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Abstract: Cardiovascular medicine is a leading area of pharmacogenomics (PGx). A number of PGx studies have linked 
genetic polymorphisms to patients’ response to the drugs in the pharmacotherapy against cardiovascular diseases. Among 
them, PGx of adrenoceptors is one of the most important fields, because adrenergic networks play important roles in car-
diovascular systems. The excess of adrenergic stimuli result in cardiovascular disorders, such as hypertension and heart 
failure (HF). One of the aims of PGx studies of adrenoreceptors is the personalization of β-blocker therapy. In this review, 
we have described biological and clinical impacts on genetic variants of adrenoreceptors, some of which have showed 
clear association with the reduction in heart rate and blood pressure in response to β-blockers. Beyond anti-hypertension 
therapy, PGx of adrenoreceptors would contribute to the individualization of pharmacotherapy against HF.  
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One of the most important goals of pharmacogenomics 
(PGx) is to achieve the appropriate use of drugs for each 
individual, called individualized or personalized medicine. 
So far, PGx studies of adrenergic receptor (AR) genes have 
been focusing mainly on β-blocker therapy [1-3], because 
β-blockers have been widely used in cardiovascular diseases, 
including ischemic heart disease, hypertension and chronic 
heart failure (CHF).  

The blood pressure is the product of the cardiac output 
(CO) and the peripheral vascular resistance (PVR). Since the 
activation of adrenergic system increases both CO and PVR, 
adrenergic system plays an important role in hypertension 
[4]. Nowadays, blockade of β adrenergic system is no longer 
the first-line therapy against uncomplicated hypertension in 
the United States, because of their relative ineffectiveness for 
primary prevention [5]. β-blocker therapy causes a wide 
range of adverse effects, especially, impairment of glucose 
and lipid metabolism [6], resulting in less effective protec-
tion against cardiovascular diseases than other classes of 
anti-hypertensive drugs. Therefore, it is uncertain whether or 
not pharmocogenomic information of ARs will be clinically 
applied to anti-hypertension therapy as a definitive predictor 
of blood pressure control; however, in spite of decline of 
clinical importance of β-blockers as anti-hypertensive drugs, 
PGx studies of ARs in hypertension therapy have clearly 
proved that the effectiveness of β-blockers in lowering blood 
pressure and heart rate is influenced by genetic polymor-
phisms of ARs. 

In contrast to clinical use against uncomplicated hyper-
tension, β-blockers are now recognized as the first-line drugs  
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in anti-heart failure (HF) therapy. Despite negative inotropic 
effects, β-blockade not only increases CO [7] but also im-
proves the prognosis of HF [8-12], though the molecular 
mechanisms remain to be fully elucidated. Since myocar-
dium is exposed to excess of adrenergic stimuli in failing 
hearts [13], the pharmacological relevance of β-blockers in 
anti-HF therapy is explained by the concept that β-blockade 
antagonizes the neurohumoral factors and rests the feeble 
myocardium [2]. Importantly, decrease in heart rate and sys-
tolic blood pressure are closely associated with clinical out-
come of this therapy [14]. Therefore, it could be accepted 
that genetic polymorphisms of ARs are predictive biomark-
ers for clinical outcome in β-blockade therapy against HF. 

 Among various ARs, α2ARs and β1-3ARs are major 
players at sympathetic nervous terminus in anti-HF therapy. 
α2ARs are localized at pre-synaptic region of sympathetic 
nerve terminus, while βARs are at post-synaptic membrane 
(Fig. 1). Presynaptic α2ARs regulate the release of norepi-
nephrine (NE) into synaptic cleft, while βARs transduce NE 
signals into cardiac myocytes. It is important that expression 
level of each βAR is altered in failing hearts, compared with 
physiologically normal hearts; β1AR is downregulated in 
failing hearts [15]. In contrast, β2AR and, possibly, β3AR are 
upregulated in myocardium in the process of cardiac remod-
eling [15]. So far, intensive efforts have been made to iden-
tify the AR gene polymorphisms, some of which have been 
revealed to result in functional alteration by molecular bio-
logical analyses.  

In this article, we have reviewed the biological functions 
and clinical impacts of genetic polymorphisms of ARs, espe-
cially β1, β2, α2C polymorphisms, which have been well stud-
ied. Pharmacogenomic understanding of ARs may explain the 
inter-individual variation in the response to β-blockers, con-
tributing to the personalization of β-blocker therapy.  
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1. FUNCTIONAL PROPERTIES OF ADRENORE-
CEPTORS 

β1AR There are two common polymorphisms in β1 
adrenergic receptor, Ser49Gly and Arg389Gly [16]. The 
Ser49Gly polymorphism is located in the extracellular 
N-terminal region of the receptor. Gly49 receptor is rapidly 
downregulated by long-term agonist stimulation, compared 
with Ser49 receptor in vitro [17, 18]. Arg389Gly polymor-
phism occurs in the region between the seventh transmem-
brane domain and the intracellular tail of the receptor. In 
vitro study revealed that Gly389 variant exhibited slightly 
lower basal adenylyl cyclase activity than Arg389 variant 
[19]. In addition, isoprenaline-induced adenylyl cyclase ac-
tivation was about three to four times smaller in cells ex-
pressing Gly389 variant than in that expressing Arg389 [20]. 
Cardiac-targeted transgenesis in a mouse model showed that 
hearts from young mice with the overexpression of Gly389 
variant exhibited decreased basal cardiac contractility and 
reduced contractile response to dobutamine compared with 
Arg389 hearts. Older mice expressing Gly389 displayed a 
phenotypic switch, with increased β-agonist signaling to 
adenylyl cyclase and increased cardiac contractility, com-
pared with Arg389-expressing hearts. In addition, hemody-
namic response to β-receptor blockade was greater in the 
Arg389 mice [2, 21]. 

β2AR Various polymorphisms were reported in the cod-
ing and promoter regions of β2AR gene [22]. Among them, 
biological functions of Arg16Gly and Gln27Glu polymor-
phisms have been well documented. Both polymorphisms 
are located in the extracellular amino terminus of β2AR.  

Arg16Gly and Gln27Glu polymorphisms do not influ-
ence ligand binding or adenylyl cyclase activation in vitro in 
Chinese hamster fibroblasts expressing β2AR variants but 
alter the extent to which the receptors undergo downregula-
tion [23]. Gly16 allele is more susceptible to dowregulation 
via agonist stimulation than is Arg16 allele. Glu27 allele is 
more resistant to receptor downregulation than is Gln27 al-
lele [23]. 

α2CAR α2CAR is the presynaptic inhibitory autoreceptor 
that is known to have a critical role in regulating neuro-
transmitter release from sympathetic nerves and from adren-
ergic neurons. Small et al. identified a polymorphic α2CAR 
that consists of an in-frame 12-nucleic-acid deletion that 
encodes a receptor lacking the Gly-Ala-Gly-Pro sequence in 
the third intracellular loop (denoted Del322–325). The dele-
tion type α2CAR has a significant impact on ago-
nist-promoted formation of the active receptor-G protein 
ternary complex. Impaired α2C AR-G protein coupling results 
in altered functions in three downstream signaling pathways; 
the adenylyl cyclase, inositol phosphate, and mito-
gen-activated protein (MAP) kinase [24]. The loss of normal 
synaptic autoinhibitory feedback caused by this genetic 
variation leads to enhanced presynaptic release of NE [25, 
26]. 

2. POLYMORPHISMS OF ADRENORECEPTOR AND 
RISK FOR HYPERTENSION  

β1AR The previous study that investigated the difference 
in blood pressure among genotype-discordant siblings re-
vealed that siblings with Gly389 allele had significantly 
lower resting diastolic blood pressure than those homozy-
gous for Arg389 [27]. In the CAREGENE study in patients 
with coronary artery disease, resting diastolic blood pressure 
was significantly lower in patients homozygous for Gly389 
than in those with Arg389 allele [28]. However, in the pa-
tients with essential hypertension, there are no differences in 
resting blood pressure among Arg389Gly genotypes [29-32]. 
In case-control study of normotensive versus hypertensive 
subject, results are controversial; Bengtsson et al. and Shioji 
et al. showed that the prevalence of Gly389 variant was sig-
nificantly lower in hypertensive than in normotensive sub-
jects [27, 33]. On the other hand, Filigheddu et al. and Ra-
nade et al. found that the prevalence of Arg389Gly poly-
morphism was not significantly different between hyperten-
sive and normotensive subjects [34, 35]. For Ser49Gly, there 
are no associations between resting blood pressure and 
genotypes in the patients with essential hypertension, as is 
the case with Arg389Gly [29-32].  

 

Fig. (1). Adrenergic receptors in the human heart. 
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β2AR Many studies have examined whether β2AR 
Arg16Gly or Gln27Glu polymorphism influences the sus-
ceptibility to hypertension or the risk for elevated blood 
pressure, but have yielded conflicting results [1, 36]. Most of 
studies didn’t detect significant genotype associations. A few 
studies observed significant genotype effects; however, there 
is no consistency and it could not be elucidated which of the 
two variants is more strongly associated with hypertension.  

3. POLYMORPHISMS OF ADRENORECEPTORS 
AND RISK FOR HF 

β1AR To the best of our knowledge, there is no report 
that described genotyping-dependent differences in preva-
lence of Ser49Gly genotype or Arg389Gly genotype, by it-
self, in CHF patients versus controls [37-43]. This suggests 
that Ser49Gly and Arg389Gly polymorphism are not risk 
factor for CHF. However, it was reported that Arg389Gly 
genotype contributed to onset of CHF, synergistically with 
α2CAR genetic polymorphism, as described below. 
β2AR No case-control study has reported the difference 

in the distribution of Arg16Gly and Gln27Glu polymor-
phisms between the CHF patients and the controls [39, 44].  
α2CAR α2CAR insertion (Ins)/deletion (Del) and β1AR 

Arg389Gly polymorphisms have been suggested to act syn-
ergistically in the development of CHF in African Americans 
[40]. Individuals homozygous for β1AR Arg389 and α2CAR 
Del had an adjusted odds ratio of 10.11 for CHF in a 
case–control analysis. However, we failed to detect an effect 
of α2CAR Del allele on HF risk in Japanese people [41]. 
Metra et al. observed in a study of 260 CHF patients and 230 
normal subjects from an Italian Caucasian population that 
β1AR and α2CAR polymorphisms are not associated with an 
increased risk of CHF [42]. 

4. POLYMORPHISMS OF ADRENORECEPTOR AND 
THE RESPONSE FOR Β-BLOCKER TREATMENT IN 
ANTI-HYPERTENSION AND ANTI-HF THERAPIES 

4.1. Anti-Hypertension Therapy 

Several studies have investigated in possible effects of 
β1AR Arg389Gly polymorphism on blood pressure responses 
to β-blocker treatment in hypertensive patients (Table 1). 

Concerning metoprolol, patients homozygous for Arg389 
had a significant greater reduction in 24-hr and day-time 
diastolic blood pressure [29]. This result was reproducible; 
Liu et al. found that the decrease in systolic, diastolic and 
mean arterial blood pressure was significantly larger in pa-
tients homozygous for Arg389 variant [32]. On the other 
hand, this polymorphism did not show the geno-
type-dependent differences in antihypertensive response to 
atenolol [30, 31, 34]. Thus, the genotype effect on response 
to β-blocker antihypertensive medication may be dependent 
on the drugs used in the clinical trial and the contribution of 
β1AR Arg389Gly polymorphism to the drug response is ob-
served among patients with metoprolol treatment but not 
those with atenolol. There are few reports on the association 
between β2AR or α2CAR polymorphisms and antihyperten-
sive drug efficacy.  

4.2. Anti-HF Therapy 

 PGx studies of ARs in CHF, reported so far, have been 
summarized in Table 2. In this section, we introduce some 
representative studies in detail.  
β1AR Intensive effort has been made for a long time to 

investigate the importance of β1AR genetic polymorphisms 
in response to β-blocker in CHF since Borjesson M et al. 
suggested their pharmacogenomic association in 2000. In 92 
CHF patients treated with β-blockers at different points dur-
ing their follow-up, the patients with Gly49 allele had a sig-
nificantly lower risk of death or cardiac transplantation 
within 5 years than patients homozygous for the Ser49 β1AR 
[45]. Magnusson et al. suggested that this genetic effect is 
shown only in CHF patients with a low dose of β-blocker; 
there is no association between β1AR Ser49Gly and 
β-blocker responsiveness in the patients treated with high 
dose of β-blocker [43].  
β1AR Arg389Gly polymorphism is another interest of 

PGx of ARs in CHF. Arg389 homozygotes treated with 
bucindolol had an age-, gender-, and race-adjusted 38% re-
duction in mortality (P=0.03) and a 34% reduction in mortal-
ity or hospitalization (P=0.004) vs. placebo, while Gly389 
carriers had no clinical response to bucindolol compared 
with the placebo group [46]. On the other hand, in 
MERIT-HF trial, this polymorphism did not show the effect 

Table 1. β1 AR Arg389Gly Polymorphism and Response to Beta-Blocker 

β-Blocker N Outcomes β-Blocker Response Ref. 

Healthy volunteers 

Atenolol 34 BP response to a single dose Arg > Gly [54] 

Metoprolol 16 Reduction in exercise-induced HR and BP increase Arg > Gly [55] 

Bisoprolol 18 Reduction in dobutamine-induced HR  Arg > Gly [56] 

Hypertensive patients 

Metoprolol  40 24-hr and day-time diastolic blood pressure  Arg > Gly [29] 

Metoprolol 61 BP response Arg > Gly [32] 

Atenolol 147 BP and HR response Arg = Gly [30] 

Atenolol 101 BP and HR response Arg = Gly [31] 

Atenolol 270 BP response Arg = Gly [34] 

BP: blood pressure, HR: heart rate. 
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on the inter-individual variability in the risk of all-cause 
mortality or hospitalization [47]. Sehnert et al. also revealed 
that Arg389Gly did not significantly influence survival in 
metoprolol-treated or carvedilol-treated HF patients [48]. 
These results may be attributable to a drug-specific interac-
tion between genotype and responsiveness to β-blocker 
treatment.  
β2AR In contrast to β1-selective β-blockers, such as bi-

soprolol and metoprolol, carvedilol inhibits β2AR. Therefore, 
several studies focused on the polymorphisms of β2AR gene, 
especially in PGx of carvedilol treatment. Kaye et al. showed 
that subjects with the Glu27 allele were more likely to have 
significantly increased left ventricular ejection fraction 
(LVEF) or left ventricular fractional shortening (LVFS) in 
62% of cases in response to carvedilol, compared with only 
26% of individuals homozygous for the Gln27 [49]. How-
ever, other studies failed to detect positive associations be-
tween β2AR polymorphisms and improvement of cardiac 

function [50, 51]. Furthermore, there was no β2AR geno-
type-dependent difference in risk of death or cardiac trans-
plantation during β-blocker treatment [48].  

α2CAR Regitz-Zagrosek et al. showed that genetic varia-
tion in α2CAR Del allele is independently associated with 
survival and the absence of cardiac events in patients with 
severe HF due to idiopathic dilated cardiomyopathy [52]. In 
this clinical study, the number of patients treated with 
β-blockers increased continuously from 25% at presentation 
to 76% during the study period. Considering this report, pa-
tients with the α2CAR Del allele may have a better prognosis 
than other patients receiving β-blocker treatment. Despite the 
small sample size, Lobmeyer et al. examined the relation 
between Ins/Del and LVEF improvement and reported that 
patients with both β1AR Arg389/Arg389 and α2CAR 
Del-carrier status benefited substantially more from me-
toprolol CR/XL treatment in terms of cardiac function [53].  

Table 2. Pharmacogenetic Studies of the Responsiveness to β-Blockers in CHF Patients 

Polymorphism 
Study 

Population β-Blocker N Outcomes β-Blocker Response Ref. 

β1-AR Ser49Gly DCM various 92 Death or heart transplantation  Gly carriers > Ser [45] 

  Metoprolol CR/XL 61 LVEDD Gly carriers > Ser [60] 

 DCM Metoprolol CR/XL 139 Death or heart transplantation Gly carriers > Ser in 
treated with low dose 

[43] 

 CHF Carvedilol and bisoprolol 199 LVEF No associations [51] 

 CHF Carvedilol and metoprolol 637 Death or heart transplantation No associations [48] 

β1-AR Arg389Gly CHF Carvedilol 224 LVEF Arg > Gly carriers [21] 

 DCM Carvedilol 135 LVEF Arg/Arg > Arg/Gly > 
Gly/Gly 

[50] 

 CHF Metoprolol CR/XL 61 LVEF Arg > Gly carriers [60] 

 CHF Bucindolol 1040 
(515 treated) 

Death Arg > Gly carriers [46] 

 CHF Carvedilol and bisoprolol 199 LVEF No associations [51] 

 CHF Metoprolol CR/XL 600 
(307 treated) 

Death or hospitalization No associations [47] 

 CHF Carvedilol and metoprolol 637 Death or heart transplantation No associations [48] 

β2-AR Arg16Gly CHF Carvedilol and bisoprolol 199 LVEF No associations [51] 

 DCM Carvedilol 135 LVEF No associations [50] 

 CHF Carvedilol and metoprolol 637 Death or heart transplantation No associations [48] 

β2-AR Gln27Glu CHF Carvedilol 80 LVEF or LVFS Glu carriers > Gln [49] 

 CHF Carvedilol and bisoprolol 199 LVEF No associations [51] 

 DCM Carvedilol 135 LVEF No associations [50] 

 CHF Carvedilol and metoprolol 637 Death or heart transplantation No associations [48] 

α2C-AR Ins/Del CHF Metoprolol CR/XL 54 LVEF Del carrier > Ins [53] 

 CHF Carvedilol and metoprolol 637 Death or heart transplantation No associations* [48] 

AR adrenergic receptor, DCM dilated cardiomyopathy, CHF chronic heart failure, LVEDD left-ventricular end-diastolic diameter, LVEF left-ventricular ejection fraction, LVFS 
left-ventricular fractional shortening. 
* A weak univariable trend toward better survival in black patients was observed, as an additive function of the number of alleles in the ADRA2C deletion polymorphism (hazard 
ratio: 0.55, 95% confidence interval: 0.28 to 1.11, p =0.094, n=156).  
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DISCUSSION 

 We have reviewed the biological and clinical impacts of 
genetic polymorphisms of ARs. In some of these variants, 
clinical pharmacological studies have demonstrated their 
association with the alteration in heart rate or blood pressure 
in response to β-blockers, as shown in Table 1. It should be 
noted that the association of genetic variants with these pa-
rameters are consistently observed in healthy volunteers 
[54-56] but not in the patients with hypertension. The re-
sponse to β-blockers may be determined not simply by the 
genetic polymorphisms but by concomitant conditions in 
hypertension. Therefore, to achieve the personalization of 
β-blocker therapy in hypertension, other clinical profiles 
should be taken into account. And it should be also empha-
sized that clinical impacts of genetic polymorphisms on 
long-term outcomes, not on blood pressure-lowering effects, 
should be highly considered in anti-hypertension therapy by 
β-blockers, because β-blockers are no longer first-line ther-
apy because of their ineffectiveness in primary prevention 
against cardiovascular diseases. 

With the decline in β-blockade therapy as first choice in 
uncomplicated hypertension, the interest in PGx of ARs may 
shift to anti-HF therapy; however, PGx of HF will be more 
complicated than that of hypertension. Several concerns 
should be considered in PGx study of HF as described below; 

(1) Cause of HF: The response to β-blockers is better in 
HF with idiopathic dilated cardiomyopathy than that with 
ischemic cardiomyopathy. 

(2) Choice of the agent: β1 selectivity and inverse agonis-
tic effects influence the drug response. 

(3) End point: Primary end points should be cardiac death 
or cardiac events; however, in the case of genetic polymor-
phisms with low allelic frequency, statistic errors are likely 
to occur, because of limited number of cardiac death or car-
diac events.  

(4) Racial differences: There are large racial differences 
in the drug response, frequency of genetic polymorphisms, 
and the prognosis of HF.  

(5) Possible involvement of other adrenergic sig-
nal-related genes: Adrenergic signals are regulated not sim-
ply by ARs. For example, the concentrations of NE in synap-
tic cleft are likely to be altered by its reuptake through NE 
transporter (NET). Indeed, we have reported the association 
between the NET gene polymorphism and β-blocker re-
sponse [57]. Moreover, the involvement of the genes respon-
sible for post-synaptic signaling pathway, such as G pro-
tein-coupled receptor kinase 5 [58], remains to be fully ad-
dressed.  

Despite the difficulties described above, PGx studies of 
ARs should be encouraged. Based on the recent clinical trial 
[59], β-blockers are now the first-line drugs comparable to 
angiotensin-converting enzyme inhibitors (ACEIs), in early 
HF. Given the intrinsic negative inotropic property of 
β-blockers, PGx of ARs might give the answer to the ques-
tion, “β-blockers or ACEIs?” to each individual patient in 
early HF. 
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