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Abstract: Climate Change refers to any systematic change in the long-term statistics of climate elements (such as tem-

perature, pressure, or winds) sustained over several decades or longer time periods. General Circulation Models (GCMs) 

are tools designed to simulate time series of climate variables globally, accounting for effects of greenhouse gases in the 

atmosphere and resulting global climate change. They are currently the most credible tools available for simulating the re-

sponse of the global climate system to increasing greenhouse gas concentrations, and to provide estimates of climate vari-

ables (e.g. air temperature, precipitation, wind speed, pressure etc.) on a global scale. GCMs demonstrate a significant 

skill at the continental and hemispheric spatial scales and incorporate a large proportion of the complexity of the global 

system; they are, however, inherently unable to represent local subgrid-scale features and dynamics. The spatial scale on 

which a GCM can operate (e.g., 3.75
0
 longitude X 3.75

0
 latitude for Coupled Global Climate Model, CGCM2) is very 

coarse compared to that of a hydrologic process (e.g., precipitation in a region, streamflow in a river etc.) of interest in the 

climate change impact assessment studies. Moreover, accuracy of GCMs, in general, decreases from climate related vari-

ables, such as wind, temperature, humidity and air pressure to hydrologic variables such as precipitation, evapotranspira-

tion, runoff and soil moisture, which are also simulated by GCMs. These limitations of the GCMs restrict the direct use of 

their output in hydrology. Hydrologic implications of global climate change are usually assessed by downscaling appro-

priate predictors simulated by General Circulation Models (GCMs). Conventionally rainfall is first downscaled with dy-

namic or statistical downscaling and then the predicted rainfall is used in hydrologic models to forecast hydrologic scenar-

ios of future.  

Although this methodology is widely practiced, there are some limitations: (a) uncertainty resulting from the use of multi-

ple GCMs, scenarios, downscaling models is seldom considered; (b) local changes (e.g., urbanization, population growth, 

deforestation) which affect directly the hydrology of a region are considered in a very limited number of studies. The pre-

sent paper focuses on these limitations and proposes different approaches to deal with the problems.  
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INTRODUCTION 

Climate change refers to any systematic change in the 
long-term statistics of climate elements (such as temperature, 
pressure, or winds) sustained over several decades or longer 
time periods (American Meteorological Society, 
http://amsglossary.allenpress.com/glossary). Observations 
that delineate how global temperature has increased in the 
past, show (Fig. 1) that the global average surface tempera-
ture has increased by 0.74

0
C/ Century [1]. It is observed that 

in the 20
th

 century, 1990s was the warmest decade and 1998 
was the warmest year [2]. One of the major causes of global 
warming is the emission of greenhouse gases due to anthro-
pogenic activities [2].  The consequences of global warming 
are reflected in global as well as regional climate in terms of 
changes in key climatic variables such as precipitation and 
atmospheric moisture, snow cover, extent of land and sea 
ice, sea level and patterns in atmospheric and oceanic circu- 
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lation. IPCC [2] lists out following evidences of climate 
change. There are evidences of changes in precipitation in 
the middle and high latitudes of the Northern Hemisphere. 
Based on tide gauge data, the rate of global mean sea level 
rise during the 20

th
 century is estimated to be in the range of 

1.0 to 2.0 mm/yr, with a central value of 1.5 mm/yr. De-
creasing snow cover and land-ice extent continue to be posi-
tively correlated with increasing land-surface temperatures. 
Satellite data show that it is very likely that there have been 
decreases of about 10% in the extent of snow cover since the 
late 1960s. The behaviour of El Nino Southern Oscillation 
(ENSO) has been unusual since the mid-1970s compared 
with the previous 100 years, with warm phase ENSO epi-
sodes being relatively more frequent, persistent, and intense 
than the opposite cool phase. This recent behaviour of ENSO 
is reflected in variations in precipitation and temperature 
over much of the global tropics and sub-tropics. As summa-
rized above, there exists a significant evidence of climate 
change, particularly over the recent decades. 

Water resources are inextricably linked with climate, so 
the prospect of global climate change has serious implica-
tions for water resources and regional development [2]. It is 
mentioned in the IPCC report [2] that increased evaporation 
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(resulting from higher temperatures), combined with regional 
changes in precipitation characteristics (e.g., total amount, 
variability, and frequency of extremes), has the potential to 
affect mean runoff, frequency and intensity of floods and 
droughts, ground water, soil moisture, and water supplies for 
irrigation and hydroelectric generation. 

Assessing the impact of climate change on hydrology es-
sentially involves projections of climatic variables (e.g., 
temperature, humidity, mean sea level pressure etc.) at a 
global scale, downscaling of global scale climatic variables 
into local scale hydrologic variables and computations of 
risk of hydrologic extremes in future for water resources 
planning and management. Projections of climatic variables 
globally can be performed with General Circulations Models 
(GCMs), which, are currently the most credible tools avail-
able for simulating the response of the global climate system 
to increasing greenhouse gas concentrations, and to provide 
estimates of climate variables (e.g. air temperature, precipita-
tion, wind speed, pressure etc.) on a global scale. GCMs are 
able to simulate reliably the most important mean features of 
the global climate at planetary scales.  However, at finer spa-
tial resolutions GCMs have much lower skill. The spatial 
scale on which a GCM can operate (e.g. 3.75

0
 longitude X 

3.75
0
 latitude for Coupled Global Climate Model, CGCM2) 

is very coarse compared to that of a hydrologic process (e.g., 
precipitation in a region, streamflow in a river basin etc.) to 
be modelled in the climate change impact assessment stud-
ies. Downscaling, in the context of hydrology, is a method to 
predict the hydrologic variables (e.g., rainfall and stream-
flow) at a smaller scale based on large scale climatological 
variables (e.g., mean sea level pressure) simulated by a 
GCM. The next section presents overview of different down-
scaling techniques. 

DOWNSCALING TECHNIQUES 

Downscaling techniques can be broadly classified into 
dynamic and statistical downscaling (Table 1). Poor per-
formances of GCMs at local and regional scales have lead to 
the development of Limited Area Models (LAMs) in which a 
fine computational grid over a limited domain is nested 
within the coarse grid of a GCM [3]. This procedure is also 
known as dynamic downscaling. A major drawback of dy-
namic downscaling which restricts its use in climate change 
impact studies, is its complicated design and high computa-
tional cost. Moreover, dynamic downscaling is inflexible in 
the sense that expanding the region or moving to a slightly 
different region requires redoing the entire experiment [4]. 

Another approach to dynamic downscaling is statistical 
downscaling, in which, regional or local information about a 
hydrologic variable is derived by first determining a statisti-
cal model which relates large scale climate variables (or pre-
dictors) to regional or local scale hydrologic variables (or 
predictands). Then the large scale output of a GCM simula-
tion is fed into this statistical model to estimate the corre-
sponding local or regional hydrologic characteristics [5]. 
There are three implicit assumptions involved in statistical 
downscaling [6]: firstly, the predictors are variables of rele-
vance and are realistically modeled by the GCM; secondly, 
the empirical relationship is valid also under altered climatic 
conditions, and thirdly, the predictors employed fully repre-
sent the climate change signal. Statistical downscaling meth-
ods can be further classified into weather generators, weather 
typing and transfer functions based on the use of different 
statistical tools. 

Weather generators are statistical models of sequences of 
weather variables. They can also be regarded as complex 
number generators, the output of which resembles daily 
weather data at a particular location. There are two funda-
mental types of daily weather generators, based on the ap-
proach to model daily precipitation occurrence: the Markov 
chain approach [7] and the spell-length approach [8]. In the 
Markov chain approach, a random process is constructed 
which determines a day at a station as rainy or dry, condi-
tional upon the state of the previous day, following given 
probabilities. In case of spell-length approach, instead of 
simulating rainfall occurrences day by day, spell-length 
models operate by fitting probability distribution to observed 
relative frequencies of wet and dry spell lengths. In either 
case, the statistical parameters extracted from observed data 
are used along with some random components to generate a 
similar time series of any length. In statistical downscaling, 
the parameters of the weather generators are conditioned 
upon a large-scale state, or the relationships between daily 
weather generator parameters and climatic averages can be 
used to characterize the nature of future days statistics on the 
basis of more readily available time-averaged climate change 
information [9]. Weather typing approaches involve group-
ing local, meteorological variables in relation to different 
classes of atmospheric circulation. Future regional climate 
scenarios are constructed, either by resampling from the ob-
served variable distribution (conditional on circulation pat-
terns produced by a GCM), or by first generating synthetic 
sequences of weather patterns using Monte Carlo techniques 
and resampling from the generated data. The mean or fre-

 

Fig. (1). Global Temperature Trend (IPCC, 2007). 
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quency distribution of the local climate is then derived by 
weighting the local climate states with the relative frequen-
cies of the weather classes. Climate change is then estimated 
by determining the change of the frequency of weather 
classes. The most popular approach of statistical down-
scaling is the use of transfer function which is a regression 
based downscaling method that relies on direct quantitative 
relationship between the local scale climate variable (predic-
tand) and the variables containing the large scale climate 
information (predictors) through some form of regression. 
Individual downscaling schemes differ according to the 
choice of mathematical transfer function, predictor variables 
or statistical fitting procedure. Todate, linear and non-linear 
regression [5], Artificial Neural Network (ANN) [4] and 
canonical correlation [10] have been used to derive predic-
tor-preditand relationship. Among them, ANN-based down-
scaling techniques have gained wide recognition owing to 
their ability to capture non-linear relationships between pre-
dictors and predictand [4, 6]. 

Despite a number of advantages, the traditional neural 
network models have several drawbacks including possibil-
ity of getting trapped in local minima and subjectivity in the 
choice of model architecture [11]. Recently, Vapnik [12, 13] 
pioneered the development of a novel machine learning algo-
rithm, called Support Vector Machine (SVM), which pro-
vides an elegant solution to these problems. Although, recur-
rent ANNs perform better than feed forward neural networks 
in many applications (e.g., [14]), being a subset of neural 
networks they involve numerical algorithms (back propaga-
tion or conjugate gradient) in training which sometimes do 
not result in global optimum values of the parameters. On the 
other hand, as SVM involves analytical methods such as 
quadratic programming it always results in global optima. 
Secondly ANN trains a model with the objective of empirical 
risk minimization which lacks in generalization of input out-
put relationship. SVM on the other hand performs structural 
risk minimization which is more generalized and results in 
more credible solutions. The SVM has been used in statisti-
cal downscaling model by Tripathi et al. [15]. SVM has 
some drawbacks of rapid increase of basis functions with the 

size of training data set [16], which may lead to overtraining 
(large difference between the system performance measure 
of training and testing data set). This was overcome by 
Ghosh and Mujumdar [17] using Relevance Vector Machine, 
which is applied for projection of streamflow of Mahanadi 
River, India.  

To summarize, dynamic downscaling models are based 
on geophysics, however they are computationally expensive 
and the methodology changes with change in case study. 
Statistical downscaling models on the other hand are based 
on statistical relationship and hence require less computa-
tional time. Transfer functions are most popular downscaling 
model due to their simplicity but can not model very well 
variability and extreme events. Their performances are poor 
in simulating daily rainfall but projects well monthly rainfall 
which are averaged and for such cases the effects of ex-
tremes are minimized. Stochastic weather generators are 
good for modelling daily rainfall but they can model only 
rainfall state, not the rainfall values. Multisite daily rainfall 
modelling is still a challenge for researchers working in the 
field of downscaling. 

CLIMATE CHANGE IMPACTS ASSESSMENT ON 
INDIAN RIVER BASINS 

The steps involved in assessing impacts of climate 
change on river basin scale hydrology are presented in Fig. 
(2). They are: 

1. Simulation of large scale climate variables by GCMs. 

2. Downscaling large scale climate variables to local 
scale hydro-meteorological variables (e.g., rainfall).   

3. Hydrologic modelling 

4. Analysis of hydrologic extremes. 

The first two steps are burdened with a considerable 
amount of uncertainty, stemming from several sources [18]. 
For impact estimates based on downscaling of General Cir-
culation Model (GCM) outputs, different levels of uncer-
tainty are related to: (i) GCM uncertainty or intermodel vari-

 

Fig. (2). Flowchart for Climate Change Impacts Assessment on River Basin Scale Hydrology. 
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ability (arising from use of different GCMs), (ii) scenario 
uncertainty or interscenario variability, (iii) different realiza-
tions of a given GCM due to parameter uncertainty (intra-
model variability) and (iv) uncertainty due to downscaling 
methods. GCM uncertainty, which is due to incomplete 
knowledge about the underlying geophysical processes of 
global change, leads to limitations in the accuracy of the 
models. Scenario uncertainty results from unpredictability in 
the forecast of future socio-economic and human behavior 
resulting in future Green House Gas (GHG) emission scenar-
ios. Downscaled outputs of a single GCM with a single cli-
mate change scenario represents a single trajectory among a 
number of realizations derived using various scenarios with 
GCMs. Such a single trajectory alone can not represent a 
future hydrologic scenario, and will not be useful in assess-
ing hydrologic impacts due to climate change. No quantified 
probability is attached to the simulated outcome of a single 
GCM for a single scenario and thus the approach of down-
scaling a single GCM output is not particularly useful for 
risk adaption studies [19]. Therefore there is a need to model 
the uncertainties before the use of downscaled output in hy-
drologic modelling. 

A hydrologic model used for estimating the response of 
rainfall (viz., runoff), needs the land use pattern of the river 
basin. With the change in time, the land use pattern will 
change and depends on socio-economic conditions and 

demographic data. Considering the present land use pattern 
to be same for future is unrealistic and results in significant 
error. This input can be considered as local changes and 
should be considered for hydrologic projections. Further-
more the uncertainty resulting from the use of multiple hy-
drologic models should also be considered and finally after 
considering all sorts of uncertainties the risk of hydrologic 
extremes should be computed. 

The methodology adopted for Indian River basin to as-
sess impacts of climate change can be broadly classified into: 

1.  Dynamic downscaling model coupled with Soil Water 
Assessment Tool (SWAT). 

2. Statistical downscaling model coupled with uncer-
tainty modelling. 

Dynamic Downscaling Models Coupled with SWAT 

This model [20] (Fig. 3) includes generation of local me-

teorological data under GHG conditions and then the use of 

local scale meteorological data in a hydrologic model (Soil 

Water Assessment Tool [SWAT]). Dynamic downscaling for 

local scale meteorological prediction was performed with 

Hadley Regional Model HadRM2 with a resolution of 0.440 

latitude by 0.440 longitude. A hydrologic model SWAT has 

been trained for river basins and the local predicted meteoro-

logical variables are used in trained SWAT for hydrologic 

scenario prediction. The SWAT model simulates the hydro-

logic cycle at daily time steps. SWAT is a distributed, con-

tinuous, hydrological model with an ArcView GIS interface 

(AVSWAT). The interface has been used for pre- and post-

processing of the data and outputs. The methodology is ap-

plied by Gosain et al. [20] for Krishna and Mahanadi river 

basin.  The limitation of this model are: 

1. Single GCM has been considered, however it has 
been observed that output of one GCM deviates 
from that of another significantly and therefore 
over-reliance of a single GCM results in misleading 
projections. 

2. The SWAT model is trained with present land use 
pattern. It is quite expected that in future the land 
use pattern will change which definitely has impacts 
on hydrologic processes. Such land use change has 
not been considered in Gosain et al. [20]. 

3. The hydrologic projections under GHG condition 
have been presented (Gosain et al., 2006) year wise 
(e.g., for 2041, 2042 etc.), however GCMs fail to 
model interannual variability. Therefore decade 
wise/ 30 years wise statistical properties of hydro-
logic variables are more appropriate mode of pre-
dictions.  

Statistical Downscaling Model Coupled with Uncertainty 
Modelling 

The second type of models used for Indian river basins 
are statistical downscaling methods coupled with uncertainty 
modeling (Fig. 4). In such framework [21], statistical down-
scaling model is first developed to predict streamflow di-
rectly from large scale climate variables simulated by GCMs 
[17]. It is assumed that local level changes are actually con-
tributing to global changes which is considered in GCM 

 

Fig. (3). Dynamic Downscaling Models coupled with SWAT. 
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simulations. Therefore use of GCM simulations for stream-
flow prediction is actually implicitly considering the local 
changes (Fig. 5). However, this is a very weak assumption 
and does not consider the impacts of case study specific local 
changes.  

The model has been applied by Mujumdar and Ghosh 

[21] for Mhanadi river basin to compute the inflow to Hira-

kud dam. The Hirakud dam is located on the Mahanadi river 

in Orissa State of India. The monthly streamflow at Hirakud 

dam, for the period 1961 to 2005, is obtained from the De-

partment of Irrigation, Government of Orissa, India. A subset 

of the data set, viz., streamflow data from 1961 to 1990 is 

used for statistical downscaling and the rest of the data is 

used for modeling GCM and scenario uncertainty (with 

Third Assessment Report [TAR] projections) with possibility 

distribution.  

Following IPCC story-lines and Third Assessment Re-

port [TAR], it is argued in the possibilistic approach [21], 

that the signals of climate forcing would be visible after the 

year 1990. For appropriate planning and adaptation re-

sponses, with the passage of time, it is relevant to assess the 

effectiveness of GCMs in modelling climate change and also 

to judge which of the scenarios represent the present situa-

tion best under climate forcing. A methodology based on 

possibility distribution has been developed by Mujumdar and 

Ghosh [21] to model GCM and scenario uncertainty with an 

objective of assignment of possibility values to GCMs and 

scenarios depending on their performance in modeling sig-

nals of climate forcing in the recent past (years 1991-2005). 

The possibilities thus obtained are used as weights in deriv-

ing the possibilistic mean CDF (weighted CDF) for standard 

time slices of 2020s, 2050s, and 2080s. 

The limitations of this model are: 

1. The assumption for local changes is very weak and 
does not consider case study specific local changes. 
It has been shown by Ghosh et al. [22] that, local 
changes have significant impacts on local scale hy-
drologic variables. 

2. Weights are assigned to the GCMs based on past per-
formance. As GCM parameterization is performed 
based on past data, significant difference between 
the GCMs may not be observed for past data. There-
fore all the GCMs get similar weights. The future 
performance of GCMs based on “model conver-
gence” for future should be considerd in assigning 
weights to GCMs. This has been experimented by 
Ghosh and Mujumdar [23]. 

Therefore the models developed for Indian river basins 
can not be considered as a robust and complete models and 
need lot of improvements. The steps, which should be used 
for developing integrated catchments management under 
climate change are the followings (Fig. 6): 

 

Fig. (5). Assumptions for Statistical Downscaling Models for Streamflow Predictions. 

 

Fig. (6). Integrated Catchment Management under Climate Change. 
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Step 1- The first step is to downscale (dynamically or sta-
tistically) large scale climate variables (Mean Sea Level 
Pressure (MSLP), temperature, wind velocity etc.) simulated 
by General Circulation Model (GCM) to rainfall. For predic-
tion of multi-site rainfall in a river basin, correlation between 
the rainfalls of multiple sites is often not captured by con-
ventional statistical downscaling technique. Furthermore 
these methods fail to model the variability of the predictand 
(hydrologic variable). Improvements are required in statisti-
cal techniques used for statistical downscaling and modeling 
the extreme events. Further emphasis should be given in un-
certainty modelling and over-reliance of single GCM is mis-
leading. Weights can be assigned to GCMs based on model 
performance (for observed period) and model convergence 
(future). Details of the uncertainty modelling may be found 
in Ghosh and Mujumdar [23]. 

Step 2- The second step is to generate local scale scenar-
ios. The methodology may be developed based on the fol-
lowings: 

1. Remote sensing images of river basins to gen-

erate land use/cover, digital elevation model, 

land surface temperature, soil moisture etc. for 
the last few decades. 

2. Identification of local changes like urbaniza-

tion, water bodies, cropping pattern, meteoro-

logical changes, CO2 concentration, population, 
deforestation etc.  

3. Collection of census data 

4. Prediction of future local scenarios based on 
the trend in changes. 

5. Prediction of future land use pattern based on 
local scenarios. 

Step 3- The third step is hydrologic modeling in changed 
scenarios. A hydrologic model should first be calibrated with 
the present data set. Then the same model may be used for 
future with the changed land use pattern and forecasted hy-
drometeorological variables (Fig. 7). All the scenarios as 
mentioned by IPCC should be considered and scenario un-
certainty should be modeled. Finally the hydrologic scenario 
may be predicted in probabilistic framework. 

Step 4- The final step is adaptation which includes vul-
nerability analysis, and analysis of risk which will be used 
for water resources planning and management in terms of 
reservoir operation, waste load allocation etc. 

It should be noted that modelling land use change and in-
corporating them in the case study is a research challenge 
and potential research area. However, there is a need to focus 
more on land use change projections and consequences on 
hydrologic modelling for a reliable estimate. Considering 
both global and local changes for hydrologic projections can 
be considered as future research area. 

CONCLUDING REMARKS 

Impact of global climate change on hydrology and water 
resources needs to be assessed at river basin scales. The most 
credible tools of climate projections available today, viz., the 
GCMs. However, they provide the projections at much larger 
spatial scales. Downscaling of GCM projections of climate 
variables are therefore necessary. The paper discusses differ-
ent downscaling techniques coupled with hydrologic models 
and their limitation. Guidelines for future research are also 

Fig. (7). Flowchart for Hydrologic Modeling.  
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presented towards development of complete model for inte-
grated catchment management in a changing world.  

ABBREVIATIONS 

GCM = General Circulation Model 

IPCC = Intergovernmental Panel on Climate 
Change 

ENSO = El Nino Southern Oscillations 

LAM = Limited Area Model 

TAR = Third Assessment report 

AR4 = Assessment Report 4 

SVM = Support Vector Machine 
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