functions. They developed three 
stand-level projection equations for dominant height, sur-
vival, and basal area that were functions of the change in 
age, soil group, and fertilization dosage 

H2 = f(H1, A1, A2, soil group, fertilization dosage) 
N2 = f(N1, A1, A2, soil group, fertilization dosage) 
B2 = f(B1, A1, A2, soil group, fertilization dosage) 

 
where Hi, Ni, and Bi are dominant height, trees per acre, and 
basal area per acre at age Ai respectively. There is no se-
quential order to the functions and each equation is inde-
pendent of each other. The independence is easily demon-
strated since the endogenous variables are only functions of 
the lagged dependent variable, change in time, plus static 
variables. The projection equations above may be used for 
both treated and untreated stands. 

 Pienaar and Rheney [2] introduced a silvicultural re-
sponse model that has proven popular for modelling re-
sponse to intensive site preparation techniques at establish-
ment and mid-rotation treatments. 

R = a0 yst( )a1 ea2 yst  

where 

R   = (treated – untreated) response in ft., ft2/ac, or ft3/ac 

yst =  years since treatment or application 

ai   = parameters to be estimated 
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 This function was first described in the forestry literature 
as the Hoerl special function by Wenger [3]. Sit and Poulin-
Costello [4] designated this function as a Type II combined 
exponential and power function. Ratkowsky [5] also cata-
logued this model as a three-parameter curve with one inde-
pendent variable and with a maxima or minima. Pienaar and 
Rheney [2] conditioned the parameters so that a1 = 1 and a2 < 
0. They stated that the maximum cumulative response is at-
tained when yst = -1/a2, and that the magnitude of the maxi-
mum cumulative response equals the value of (-a0/a2)e

-1. The 
negative a2 parameter implies that the response must ap-
proach zero, imparting a transient increase or Type ‘C’ re-
sponse as described by Morris and Lowery [6]. The Type ‘C’ 
response guarantees that the treated stand will never ‘cross-
over’ or display dominant height or basal area attributes be-
low that of the non-treated stand. Provided that the estimated 
a2 parameter is greater than –0.229, the cumulative response 
of the treated stand will exceed the non-treated stand by at 
least 5% of the maximum response, even at 25 years past 
treatment. 

 The Pienaar and Rheney response functions were embed-
ded within a recursive system of stand-level prediction equa-
tions for dominant height, basal area, and stand volume 

 

H = b0 1 e b1A( )
b2

+ RH  
(1) 

B = eb3 +b4 /AH b5 +b6 /ANb7 + RB  
 

V = eb8 +b9 /AH b10 Nb11+b12 /ABb13  
 

 

where H, A, B, N, and V are dominant height, stand age, 
basal area per acre, trees per acre, and stand volume per acre 
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respectively. The variables RH and RB refer to the response 
to dominant height and basal area. Since the stand-level es-
timate of basal area is a function of dominant height, which 
in turn is a function of age and RH, it is understood that RB is 
the incremental gain in basal area over the increase in basal 
area already explained by the response in dominant height. 
Pienaar and Rheney determined that a response variable for 
the stand volume equation, V, was not necessary given the 
effect of RH in explaining H, and B, and the effect of RB in 
explaining B. Buford and Burkhart [7] used a similar recur-
sive system approach to model the response of genetic tree 
improvement on dominant height and stand volume 

 
H = f(A, RHg) 

V = f(A, N, H) 

 
where RHg is the response in dominant height due to genetic 
tree improvement. They likewise concluded after explaining 
the improvement in H with RHg, a response variable for stand 
volume equation, V, was not necessary. 

 Amateis et al. [8] have taken a different approach to 
modelling the effect of fertilization on the development of 
dominant height and basal area. They did not create a recur-
sive system of dominant height and basal area equations for 
both fertilized and unfertilized stands. Rather, they con-
structed response models for fertilized stands only using RH, 
and RB as dependent variables. Their definition for RH is 
similiar to that of Pienaar and Rheney [2]. The Amateis et al. 
[8] definition of RB is quite different. RB is defined as the 
difference in basal area between a fertilized and unfertilized 
(control) stand. During their fitting procedure, the increase of 
basal area in fertilized stands, due to RH, was unobservable. 

 When inspecting the system of stand-level equations 
above described by Pienaar and Rheney [2], it is apparent 
that the first term on the right-hand-side of Equation (1) de-
scribes the height growth of an average untreated stand. 
Quite likely, one of or a combination of all three estimated bi 
parameters would change if sufficient observations were 
available to model dominant height on a plot by plot or stand 
by stand basis. The mixed modelling approach described by 
Hall and Bailey [9] and Fang and Bailey [10] presents an 
opportunity to localize the predictions of Equation (1) to a 
plot or stand. Using a similar analogy to a fixed model, it is 
possible make Equation (1) stand-specific by creating (n-1) 
dummy variables and replacing the b0 coefficient with ( 0 + 

iZi) where 

 

1 if dominant height observation is  
located in stand i (i < n) 

1 if dominant height observation is  
located in stand n 

Zi =
 

0 otherwise 

 
 In this case, n represents the total number of groups or 
stands in the data set and 0 is the parameter controlling the 
mean value (asymptote) over the entire population of all 
stands. The sum of the is is conditioned to equal 0. If infer-
ence about a specific stand is not required and it is possible 

to use the dominant height model for all stands, stand effect 
may be declared random. Declaring stands to be a random 
effect is a form of ‘blocking’ in an experimental design con-
text and it permits the reduction of a large source of varia-
tion. Using the terminology adopted by Schabenberger and 
Pierce [11], the stand would be designated as a cluster. A 
cluster is defined as a collection of observations that share a 
stochastic, temporal, spatial, or other association that may be 
treated as a group. They advocate the application of a two-
stage concept or mixed model to estimate a population-
average or global trend and a cluster-specific trend. The 
mixed model statistical methodology must be used to esti-
mate coefficients and compute variances when one or more 
of the effects are declared to be random. The objective of 
this paper is to present an application of the mixed modelling 
approach. It is well suited to the creation of fertilization re-
sponse model since it strengthens the signal to noise ratio, 
making it possible to increase the significance of the esti-
mated coefficients of the response. 

2. METHODS 

 The data used to construct the juvenile fertilization model 
originated from the Region-wide 2 study of the North Caro-
lina State University Forest Nutrition Cooperative [12]. Re-
gion-wide 2 was established to study the magnitude and du-
ration of nine fertilization treatments on young developing 
loblolly pine stands on site-prepared land. The experiment 
was installed at 40 locations from Alabama to Delaware over 
the Lower Coastal Plain, Upper Coastal Plain, and Pied-
mont/Interior Upland physiographic regions (Fig. 1). At any 
given location, only five treatments, including the control, 
were established. Each treatment was replicated four times 
per location. Plot sizes were approximately a 1/20 acre, how-
ever they varied in dimensions and were either circular or 
rectangular in design. The interior measurement plot con-
tained a minimum of 24 planted “crop” trees while a 2-row 
or 15 foot buffer was added to the measurement plot to de-
termine the perimeter of the treatment plot. Crop trees are 
defined as those expected to survive the entire rotation. They 
typically exclude trees that are badly suppressed, diseased, or 
with mechanical damage. 

 Table 1 depicts the average stand age, basal area, trees 
per acre, and dominant height for the study plots at the time 
of fertilization by physiographic region. During the analysis, 
a decision was made to inspect only the difference between 
the unfertilized control and the application of 200 lbs of ni-
trogen and 50 lbs of phosphorus (200N-50P). The treatment 
(200N-50P-trace), which contained the additional application 
of micronutrients, was considered to be identical to the 
200N-50P treatment. The plots were installed in 1973 or 
1974 and Dbh and total height of all crop trees were meas-
ured every two years. Measurements terminated after a con-
clusion of 4 remeasurements or 8 years since treatment. 

 During data compilation and for reasons described be-
low, 98 plots or 12% of the total number of plots were with-
drawn from analysis since their attributes fell outside the 
normal operational ranges. After 8 years of treatment, if the 
plot still possessed the equivalent of 700 pine trees per acre, 
all plots measurements, including plot establishment were 
discarded, since the plantation mostly likely consisted of 
planted trees and naturally regenerated trees. If the ratio of 
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hardwood basal area to total basal area exceeded 0.1 after 8 
years of treatment, all plot measurements were discarded. 
Likewise if the ratio of hardwood trees per acre to total trees 
per acre exceeded 0.5, all plot measurements were discarded. 
Dominant height was computed using only loblolly pine 
trees and it was defined as the average height of the top 55% 
of trees per plot ranked in descending order by height. Plots 
on the Pantego loam series in Columbus, Co. NC, which are 
considered to be extremely phosphorus deficient were also 
omitted from the study. Soil drainage classes were assigned 
to each study location based upon the physiographic region 
and soil taxonomic subgroup [13]. All Piedmont locations 
were considered to have upland soil drainage, while all Up-
per Coastal Plain locations were assigned the drainage class 
of ‘well’. Most Lower Coastal Plain locations were assigned 
a drainage class of ‘poor’, with the exception of the Aquic 
Paleudult and Aquic Hapludult subgroups which were as-
signed the drainage class of ‘well’. 

 A common function for modelling dominant height is the 
Hossfeld-Prodan-King model where dominant height (H) is 
expressed as an inverse polynomial of age (A) [14,15] 

H =
A2

0 + 1A + 2A
2  

 The parameters are easily estimated with the following 
linear transformation 

A2

H
= 0 + 1A + 2A

2  

 It was hypothesized that the linear height function above 
was suitable for modelling the untreated control (non-
fertilized base stand). Both fertilized and unfertilized stands 
can be modelled with the following extension 

A2

H
= 0 + 1A + 2A

2
+ 3yst + 4yst

2
+ 5x1 yst  

where 

 
yst = years since treatment or fertilization; yst = 

0 for untreated stands. 

x1  = 1 if soil type is a well drained Coastal 
Plain; 0 otherwise 

's = population-average or global parameters 

 
Table 1. Average Stand Attributes at the Time of Study Es-

tablishment and Fertilization by Physiographic Re-

gion 

 

Attributes at  

Fertilization 

Lower  

Coastal  

Plain 

Upper  

Coastal  

Plain 

Piedmont/ 

Interior  

Upland 

Stand age (years) 3.9 3.9 5.4 

Dominant height (ft) 11.6 10.2 13.3 

Pine basal area (ft2/ac) 8.4 8.1 19.1 

Hardwood basal area (ft2/ac) 0.15 0.03 0.36 

Pine trees/ac 545 586 592 

Hardwood trees/ac 47 8 25 

 

 Since the model above does not include an independent 
variable measuring site quality, it is plausible to believe that 
it is underspecified for stand-specific or plot-specific appli-
cations. Localizing the estimate to a specific stand or plot 

 

Fig. (1). The distribution of physiographic regions in southeastern United States. 
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can be accomplished by using the analysis of covariance 
approach published by Bailey and Clutter [16] and later ap-
plied by Alder [17]. It should be noted however that these 
authors only reported the global parameters even though 
their grouping (cluster) variable was treated as a fixed effect. 
Extending the framework of the analysis of covariance 
model, it can be assumed that the plot-specific or stand-
specific coefficients are only a random sample of some 
population of possible coefficients, and that a mixed model 
technique should be used for fitting a random coefficient 
model. This concept may be pursued by considering Equa-
tion (2) for dominant height measured at age k, from plot j, 
and stand i, 

Aijk
2

Hijk

= 0 + b0ij( ) + 1 + b1i( )Aijk + 2 + b2i( )Aijk
2

+ 3ystijk + 4ystijk + 5x1 ystijk + eijk

 

(2) 

 
where 

 
b0ij = random variable that represents the difference 

between the intercept for the jth plot in the ith 
stand and the overall intercept 0.  

b1i = random variable that represents the difference 
between the slope of the A covariate for the ith 

stand and the overall slope 1. 

b2i = random variable that represents the difference 
between the slope of the A2 covariate for the ith 
stand and the overall slope 2. 

eijk = random error term assumed to be normally dis-
tributed  

 Since plots are nested within stands, the model above 
may be considered a multilevel linear mixed model [9]. It is 
known that 

 

i=1

n

b0ij
j=1

ni
= 0  b1i

i=1

n

= 0  b2i
i=1

n

= 0  

where ni is the number of plots located in stand i and n 
equals the total number of stands. 

 0 + 1A + 2A
2
+ 3yst + 4yst

2
+ 5x1 yst  is the fixed 

effects part of the model and b0ij + b1iAijk + b2iAijk
2
+ eijk  is the 

random effects part of the model. 

 The mean value of the response is assumed to be linear in 
terms of the fixed effects parameters. 

 The random effects b0ij and b1i are assumed to be inde-
pendent of the error term and one another since they occur at 
different levels. The same is true for the random effects b0ij 
and b2i. It must be assumed however that there exists within 
each stand a correlation between b1i and b2i. As opposed to a 
fixed effects model, eijk is no longer required to be distrib-
uted as 2I. It should also be noted that the residuals of the 
mixed model are no longer required to sum to zero. 

 During the fitting process, no assumption was made 
about the structure of the variance associated with the ran-

dom variables b0ij, b1i, and b2i (unstructured variance). An 
assumption was made however with respect to the within 
plot error structure for eijk. As previously mentioned, each 
plot was remeasured on 4 occasions for a total of 5 meas-
urements per plot. The remeasurements, which are two years 
apart, lead inevitably to a positive autocorrelation, implying 
that an above average value on a plot is likely to be followed 
by another above average value. Failing to recognize the 
within plot correlation is not especially serious, since it is 
likely that the estimated parameters are unbiased. In the 
presence of autocorrelation, the precision of the estimators is 
usually overstated resulting in p-values that are too small 
[11]. Gregoire et al. [18] noted a marked improvement in the 
fit of a linear basal area prediction model of Douglas-fir 
when accounting for the within plot autocorrelation. Recog-
nizing that many forestry studies have either missing meas-
urements or a remeasurement schedule that varies from study 
to study, it was decided to model covariance structure of the 
error using exponential spatial covariance structure. When 
using the exponential spatial covariance structure in SAS®, 
the value reported, , is a function of the practical range of 
the temporal process. The range is also the time separation n, 
when n  0.05. The time separation, n, is equivalent to 3 . 
The within plot correlation is easily computed as 

= e

1

 

 The inverse polynomial Hossfeld-Prodan-King model 
offers a convenient linear transformation for analyzing 
dominant height growth as a function of age. The obvious 
effect of site quality on dominant height at a plot or stand 
level is easily explained with a linear mixed model. Basal 
area is a more complex variable than dominant height and it 
is often modelled as a function of trees per acre, age, and 
dominant height. Nelder [19] suggested that the linear in-
verse polynomial could be used to explain plant growth and 
yield as a function of two or more factors. This approach was 
followed initially, however with rather poor results. Most 
likely the joint effect of age (A), trees per acre (N), and 
dominant height (H) is misspecified with the transformation 
of [A2N2H2/B], where B is basal area per acre. 

 Gregoire et al. [18], and Harrison and Borders [20] have 
used a popular linear transformation of the Schumacher-type 
equation to predict basal area 

 

ln B = 0 + 1
1

A
+ 2 lnN + 3 lnH + 4

lnN

A
+ 5

lnH

A
 (3) 

 
where ln is the base of natural logarithms. Clutter [21] added 
an apparent Hoerl-type response function to the base equa-
tion above to predict the basal area growth of fertilized and 
unfertilized stands 

RB = 6 yst( )e 7 yst 8  

 He determined that the 6– 8 parameters were functions 
of the application rate of elemental nitrogen fertilizer. After 
adding the RB response to the Schumacher-type basal area 
prediction equation and transforming with anti-logarithms, 
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the expression for basal area in fertilized and unfertilized 
stands becomes 

B = e 0 + 1 /AN 2 + 4 /AH 3 + 5 /A e
6 yst e 7 yst

8

 

 Two problems are inherent with this approach for pre-
dicting basal area: 

1. The fertilization response is multiplicative rather than 
additive.1 

2. There is no longer a biological interpretation of the 

6– 8 parameters, since the derivative of eRB with re-
spect to yst can no longer be solved with a closed-
form solution as it involves an interaction with A, N, 
and H. 

 Similar to Borders et al. [23], it was decided to model the 
basal area response with a nonlinear form of the Schumacher 
function and include RB as an additive response rather than a 
multiplicative response. Unlike the Gregoire et al. [18] 
model which included a random effect for the 1/A covariate, 
Equation (4) contains a random effect for the intercept and 
dominant height covariate. The nonlinear mixed model for 
basal area measured at age k, from plot j, and stand i, is 

 

Bijk = e
{ 0 +b0ij }+ 1 /Aijk Nijk

2
Hijk

{ 3 +b3i }+ 4 /Aijk

+ 5 ystijk( )e 6 ystijk + eijk

 

(4) 

 
where 

 

b0ij = random variable that represents the rate of 
change between the intercept for the jth plot in the 
ith stand and the overall intercept 0.  

b3i = random variable that represents the difference 
between the power of the H covariate for the ith 

stand and the overall power 3. 

eijk = random error term assumed to be normally dis-
tributed with mean 0 and variance 2 

 

 Since plots are nested within stands, the model above 
may be considered a multilevel nonlinear mixed model. This 
has an important consequence since the NLMIXED proce-
dure of the SAS® system cannot accommodate multilevel 
nonlinear mixed models, and it becomes necessary to use the 
NLINMIX macro to estimate the parameters. 

 A preliminary analysis was conducted in this study using 
model (3) without random effects for the untreated control 
plots. It was quickly determined that the 4 was not signifi-
cantly different from zero. After fitting the reduced model 
without the lnN/A term, the estimated parameters of the re-

                                                
1 The multiplicative modelling approach to fertilization was also adopted by 
Hynynen et al. [22]. An indirect consequence of the technique is that stands 
of higher site quality have larger predicted fertilization responses. 

maining terms were used as starting values for the nonlinear 
mixed model analysis. In addition to the ease in estimating 
the parameters with linear regression, one of the major rea-
sons for the popularity of equation (3) is the stabilization of 
the variance and the promotion of homoscedasticity. Unless 
some corrective measures are made, the nonlinear formula-
tion of Schumacher model in equation (4) frequently pro-
duces the classical megaphone shape or residual pattern. 
While the parameter estimates of heteroscedastic models are 
unbiased, they no longer have minimum variance. Two cor-
rective measures were tested. The first employed a logarith-
mic transformation used by Lindstrom and Bates [24] that 
stabilizes the variance but does not linearize the parameters 
nor create a multiplicative response model: 

ln Bijk = ln
e
{ 0 +b0ij }+ 1 /Aijk Nijk

2
Hijk

{ 3 +b3i }+ 4 /Aijk

+ 5 ystijk( )e 6 ystijk
+ eijk  

 With this analysis, both the 5 and 6 coefficients proved 
insignificant. Another technique involved the fitting of equa-
tion (4) setting the weight equal to the inverse square pre-
dicted value, or, 

W =
1

B̂2
 

 Using this weighting variable, once again both the 5 and 
6 coefficients proved insignificant. As a compromise, it was 

decided to use the following weight variable which assign 
large weights to observations with smaller variances but 
which does not mask the fertilizer response effect. 

W =
1

B̂
 

3. RESULTS 

3.1. Dominant Height 

 Estimated parameters of the fixed effects are expressed 
below in a transformed and extended expression of the Hoss-
feld-Prodan-King model. Fit statistics of the fixed effects 
and covariance terms of the random effects for the dominant 
height response model are presented in Tables 2 and 3 re-
spectively. 

H =
A2

0.75 + 0.2077A + 0.007588A2 0.09476yst + 0.008065yst2 + 0.1056x1 yst
 

where 

 

H = 
dominant height or average height of the 
tallest 55% of loblolly pine trees. 

A = stand age in years 

yst = 
years since treatment or fertilization; yst = 
0 for untreated stands. 

x1 = 
1 if soil type is a well drained Coastal 
Plain; 0 otherwise 
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Table 2. Fit Statistics of Equation (2) for the Fixed Effects 

Parameters 

 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 0.7500 0.05220 645 14.37 <.0001 

A 0.2077 0.02162 54.3 9.60 <.0001 

A
2 0.007588 0.001159 53.6 6.55 <.0001 

yst -0.09476 0.01326 519 -7.15 <.0001 

yst
2 0.008065 0.001470 518 5.49 <.0001 

x1 yst  0.1056 0.02710 293 3.90 0.0001 

 

 An inspection of the conditional studentized residuals in 
Fig. (2), reveals that the estimated model does not depart 
substantively from assumption of normal residuals. Condi-
tional residuals equal the observed value minus the predicted 
value from both the fixed and random effects. 

3.2. Basal Area 

 Estimated parameters of the fixed effects are expressed in 
the equation below. 

B = e 3.07 17.9169 /AN 0.6509H
0.9675+5.121/A

+1.6369 yst( )e 0.1360yst  

where 

B = basal area in ft2/acre 

A = stand age in years 

N = trees per acre 

H =  dominant height 

yst = years since treatment or fertilization; yst 
= 0 for untreated stands. 

 

 Fit statistics of the fixed effects and covariance terms of 
the random effects for the basal area response model are pre-
sented in Tables 4 and 5 respectively. 

 The response predicts the additional increase in basal 
area per acre beyond the contribution already explained in 
the basal area equation by the independent dominant height 

variable, H. The maximum response is predicted to occur 7.4 
years after fertilization with an additional marginal response 
of 4.4 ft2/ac. 

Table 3. Covariance Parameter Estimates of the Dominant 

Height Response Model 

 

Covariance Parameter Subject or Cluster Estimate 

b0ij
2  Plot 0.01801 

b1i
2  Stand 0.008548 

b1i,b2i  Stand -0.00034 

b2i
2  Stand 0.000021 

 (range) Plot 7.8380, = 0.88  

2 (residual)  0.04309 

 

 

Fig. (2). A histogram of the conditional studentized residuals of 
Equation (2) with Normal probability density overlaid. 

 An inspection of the modified residuals in Fig. (3), reveals 
that the estimated model does not depart from assumption of 
normal residuals. The modified residuals presented here are 
also known as pseudo-data and are based on a Taylor series 
expansion around zero (the expected value of the random ef-
fects). 

Table 4. Fit Statistics of Equation (4) for the Fixed Effects Parameters 

 

Solution for Fixed Effects 

Parameter Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

0 -3.0700 0.3597 421 -8.54 <.0001 0.05 -3.7770 -2.3630 

1 -17.9169 0.7480 339 -23.95 <.0001 0.05 -19.3883 -16.4456 

2 0.6509 0.04082 443 15.95 <.0001 0.05 0.5707 0.7311 

3 0.9675 0.05382 337 17.97 <.0001 0.05 0.8616 1.0734 

4 5.1210 0.2830 416 18.09 <.0001 0.05 4.5646 5.6774 

5 1.6369 0.5256 404 3.11 0.0020 0.05 0.6036 2.6702 

6 -0.1360 0.06803 489 -2.00 0.0462 0.05 -0.2696 -0.00231 
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4. DISCUSSION 

 The ability to detect a basal area treatment response to 
juvenile fertilization can be attributed to the adoption of the 
nonlinear mixed modelling technique of Equation (4). When 
the random effects are omitted from Equation (4) and only 
the 1- 6 parameters of the fixed effects are estimated with 
weighted nonlinear regression, the estimated 6 parameter is 
not significantly different from zero and the solution fails to 
converge. Only when the weight is set to equal 1, does the 
nonlinear regression model converge and furnish a signifi-
cant estimate of 6. 

Table 5. Covariance Parameter Estimates of the Basal Area 

Response Model 

 

Covariance Parameter Subject or Cluster Estimate 

b0ij
2  Plot 0.003850 

b3i
2  Stand 0.001284 

 (range) Plot 1.5426, = 0.52  

2 (residual)  0.5023 

 

 It is not too surprising that efforts to stabilize the vari-
ance also undermine the ability to detect a large difference 
between an unfertilized stand and a fertilized stand, since the 
greatest spread between the treated and untreated stand occur 
at 7-8 years after treatment when the stand is the largest. The 
compromise proposed here between modelling the fertiliza-
tion response and attenuating the unequal variance seems 
reasonable. In general, the largest predicted gains in basal 
area in fertilized stands occur because of the increase of 

dominant height rather than the marginal accretion due to the 
term: 1.6369(yst)e-0.136yst. 

 The predicted gains in dominant height are approxi-
mately 2 feet for stands fertilized at age 4 and grown until 
age 12 on Piedmont upland soils and poorly drained soils in 
the Coastal Plain. As depicted in Table 6, the predicted 
height gains are much less on well drained Coastal Plain 
soils.2 In fact, the dominant height model must be con-
strained for response periods surpassing ten years (yst > 10) 
on the well drained Coastal Plain soils so that the predicted 
dominant height of fertilized stands does not fall below that 
of unfertilized stands. 

 The expected gain from juvenile fertilization (200N-50P) 
is modest. Previous efforts to extract useful information from 
the Region-wide 2 study were hampered by the installation 
design that permitted large differences in initial stocking and 
the use of very small plots for measuring fertilization re-
sponse. The model described here were successful in reduc-
ing unexplained variation and detecting a dominant height 
response. 

 The predicted gain in basal area from juvenile fertiliza-
tion (200N-50P) is moderate. For Piedmont upland soils and 
poorly drained Coastal Plain soils, a stand fertilized at age 4 
is expected to have 11.7 additional ft2/ac in basal area over 
that of an unfertilized stand at age 12. Fig. (4) displays the 
source of the gain in basal area on a stand with a site index 
of 75 in the Piedmont or poorly drained Coastal Plain. 

                                                
2 Based on recent measurements and observed fertilizer responses of forest 
stands in the well drained Coastal Plain soil type in the Region-wide 18 
study, Dr. H. Lee Allen of North Carolina State University, Forest Nutrition 
Cooperative, has recommended that the results are modified so that: domi-
nant height response of well drained Coastal Plain = 0.7 x predicted domi-
nant height response of poorly drained Coastal Plain soil type. 

 

Fig. (3). A histogram of the modified residuals of Equation (4) with Normal probability density overlaid. 
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Table 6. Predicted Dominant Height in Feet for Loblolly Pine 

Stands with a Site Index of 75 that are Fertilized at 

Age 4 

 

Stand  

Age 

Dominant  

Height of  

Unfertilized  

Stands 

Dominant Height  

of Fertilized Stands  

in Piedmont/Interior  

Upland or Poorly  

Drained Coastal  

Plain Soil Type 

Dominant Height  

of Fertilized Stands  

in Well Drained  

Coastal Plain  

Soil Type 

4 18.8 18.8 18.8 

5 22.4 23.0 22.4 

6 25.9 27.1 26.4 

7 29.2 30.9 29.4 

8 32.4 34.5 32.7 

9 35.5 37.8 35.8 

10 38.5 40.8 38.6 

11 41.5 43.6 41.5 

12 44.2 46.1 44.2 
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