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Abstract: The present mini-review aims first at an introduction to two thermodynamic essentials of the binding between 
the influenza A virus hemagglutinin (HA) and the cell surface receptor sialoside, (1) the equilibrium 1:1 binding of the 
HA with the sialoside, (2) the polyvalent effect of the HA binding to the polyvalent sialoside. Second, the review intro-
duces the fragment molecular orbital (FMO) studies of the HA-sialoside (1:1) complexes. The recent FMO method with 
the polarizable continuum model as one of the residue-based energy analysis method has revealed the role of key amino 
acid residue on the selective HA subtype H3 binding to the sialosides.  
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1. INTRODUCTION 

 Selective binding of the influenza A virus hemagglutinin 
(HA) to the host cell receptor sialosaccharide concerns the 
viral host-range determination [1,2]. The recent biotechnol-
ogy with the modern experiments, e.g. reverse genetics [3], 
glycan array [4,5], and sugar-chain immobiliezed gold nano 
particle [6], and a portable impedance biosensor [7], is al-
most able to monitor the binding affinities of new viruses 
toward the major human-type sialoside Neu5Ac2-6Gal 
[1,2].  

 However, the monitoring system does not clarify the 
chemical mechanisms of the follow fundamental phenom-
ena; the strong binding between the human viral HA and the 
Neu5Ac2-6Gal, alteration of the HA binding affinity from 
the avian-type sialoside Neu5Ac2-3Gal to the Neu5Ac2-
6Gal caused by the one or two-points substitutions of the 
amino acid residues on HA [8-13]. 

 To understand their mechanisms, it is worth computa-
tional studying the HA-sialoside interaction on the basis of 
the experimental binding affinity [14-18] and the corre-
sponding X-ray crystallographic structures. Recently, the 
fragment molecular orbital (FMO) method [19-22] as one of 
the residue-based energy analyses is very useful to find the 
role of key amino acid residue on the selective HA binding 
to sialosides. In perspectives, the FMO method collaborated 
with the molecular mechanics calculations, molecular dy-
namics simulations, and their hybrid approaches, will help us 
to predict the binding affinities of new viral HAs and their 
HA mutants to the Neu5Ac2-6Gal.  

 The present mini-review introduces the experimental 
binding between HA and sialoside, which includes the two 
thermodynamic essentials; (1) the equilibrium 1:1 binding of  
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the HA with the sialoside, (2) the polyvalent effect of the HA 
binding to the polyvalent sialoside. Second, the review 
summarizes the recent FMO studies of the HA subtype H3-
sialoside (1:1) complexes. 

2. BINDING AFFINITY BETWEEN THE INFLUENZA 
HEMAGGLUTININ AND THE SIALOSIDE 

 The equilibrium dissociation constant KD between the 
soluble bromelain-released HA (BHA) and the sialooligo-
saccharides was on the order of M~mM measured by the 
nuclear magnetic resonance (NMR) titration studies [14, 23], 
besides the order was reproduced by the fluorescence polari-
zation titration study [24]. Therefore, the equilibrium BHA-
sialoside interaction was weak as similar to the other lectin-
carbohydrate interactions at the equilibrium 1:1 binding 
[25,26]. Generally, the weak lectin-carbohydrate interaction 
on the KD 10-6~-3M was achieved by the balance between the 
fast association rate (10 4~ 6 M-1s-1) and the fast dissociation 
rate (10 0 ~ 2 s-1) in the equilibrium solution [27,28]. 

 In addition to the weak BHA-sialoside binding in equilib-
rium, the binding selectivity of the human viral BHA sub-
type H3 to the human-type sialoside Neu5Ac2-6Gal1-
4Glc was not intense so much in the equilibrium solution. As 
an evidence, the intrinsic KD 2.1 ± 0.3 mM at 297 ± 1K 
(binding Gibbs energy Gbind = -3.7~ -3.6 kcal/mol) of the 
human viral BHA with Neu5Ac2-6Gal1-4Glc was only 
1.0 mM smaller than the KD 3.2 ± 0.6 mM of the avian-type 
sialoside Neu5Ac2-3Galb1-4Glc [14]. 

 The BHA existed as a trimer of HA1-HA2 unit with the 
sialoside binding site laid on the top face of each HA1 do-
main [8, 29]. With the trivalent sialoside binding site on 
BHA, the equilibrium BHA-sialoside interaction approxi-
mated the simple 1:1 binding mode analyzed by the NMR 
titration study [14]. The simple binding mode suggested that 
the trivalent HA-sialoside binding was not controlled by the 
homotropic allosteric effect of sialoside. In other words, the 
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BHA had the equivalent three binding sites for the 
Neu5Ac2-6Gal1-4Glc with the first KD 0.7 ± 0.3 mM 
(Gbind -4.4~ -4.2 kcal/mol), the second KD 2.1 ± 0.3 mM 
(equal to the intrinsic KD, Gbind -3.7~ -3.6 kcal/mol), and 
the third KD 6.3 ± 0.3 mM (Gbind -3.1~ -2.9 kcal/mol). 

 Both the weak HA-sialoside binding and its selectivity 
were very enhanced by the polyvalent effect of the sialoside 
receptor such as soluble sialoglycopolymers [30,31], sia-
loglycolipids-buried membrane [32], and sialoside-bound 
plate [5, 33-35]. The polyvalent effect did not depend on the 
polyvalency of HA because the KD for the binding between 
the HA on intact virion and the monovalent sialoside was the 
same order with the KD for BHA binding to the monovalent 
sialoside [36]. As the additional evidences, the monovalent 
sialoside derivatives inhibited the virus adsorption to eryth-
rocytes with the inhibition constant Ki on the order of 
M~mM [37,38] and the concentration for 50% inhibition 
on the order of mM [39,40]. 

 These experimental results and discussion suggest that 
the HA-sialoside binding bases on the two thermodynamic 
essentials, (1) the equilibrium 1:1 binding of the HA with the 
sialoside and (2) the polyvalent effect of the HA binding to 
the polyvalent sialoside [41,42]. The former essence has 
been targeted by the all-atom computational studies involv-
ing the quantum chemical calculations, the molecular me-
chanics calculations, the classical molecular dynamics (MD) 
simulations [43-49], and their hybrid approaches. The latter 
will be studied by the macroscopic computational ap-
proaches [50]. 

3. THE FRAGMENT MOLECULAR ORBITAL STUDY 
OF THE INFLUENZA HEMAGGLUTININ-
SIALOSIDE COMPLEX 

 On the basis of the X-ray crystallographic structures of 
various HAs in complexes with the Neu5Ac2-3 and 2-
6Gal oligosaccharides, the 1:1 binding between HA and sia-
loside has been studied by the ab initio based FMO method. 
In 2006, the first trial study was performed at the FMO-
Hartree-Fock (HF)/STO-3G level in the gas phase small 
model of HA-sialoside complexes (70 amino acid residues, 
about 1100 atoms) to find the key amino acid residue on the 
selective binding of HA subtype H3 to the sialosides [51]. In 
2008, the small model complexes in gas phase were re-
studied correctly by the FMO method at the second-order 
Møller-Plesset perturbation theory (MP2) [52,53] with the 6-
31G basis sets [54]. The full HA1 domain of human viral H3 
in complex with the human-type sialoside Neu5Ac2-6Gal 
(328 amino acid residues, 5068 atoms) was studied in gas 
phase at the FMO-HF/STO-3G level in 2007 [55], at the 
FMO-MP2/6-31G level in 2009 [56], that demanded the con-
sideration of the backyard bulkiness beyond the sialoside 
binding site. In 2008, Iwata et al. applied first the FMO-MP2 
method to the truncated model of several HA-sialoside com-
plexes in gas phase to discuss some important interaction 
patterns qualitatively [57]. In 2011, Fukuzawa et al. applied 
the gas phase FMO-MP2/6-31G(d) calculations to the HAs 
subtype H1 in complex with the sialooligosaccharides to 
discuss the electrostatic residue interactions without solva-
tion effect [58]. 

 In 2010, the FMO method with the polarizable contin-
uum model (PCM) [59,60] was applied to the full HA1 do-
main in complex with the sialoside at the MP2/6-31G(d) 
level [61]. The FMO-MP2/PCM approach with the molecu-
lar mechanics level normal mode analysis of the solute en-
tropy change provided the reasonable relative Gbind in the 
equilibrium 1:1 binding of the H3 with the sialoside. More-
over, the pair-interaction energy decomposition analysis [62] 
in the FMO framework enabled us to estimate the residue-
based interaction energies of the static HA-sialoside recogni-
tion including the electrostatic interaction energy under the 
whole system (coulomb interaction and polarization), disper-
sion interaction energy, exchange-repulsion interaction en-
ergy, charge-transfer interaction energy with the higher-order 
mixed terms, and the de-solvation free energy via the com-
plex formation.  

 The residue-based energy analysis revealed the role of 
key amino acid residue in the selective HA-sialoside binding 
[61]. In the detail study of the HA subtype H3 in complexes 
with the Neu5Ac2-3 and 2-6Gal disaccharide, the strong 
avian H3 (A/duck/Ukraine/1963 strain, H3N8) binding to the 
avian sialoside Neu5Ac2-3Gal was based on the hydrogen 
bond interaction between the 4-OH group on Gal residue and 
the side-chain CONH2 on the Gln226 under the hydrogen 
bond network formation between the 1-COO group on 
Neu5Ac residue, amino acid residues at Ser136, Ser137, and 
Asn145. In addition, this hydrophilic interaction was sup-
ported by the surrounding hydrogen bonds, Gln226-
CONH2···HO-8 on Neu5Ac, Tyr98-OH···OH-8 Neu5Ac, and 
His183-imidazole HN···O8 and O9-Neu5Ac. The interaction 
manner was stable in the isobaric-isothermal (NPT-constant) 
classical MD simulation. The hydrophilic interaction be-
tween avian H3 and avian Neu5Ac2-3Gal largely stabilized 
the complex with the large desolvation energy penalty and 
the solute entropic penalty to give the Gbind advantage of -
6.8 kcal/mol than the Gbind in avian H3-human Neu5Ac2-
6Gal complex. These approaches with the amino acid se-
quence alignments of comprehensive HA [61, 63-67] pro-
vided the chemical insight into the roots of selective HA 
binding to the sialosides. 

 The reason why a substitution Gln226Leu in avian H3 
altered the binding affinity from the avian Neu5Ac2-3Gal 
to the human Neu5Ac2-6Gal was also explained by the 
FMO-MP2/PCM method with the 6-31G(d) basis sets [61]. 
The iso-butyl group on Leu226 interacted with the Gal resi-
due on Neu5Ac2-6Gal by utilizing the intermolecular dis-
persion with the small de-solvation energy penalty. Besides, 
the loose Leu226···Neu5Ac2-6Gal association caused the 
smaller entropic penalty. However, the hydrophobic 
Leu226···Neu5Ac2-6Gal interaction was unstable in the 
normal NPT-constant classical MD simulation. The 
Leu226···Neu5Ac2-6Gal association was achieved on the 
hydrophobic surface of HA, thus this interaction was ex-
posed to the bulk solvent from the direction of Neu5Acα2-
6Gal binding. With the situation, water molecules were in-
serted into the Leu226···Gal association under the equilibra-
tion by the NPT-constant MD simulation. When the waters 
were inserted once, they were never excluded from the sur-
face hydrophobic site despite the Gibbs energy advantage of 
the intermolecular hydrophobic association. 
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 The A/Aichi/2/1968 H3 (X-31, human H3N2) in com-
plex with the human Neu5Ac2-6Gal had an intramolecular 
hydrogen bond at Neu5Ac 8-OH···OOC-1 Neu5Ac due to 
the lipophilic Leu226, thus the human H3 Leu 226·Neu5-
Ac2-6Gal association suffered a smaller desolvation pen-
alty than in the hydrophilic avian H3···Gln226 avian 
Neu5Ac2-3Gal interaction. Unexpectedly, the FMO-
MP2/PCM study suggested that the strong human H3-
Neu5Ac2-6Gal binding did not depend on the additional 
intermolecular hydrogen bond Ser228-OH···OH-9 Neu5Ac 
due to suffering the large desolvation penalty via the hydro-
gen bond formation. Even if the Ser228-OH···OH-9 Neu5Ac 
interaction disappears, the other two hydrogen bonds 
Glu190-COO···HO-9 Neu5Ac and His183 imidazole 
HN···OH-9 Neu5Ac compensate. Indeed, the substitution of 
Ser228Gly on the X-31 H3 HA1 retained the large human 
H3-human erythrocyte binding affinity [68]. Moreover, in 
spite of the A/Aichi/2/1968 H3-Neu5Ac2-6Gal interaction 
achieved by the hydrogen bond network around the 1-COO 
Neu5Ac with the amino acid residues Ser136, Asn137, and 
Ser145, this hydrophilic interaction did not contribute suffi-
ciently to the distinctive human H3-Neu5Ac2-6Gal bind-
ing. Therefore, possible amino acid substitutions have opti-
mized the recognition of 1-COO Neu5Ac and 2-6 bond to 
accelerate the strong human H3−human 2-6 binding since 
1968. On the sequence alignment for the known human H3s, 
the Ser136 preservation is significant for the recognition of 
1-COO Neu5Ac. Actually, each of the one-point substitu-
tions Ser136Thr [68], Ser136Ala [68], Ser136Cys [69], 
Ser136Asn [70] decreased the human erythrocyte binding. 
The Asn145 and Lys145 sometimes required a hydrophobic 
Tyr and Phe at position 137 [61]. 

 The NPT-constant MD simulation confirmed the validity 
of above static FMO-MP2/PCM study [61]. The MD simula-
tions of the HA-sialoside complexes resulted that weakly 
constrained water molecules supported the interactions be-
tween active site amino acids and Neu5Ac residue from a 
direction of bulk solvent side regardless of Neu5Ac2-3 Gal 
and Neu5Ac2-6Gal. The constrained water formed a hy-
drogen bond network with 9-OH group on Neu5Ac residue 
that was often replaced by other waters in a bulk solvent 
phase. These solvent properties can be qualitatively esti-
mated by the FMO/PCM approach.  

 The FMO-MP2/PCM study with the molecular mechan-
ics level harmonic normal mode analysis did not consider the 
full value of the solute entropic change [71-75] via the HA-
sialoside complex formation. Nevertheless, the calculated 
binding energies qualitatively reproduced the available ex-
perimental order in vitro X-31 human virus strain H3 system 
[61]. Thus, the large-scale conformational effect with an-
harmonicity [71-75] did not qualitatively influenced the sim-
ple 1:1 binding mode of the selective binding between HA 
and monovalent sialoside on the basis of fast association rate 
and fast dissociation rate in equilibrium. 

4. CONCLUSIONS 

 The mini-review has introduced the two thermodynamic 
essentials of the binding between the influenza A virus he-
magglutinin (HA) and the cell surface receptor sialoside, (1) 
the equilibrium 1:1 binding of the HA with the sialoside, (2) 

the polyvalent effect of the HA binding to the polyvalent 
sialoside. 

 The FMO/PCM method as a tool for the residue-based 
energy analysis is very useful to study the role of key amino 
acid residue for the influenza viral hemagglutinin bindings to 
the sialoside receptors in the equilibrium 1:1 binding. In per-
spectives, the FMO method has collaborated with the other 
approaches such as the molecular dynamics simulations, the 
QMMM framework, and the empirical amino acid sequence 
alignment that can help us to understand the mechanism of 
the new viral HA binding to sialoside. 

ABBREVIATIONS: 

HA = hemagglutinin 

Neu5Ac2-6Gal = N-acetyl-D-neuraminic 
acid 2-6 -D-galactose 

Neu5Ac2-3Gal = N-acetyl-D-neuraminic 
acid 2-3 -D-galactose 

FMO = fragment molecular or-
bital 

BHA = bromelain-released he-
maggulinin 

NMR = nuclear magnetic reso-
nance 

Neu5Ac2-6Gal1-4Glc = N-acetyl-D-neuraminic 
acid 2-6 D-galactose 
1-4 -D-glucose 

Neu5Ac2-3Gal1-4Glc = N-acetyl-D-neuraminic 
acid 2-3 D-galactose 
1-4 -D-glucose 

MD = molecular dynamics 

HF = the Hartree-Fock 
method 

MP2 = the second-order 
Møller-Plesset perturba-
tion theory 

PCM = polarizable continuum 
model 
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