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Abstract: In this paper, downscaling models are developed using a Linear Multiple Regression (LMR) and Artificial 

Neural Networks (ANNs) for obtaining projections of mean monthly precipitation to lake-basin scale in an arid region in 

India. The effectiveness of these techniques is demonstrated through application to downscale the predictand (precipita-

tion) for the Pichola lake region in Rajasthan state in India, which is considered to be a climatically sensitive region. The 

predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for 

the period 1948-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model 

(CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 2001-2100. The scatter plots and cross-

correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3. The perform-

ance of the linear multiple regression and ANN models was evaluated based on several statistical performance indicators. 

The ANN based models is found to be superior to LMR based models and subsequently, the ANN based model is applied 

to obtain future climate projections of the predictand (i.e precipitation). The precipitation is projected to increase in future 

for A2 and A1B scenarios, whereas it is least for B1 and COMMIT scenarios using predictors. In the COMMIT scenario, 

where the emissions are held the same as in the year 2000.  
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1. INTRODUCTION 

General Circulation Models (GCMs) are the most power-
ful tools available to simulate evolving and future changes in 
the climate system. GCMs are able to simulate reliably the 
most important mean features of the global climate at plane-
tary scales. Global circulation models (GCMs) are numerical 
models that represent the large-scale physical processes of 
the earth-atmosphere-ocean system and have been designed 
to simulate the past, present, and future climate [1-3]. 

Precipitation is an important parameter for climate 
change impact studies. A proper assessment of probable fu-
ture precipitation and its variability is to be made for various 
water resources planning and hydro-climatology scenarios. 
Recently, downscaling of precipitation has found wide appli-
cation in hydro-climatology on various time scale for sce-
nario construction and simulation of (i) low-frequency rain-
fall events [4] (ii) daily precipitation [5] (iii) seasonal pre-
cipitation [6] (iv) daily and monthly precipitation [7] (v) 
monthly precipitation [8] (vi) monthly precipitation [9] (vii) 
seasonal precipitation [10], daily precipitation [11] and 
monthly precipitation [12] (viii) monthly precipitation [13] 
and annual precipitation [14]. 

The GCMs are usually run at coarse-grid resolution and 
as a result, fields from GCMs are mostly inappropriate for  
 
 

*Address correspondence to this author at the Dept. of Civil Engineering, 

Indian Institute of Technology, Roorkee, India; Tel: +91-1332-285494;  

Fax: +91-1332-273560; E-mail: goyaldce@iitr.ernet.in 

direct application because of the limited and poor representa-

tion of sub-grid-scale features like orography, land use, and 

dynamics of mesoscale processes. While these models are 

most accurate at large (continental, hemispheric, and global) 

spatial scales, smaller-scale (at or near the spatial resolution 

of the GCMs) climatic details are less well portrayed [1, 15-

16]. This makes them unsuitable to many impact modelers, 

particularly hydrologists and water resources planner inter-

ested in local/regional-scale hydrological variability. Hence, 

a variety of approaches to the ‘downscaling’ of grid-scale 

(hundreds of km) GCM information to local-scale surface 

climate have been devised in last few decade [17-19]. 

Artificial Neural Networks (ANNs) are used in this ap-
plication to derive relationships between the grid circulation 
variables and the local climatic variables. This provides a 
powerful base learner, with advantages such as nonlinear 
mapping and noise tolerance, increasingly used in the Data 
Mining (DM) and Machine Learning (ML) fields [20]. An 
ANN is characterized by an architecture that represents the 
pattern of connection between nodes, a method for determin-
ing the connection weights, and an activation function [21]. 
ANNs are analogous in application to multiple regression, 
with the added advantage that they are inherently non-linear, 
and particularly robust in finding and representing relation-
ships in the presence of noisy data. The application of ANNs 
and utility for downscaling applications may be found in 
Sailor et al. [3]; Hewitson and Crane [22]; and Schoof and 
Pryor [23]. ANNs have proved particularly effective in 
downscaling precipitation and temperature, where there is a 
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significant non-linear relationship that more traditional tech-
niques such as regression do not capture well [23]. 

The objective of this study is to assess the effectiveness 
of neural networks to downscale mean monthly precipitation 
by comparing with linear multiple regression (LMR) on a 
lake catchment in an arid region from simulations of 
CGCM3 for latest IPCC scenarios. The scenarios which are 
studied in this paper are relevant to Intergovernmental Panel 
on Climate Change’s (IPCC’s) fourth assessment report 
(AR4) which was released in 2007. 

The remainder of this paper is structured as follows: Sec-
tion 2 provides a description of the study region and reasons 
for its selection. Section 3 provides details of various data 
used in the study. Section 4 describes how the various pre-
dictor variables behave for the different scenarios and the 
reasons for selection of the probable predictor variables for 
downscaling. Section 5 explains the proposed methodology 
for development of the regression based and ANN based 
model for downscaling precipitation to the lake basin. Sec-
tion 6 presents the results and discussion. Finally, Section 7 
provides the conclusions drawn from the study. 

2. STUDY REGION 

The study area of the research is the Pichola lake catch-
ment in Rajasthan state in India that is situated from 72.5°E 
to 77.5°E and 22.5°N to 27.5°N. It receives an average an-
nual precipitation of 597 mm. It has a tropical monsoon cli-
mate where most of the precipitation is confined to a few 
months of the monsoon season. The south-west (summer) 
monsoon has warm winds blowing from the Indian Ocean 
causing copious amount of precipitation during June-
September months. The location map of the study region is 
shown in Fig. (1). The observed monthly precipitation has 
been shown in Fig. (2). for various months of year 2000. 

Pichola lake is about 3.62 km in length from north to 
south and 2.41 km in width from east to west with a mean 
depth of 5.6 m. It is estimated that the lake contains 418 mil-
lion cubic feet of water and covers an area of 9.71 sq km. It 
is fed mainly from rainwater and also from the Sisarma 
tributary [24]. 

The Pichola lake basin is one of the major sources for 
water supply for this arid region. During the past several 
decades, the streamflow regime in this catchment has 

 

Fig. (1). Location map of the study region in Rajasthan State of India with NCEP grid. 

 

Fig. (2). Observed Precipitation for the study region. 
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changed considerably, which resulted in water scarcity, low 
agriculture yield and degradation of the ecosystem in the 
study area [25]. Regions with arid and semi-arid climates 
could be sensitive even to insignificant changes in climatic 
characteristics [26]. Investigations of IPCC (2001) indicate 
that the mean monsoon precipitation in the region will inten-
sify in future [27]. Understanding the relationships among 
the hydrologic regime, climate and environmental factors, 
and anthropogenic effects is important for the sustainable 
management of water resources in the entire catchment. The 
motivation of the present study is the need to assess plausible 
impact of climate change on precipitation in the study re-
gion, which has implications on inflows into the Pichola lake 
which is frequently prone to water shortage and is considered 
to be a climatically sensitive region and hence, this study 
area was chosen because of aforementioned reasons.  

3. DATA EXTRACTION 

Reanalysis Data 

The monthly mean atmospheric climatic variables were 
derived from the National Center for Environmental Predic-
tion (NCEP/NCAR) (hereafter called NCEP) reanalysis data 
set for a period of January 1948 to December 2000 [28]. The 
data have a horizontal resolution of 2.5° latitude x longitude 
and seventeen constant pressure levels in vertical. The at-
mospheric variables are extracted for nine grid points whose 
latitude ranges from 22.5 to 27.5 °N, and longitude ranges 
from 72.5 to 77.5 °E at a spatial resolution of 2.5°. 

Meteorological Data 

The precipitation data is used at monthly and annual time 
scale for Pichola lake which is located in Udaipur district at 
24° 34’N latitude and 73°40’E longitude [25]. Data were 
available for the period 1974 to 2000 at annual time scale 
and were available for the period January 1990 to December 
2000 at monthly time scale. 

GCM Data 

The Canadian Center for Climate Modeling and Analysis 
(CCCma) (http://www.cccma.bc.ec.gc.ca/) provides GCM 
data for a number of surface and atmospheric variables for 
the CGCM3 T47 version which has a horizontal resolution of 
roughly 3.75° latitude by 3.75° longitude and a vertical reso-
lution of 31 levels. CGCM3 is the third version of the 
CCCma Coupled Global Climate Model which makes use of 
a significantly updated atmospheric component AGCM3 and 
uses the same ocean component as in CGCM2. The data 
comprise of present-day (20C3M) and future simulations 
forced by four emission scenarios, namely A1B, A2, B1 and 
COMMIT. Data was obtained for CGCM3 climate of the 
20th Century (20CM3) experiments used in this study. 
Herein, it is to be mentioned that the spatial domain of cli-
mate variables is chosen following the suggestions in Wilby 
and Wigley [19].  

The nine grid points surrounding the study region are se-
lected as the spatial domain of the predictors to adequately 
cover the various circulation domains of the predictors con-
sidered in this study. The GCM data is re-gridded to a com-
mon 2.5° using inverse square interpolation technique [29]. 
The utility of this interpolation algorithm was examined in 
previous downscaling studies [8, 30-34]. 

The development of downscaling models for the predic-
tand variable precipitation begins with selection of potential 
predictors, followed by training and validation of the LMR 
and ANN downscaling model. The developed model is then 
used to obtain projections of precipitation from simulations 
of CGCM3. 

4. SELECTION OF PREDICTORS 

For downscaling predictand, the selection of appropriate 
predictors is one of the most important steps in a down-
scaling exercise. The predictors are chosen by the following 
criteria: (1) they should be skillful in representing large-scale 
variability that is simulated by the GCMs and are readily 
available from archives of GCM output and reanalysis data 
sets; (2) they should strongly correlated with the with the 
surface variables of interest/predictands i.e. they should be 
statistically significant contributors to the variability in pre-
cipitation; (3) they should represent important physical proc-
esses in the context of the enhanced greenhouse effect [33-
35]. Various authors have used large-scale atmospheric vari-
ables, namely air temperature (at 925, 500 and 200 mb pres-
sure levels), geopotential height (at 500 and 200 mb pressure 
levels), zonal (u) and meridional (v) wind velocities (at 925 
and 200 mb pressure levels), as the predictors for down-
scaling GCM output to mean monthly precipitation over a 
catchment [8,17,36,37]. 

As suggested by Wilby et al. [38], predictors have to be 
selected based both on their relevance to the downscaled 
predictands and their ability to be accurately represented by 
the GCMs. Scatter plots and cross-correlations are in use to 
select predictors to understand the presence of nonlinearity/ 
linearity trend in dependence structure [39]. Scatter plots and 
cross-correlations between each of the predictor variables in 
NCEP and GCM datasets are useful to verify if the predictor 
variables are realistically simulated by the GCM. Scatter 
plots are prepared and cross-correlations are computed be-
tween the predictor variables in NCEP and GCM datasets 
(Figs. 3 and 4). The cross correlations are estimated using 
three measures of dependence namely, product moment cor-
relation [40], Spearman’s rank correlation [41,42] and Ken-
dall’s tau [43]. Scatter plots and cross-correlations between 
each of the predictor variables in NCEP and GCM datasets 
are useful to verify if the predictor variables are realistically 
simulated by the GCM.  

5. DEVELOPMENT OF DOWNSCALING MODEL 

For downscaling precipitation, the probable predictor 
variables that have been selected to develop the models are 
considered at each of the nine grid points surrounding and 
within the study region (shown in Fig. 2). Cross-correlations 
are computed between the probable predictor variables in 
NCEP and GCM data sets. Subsequently, a pool of potential 
predictors is identified by specifying threshold values for the 
computed cross-correlations. In order to relate the large-scale 
weather patterns to the local scale, downscaling is necessary. 
The relationships between these scales can be determined by 
a number of methods including regression, canonical correla-
tion analysis [44,45], artificial neural networks [23, 46,47].  

In this study, linear multiple regression and artificial neu-
ral networks (ANNs) are used to downscale mean monthly 
precipitation. The data of potential predictors is first stan-
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Fig. (3). Scatter plots prepared to investigate dependence structure between probable predictor variables in NCEP and GCM datasets.  
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Fig. (4). Bar plots for cross-correlation computed between probable predictors in NCEP and GCM datasets. P, S and K represent product 

moment correlation, Spearman’s rank correlation and Kendall’s tau respectively. 

 

dardized. Standardization is widely used prior to statistical 
downscaling to reduce bias (if any) in the mean and the vari-
ance of GCM predictors with respect to that of NCEP-
reanalysis data [38]. Fig. (2) shows the grid points super-
posed on the map of Rajasthan state of India. In this study, 
standardization is done for a baseline period of 1948 to 2000 
because it is of sufficient duration to establish a reliable cli-
matology, yet not too long, nor too contemporary to include 

a strong global change signal [38]. The dimension of the 
GCM output dataset extracted is 9X9=81 (air temperature (at 
925, 500 and 200 mb pressure levels), geopotential height (at 
500 and 200 mb pressure levels), zonal and meridional wind 
velocities (at 925 and 200 mb pressure levels) at each of the 
nine grid points). 

Linear multiple regression are performed on dimensional-
ity set of selected predictors. Multi-dimensionality of the 
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predictors may lead to a computationally complicated and 
large sized model with high muti-collinearity (high correla-
tion between the explanatory variables/regressors). To re-
duce the dimensionality of the explanatory dataset, Principal 
Component Analysis (PCA) is performed. The use principal 
component (PCs) as input to a downscaling model helps in 
making the model more stable and at the same time reduces 
it computationally burden. The data of standardized NCEP 
predictor variables is then processed using principal compo-
nent analysis to extract principal components (PCs) which 
are orthogonal and which preserve more than 98% of the 
variance originally present in it. A feature vector is formed 
for each month/year of the record using the PCs. The feature 
vector is the input to the linear multiple regression and ANN 
model, and the contemporaneous value of predictand is the 
output. 

To develop the linear multiple regression and ANN 
downscaling model, the feature vectors which are prepared 
from NCEP record are partitioned into a training set and a 
test set. Feature vectors in the training set are used for cali-
brating the model, and those in the test set are used for vali-
dation. The 27-year annual observed temperature-data series 

was broken up into a calibration period and a validation pe-
riod. The models were calibrated on the calibration period 
1974 to 1994 and validation involved period and 1995 to 
2000. The monthly data series was broken from January 
1990 to December 1995 as calibration period and from Janu-
ary 1996 to December 2000 as validation period. The various 
error criteria are used as an index to assess the performance 
of the model. Based on the latest IPCC scenario, total 10 
models were constructed for predictand of both approaches 
(LMR and ANN). These models for mean monthly and an-
nual precipitation were evaluated based on the accuracy of 
the predictions for training and testing data set. Table I and 
III shows the values of regression coefficients of regression 
models at annual and monthly scale respectively while Table 
II and IV shows certain details of different ANN down-
scaling models at annual and monthly scale respectively. For 
linear multiple regression, there will be two models (viz 
LMRM1 and LMRM2). LMRM1 and LMRM2 refer to linear 
multiple regression models using principal component analy-
sis at annual and monthly time scale respectively. For NN, 
there will be eight models (viz. ANNM1 to ANNM8), one for 
each IPCC scenario at annual and monthly time scale. 
ANNM1 to ANNM4 denotes to artificial neural network 

Table I. Description of Regression Models, Input Values and Model Forms at Annual Time Scale* 

Model Predictand Equation 

LMRM1 Precipitation(P) (P)= -34.17+0.9391PC1-0.0790PC2+0.1844PC3+0.0638 PC4 

*The predictors in the regression equations (PC#) indicate principal component.  

Table II. Different ANN Downscaling Model Variants Used in the Study for Obtaining Projections of Predictand Precipitation at 

Annual Time Scale 

Predictand Period of downscaling Length of the record Scenario Model 

Precipitation(P) 1974-2100 1974-2000 SRESA1B ANNM1 

Precipitation(P) 1974-2100 1974-2000 SRESA2 ANNM2 

Precipitation(P) 1974-2100 1974-2000 SRESB1 ANNM3 

Precipitation(P) 1974-2100 1974-2000 COMMIT ANNM4 

Table III. Description of Regression Models, Input Values and Model Forms at Monthly Time Scale* 

Model Predictand Equation 

LMRM2 Precipitation(P) (P)=-15.94+5.00PC1-0.93PC2+0.54PC3+0.66PC4+0.09PC5-0.38 PC7 

*The predictors in the regression equations (PC#) indicate principal component.  

Table IV. Different ANN Downscaling Model Variants Used in the Study for Obtaining Projections of Predictand Precipitation at 

Monthly Time Scale 

Predictand Period of downscaling Length of the record Scenario Model 

Precipitation(P) 1990-2100 1990-2000 SRESA1B ANNM5 

Precipitation(P) 1990-2100 1990-2000 SRESA2 ANNM6 

Precipitation(P) 1990-2100 1990-2000 SRESB1 ANNM7 

Precipitation(P) 1990-2100 1990-2000 COMMIT ANNM8 
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model at annual time scale and ANNM5 to ANNM8 denotes 
to artificial neural network model at monthly time scale. 

6. RESULTS AND DISCUSSIONS 

Downscaling models are developed following the meth-
odology described in Sections 5 and 6. The results and dis-
cussion are presented in this section. 

6.1. Potential Predictor Selection 

The most relevant probable predictor variables necessary 
for developing the downscaling models are identified by 
using scatter plots and the three measures of dependence 
following the procedure described in Section 5. The scatter 
plots and cross-correlations enable verifying the reliability of 
the simulations of the predictor variables by the GCM. The 
scatter plots between the probable predictor variables in 
NCEP and GCM datasets are shown in Fig. (3), while the 
cross correlations computed between the same are shown in 
Fig. (4). In general, the most of predictor variables are realis-
tically simulated by the GCM where CC was greater than 
0.65. It is noted that air temperature at 925 mb (Ta 925) is 
the most realistically simulated variable with a CC greater 
than 0.8, while meridional wind at 200mb (Va 200) is the 
least correlated variable between NCEP and GCM datasets 
(CC = -0.17). It is clear from Figs. (3 and 4) that air tempera-
ture at 925 mb (Ta 925), air temperature at 500 mb (Ta 500), 
air temperature at 200 mb (Ta 200), meridional wind at 
925mb (Va 925), zonal wind at 925mb (Ua 925) and zeo-
potential height at 200mb (Zg 200mb) are better correlated 
than meridional wind at 200mb (Va 200), zonal wind at 
200mb (Ua 200) and zeo-potential height at 500mb (Zg 500). 

 It is to be noted that these figures represent how well the 
predictors simulated by NCEP and GCM are correlated. 
Generally, the correlations are not very high due to the dif-
ferences in the simulations of GCM (e.g. for different runs) 
and possible errors in NCEP-reanalysis. In addition, the in-
herent errors such as to re-gridding from GCM scale to 
NCEP scale also contribute to low correlation. 

6.2. Downscaling and Performance of GCM Models 

Six predictor variables namely air temperature (925 mb), 
zonal wind (925 mb) , meridoinal wind (925 mb), air tem-
perature (200 mb), air temperature (500 mb) and zeo-
potential height(200mb) at 9 NCEP grid points with a di-
mensionality of 54, are used which are highly correlated with 
each other. Multiple linear regressions were performed on 
these data sets. Principal Component Analysis (PCA)[32, 48] 

is performed to transform the set of correlated N-
dimensional predictors (N = 54) into another set of N-
dimensional uncorrelated vectors (called principal compo-
nents) by linear combination, such that most of the informa-
tion content of the original data set is stored in the first few 
dimensions of the new set. It is observed that the four lead-
ing principal components (PCs) of the PCA method ex-
plained about 98% of the information content (or variability) 
of the original predictors. Hence, PCs are extracted to form 
feature vectors from the standardized data of potential pre-
dictors. These feature vectors are provided as input to the 
linear multiple regression and ANN downscaling model.  

The different statistical parameters of each model are ad-
justed during calibration to get the best statistical agreement 
between observed and simulated meteorological variables. 
For this purpose, various statistical performance measures, 
such as Coefficient of Correlation (CR), Standard Error of 
Estimate (SSE), Mean Square Error (MSE), Root Mean 
Square Error (RMSE), Normalized Mean square Error 
(NMSE), Nash–Sutcliffe Efficiency Index and Mean Abso-
lute Error (MAE) were used to measure the performance of 
various models.  

Results of various statistics of linear multiple regression 
models have been presented in Table V and VI. It can be 
inferred from Table V and Table VI that both linear multiple 
regression models were not performed well in terms of all 
performance indicators. 

The architecture of ANN is decided by trial and error 
procedure. A comprehensive search of ANN architecture is 
done by varying the number of nodes in hidden layer. The 
network is trained using back-propagation algorithm. Tan 
sigmoid activation function has been used in hidden layer(s), 
whereas linear activation function has been used in the out-
put layer. The network error is computed by comparing the 
network output with the target or the desired output. Mean 
square error is used as an error function. Results of the dif-
ferent models (ANNM1 to ANNM8) as discussed in Table II 
and Table IV are tabulated (see Table VII and Table VIII):  

It can be observed from Table V to Table VIII that the 
performance of ANNs for mean monthly and annually pre-
cipitation is clearly superior to that of LMR based models. 
All statistical performance indicators have performed better 
between predicted and observed value for ANN models. 

Once the downscaling models have been calibrated and 
validated, the next step is to use these models to downscale 
the control scenario simulated by the GCM. The GCM simu- 

Table V. Model Evaluation Statistics for Regression Models at Annual Time Scale 

CR SSE MSE Model 

Training Validation Training Validation Training Validation 

LMRM1 0.61 0.75 388371.93 15027.78 18493.90 17627.37 

 

RMSE NMSE N-S Index MAE 

Training Validation Training Validation Training Validation Training Validation 

135.99 132.77 0.60 0.85 0.37 0.35 0.21 0.23 
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Table VI. Model Evaluation Statistics for Regression Models at Monthly Time Scale 

CR SSE MSE Model 

Training Validation Training Validation Training Validation 

LMRM2 0.86 0.80 155775.41 123152.74 2163.55 2052.55 

 

RMSE NMSE N-S Index MAE 

Training Validation Training Validation Training Validation Training Validation 

46.51 45.31 0.26 0.45 0.73 0.54 0.59 0.42 

Table VII. Various Performance Statistics for Various ANN Models at Annual Time Scale 

CR SSE MSE 
Model Hidden Nodes 

Training Validation Training Validation Training Validation 

ANNM1 6 0.46 0.08 485050.02 24649.69 23097.62 23485.64 

ANNM2 5 0.97 0.02 36194.66 67826.98 1723.56 18249.41 

ANNM3 8 0.80 0.53 221204.86 35379.82 10533.56 16745.13 

ANNM4 6 0.83 0.54 188980.06 28990.27 8999.05 13996.86 

 

RMSE NMSE N-S Index MAE 

Training Validation Training Validation Training Validation Training Validation 

0.75 1.13 0.22 0.13 0.18 0.13 0.75 1.13 

41.52 135.09 0.06 0.88 0.94 0.39 0.78 0.52 

102.63 129.40 0.34 0.81 0.64 0.41 0.48 0.31 

94.86 118.31 0.29 0.67 0.69 0.50 0.48 0.37 

Table VIII. Various Performance Statistics for Various ANN Models at Monthly Time Scale 

CR SSE MSE 
Model Hidden Nodes 

Training Validation Training Validation Training Validation 

ANNM5 6 0.94 0.80 68094.79 120763.50 945.76 2012.73 

ANNM6 6 0.96 0.73 51541.18 159217.85 715.85 2653.63 

ANNM7 6 0.93 0.73 73288.65 167504.75 1017.90 2791.75 

ANNM8 6 0.95 0.77 54361.41 136258.78 755.02 2270.98 

 

RMSE NMSE N-S Index MAE 

Training Validation Training Validation Training Validation Training Validation 

30.75 44.86 0.12 0.44 0.88 0.55 0.76 0.50 

26.76 51.51 0.09 0.59 0.91 0.40 0.76 0.43 

31.90 52.84 0.12 0.62 0.87 0.37 0.75 0.38 

27.48 47.65 0.09 0.50 0.91 0.49 0.75 0.44 

 

lations are run through the calibrated and validated NN 
downscaling models to obtain future simulations of predic-
tand. The predictand patterns are analyzed with box plots for 

20 year time slices. The middle line of the box gives the me-
dian whereas the upper and lower edges give the 75 percen-
tile and 25 percentile of the data set, respectively. The differ-
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ence between the 75 percentile and 25 percentile is known as 
Inter Quartile Range (IQR). The two bounds of a box plot 
outside the box denote the value at 1.5X IQR lower than the 
third quartile or minimum value, whichever is high and 1.5X 
higher than the third quartile or the maximum value which-
ever is less. Typical results of downscaled predictand (pre-
cipitation) obtained from the predictors are presented in Figs. 
(5). In part (i) of these figures, the precipitation downscaled 
using NCEP and GCM datasets are compared with the ob-
served Precipitation for the study region using box plots. The 
projected precipitation for 2001–2020, 2021–2040, 2041–
2060, 2061–2080 and 2081–2100, for the four scenarios 
A1B, A2, B1 and COMMIT are shown in (ii), (iii), (iv) and 
(v) respectively. 

From the box plots of downscaled predictand (Fig. 5), it 
can be observed that precipitation are projected to increase in 
future for A1B, A2 and B1 scenarios. The projected increase 
of precipitation is high for A1B and A2 scenarios whereas it 
is least for B1 scenario. This is because among the scenarios 
considered, the scenario A1B and A2 have the highest 

concentration of atmospheric carbon dioxide (CO2) equal to 
720 ppm and 850 ppm, while the same for B1 and COMMIT 
scenarios are 550 ppm and 370 ppm respectively. Rise in 
concentration of CO2 in the atmosphere causes the earth’s 
average temperature to increase, which in turn causes 
increase in evaporation especially at lower latitudes. The 
evaporated water would eventually precipitate [17]. In the 
COMMIT scenario, where the emissions are held the same 
as in the year 2000, no significant trend in the pattern of 
projected future precipitation could be discerned. The overall 
results show that the projections obtained for precipitation 
are indeed robust. A comparison of mean annual observed 
precipitation with precipitation simulated using several ANN 
downscaling models(viz. ANNM1 to ANNM4) have been 
shown in Fig. (6 to 9) for calibration and validation period. 
Calibration period is from 1974 to 1995, and the rest is 
validation period. Similarly, a comparison of mean monthly 
observed precipitation with precipitation simulated using 
several ANN downscaling models (viz. ANNM5 to 
ANNM8) have been shown in Figs. (10 to 13) for calibration  

 

Fig. (5). Box plots results from the ANN-based downscaling model for the predictand precipitaion. 
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Fig. (6). Typical results for comparison of the mean annual observed precipitation with precipitation simulated using ANN downscaling 

model ANNM1 for NCEP data. In the figure, calibration period is from 1974 to 1994, and the rest is validation period.  

 

Fig. (7). Typical results for comparison of the mean annual observed precipitation with precipitation simulated using ANN downscaling 

model ANNM2 for NCEP data. In the figure, calibration period is from 1974 to 1994, and the rest is validation period.  

 

Fig. (8). Typical results for comparison of the mean annual observed precipitation with precipitation simulated using ANN downscaling 

model ANNM3 for NCEP data. In the figure, calibration period is from 1974 to 1994, and the rest is validation period.  
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Fig. (9). Typical results for comparison of the mean annual observed precipitation with precipitation simulated using ANN downscaling 

model ANNM4 for NCEP data. In the figure, calibration period is from 1974 to 1994, and the rest is validation period.  

 

Fig. (10). Typical results for comparison of the amean monthly observed precipitation with precipitation simulated using ANN downscaling 

model ANNM5 for NCEP data. In the figure, calibration period is from January 1990 to Decmber 1995, and the rest is validation period.  

 

Fig. (11). Typical results for comparison of the amean monthly observed precipitation with precipitation simulated using ANN downscaling 

model ANNM6 for NCEP data. In the figure, calibration period is from January 1990 to Decmber 1995, and the rest is validation period.  
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Fig. (12). Typical results for comparison of the amean monthly observed precipitation with precipitation simulated using ANN downscaling 

model ANNM7 for NCEP data. In the figure, calibration period is from January 1990 to Decmber 1995, and the rest is validation period.  

 

Fig. (13). Typical results for comparison of the amean monthly observed precipitation with precipitation simulated using ANN downscaling 

model ANNM8 for NCEP data. In the figure, calibration period is from January 1990 to Decmber 1995, and the rest is validation period.  

 

and validation period. Calibration period is from Jaunary 
1990 to Decmeber 1995, and the rest is validation period. 

7. CONCLUSION 

This paper investigates the applicability of the linear 
multiple regression and neural network for downscaling pre-
cipitation from GCM output to local scale. The proposed 
neural network model is shown to be statistically superior 
compared to linear multiple regression based downscaling 
model. The effectiveness of this model is demonstrated 
through the application of lake catchment in arid region in 
India. The predictand are downscaled from simulations of 
CGCM3 for four IPCC scenarios namely SRES A1B, A2, 
B1 and COMMIT. Scatter plots and cross-correlations are 
used for studying the reliability of the predictor variables 
GCM.  

The results of downscaling models show that precipita-
tion is projected to increase in future for A2 and A1B scenar-
ios, whereas it is least for B1 and COMMIT scenarios using 
predictors. These results are in agreement with those ob-
tained for precipitation projections for another river basin in 
India [12].  

APPENDIX I: ABBREVIATIONS 

Abbreviations used in text 

ANN = Artificial Neural Network 

CCCma = Canadian Center for Climate Modelling 
and Analysis 

CGCM = Canadian Coupled Global Climate 
Model 
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CGCM3 = Third-generation Canadian Global Cli-
mate Model 

GCM = Global Climate Model 

IPCC = Intergovernmental panel on climate 
change 

NCAR = National Center for Atmospheric Re-
search, USA 

MAE = Mean absolute error 

MSE = Mean square error 

NMSE = Normalized mean square error 

PCA = Principal component analysis 

PC = Principal component 

RMSE = Root mean square error 

SRES = Special report of emission scenarios 

Ta 925 = Air temperature at 925 mb 

Ua 925 = Zonal wind at 925 mb 

Va 925 = Meridional wind at 925 mb 

Ta 500 = Air temperature at 500 mb 

Ua 200 = Zonal wind at 200 mb 

Va 200 = Meridional wind at 200 mb 

Ta 200 = Air temperature at 200 mb 

Zg 200 = Zeo-potential height at 200 mb 

Zg 500 = Zeo-potential height at 500 mb 

Appendix II: Weights and Biases for NN Model ANNM2 Using Back-Propagation Algorithm: 

Weights h11 h12 h13 h14 h15 

i1 -0.2925 0.3092 -0.5335 -0.3635 -0.2925 

i2 -0.4455 -0.2372 -0.9856 0.6395 -0.4455 

i3 -0.6884 0.4103 0.0524 -1.3407 -0.6884 

i4 -0.361 0.4324 -1.4931 -0.2251 -0.361 

i5 0.521 -0.476 -0.0041 0.1379 0.521 

i6 -0.0193 0.1742 -1.0028 1.3488 -0.0193 

i7 -0.3129 -0.6834 0.994 -0.4698 -0.3129 

i8 -1.2049 -0.4549 1.5472 0.8928 -1.2049 

 

Biases b11 b12 b13 b14 b15 b16 b17 b18 

 3.2699 2.4241 1.1818 1.1497 0.1561 1.3458 -2.4067 -1.2696 

 

Weights O1 

h21 -1.7789 

h22 0.7346 

h23 0.893 

 h24 -0.3502 

h25 0.0431 

h26 0.2804 

h27 -0.6399 

h28 -0.9563 

 

Input layer 8nodes 

Hidden layer 5 nodes 

Output layer 1 node 

 

Biases bo1 

 0.7103 
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