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Abstract: One of the most important bits of every search engine is the query interface. Complex interfaces may cause us-

ers to struggle in learning the handling. An example is the query language SQL. It is really powerful, but usually remains 

hidden to the common user. On the other hand the usage of current languages for Internet search engines is very simple 

and straightforward. Even beginners are able to find relevant documents.  

This paper presents a hybrid query language suitable for both image and text retrieval. It is very similar to those of a full 

text search engine but also includes some extensions required for content based image retrieval. The language is extensi-

ble to cover arbitrary feature vectors and handle fuzzy queries. 

INTRODUCTION 

 After several years of research the idea of content based 
image retrieval (CBIR) (Eakins JISCTAP 1999) [1] (Renz 
OTDGI 2000) [2] is still not established in daily life. Cur-
rently most effort in CBIR is put into closing the semantic 
gap between simple visual features and the real image se-
mantics. The work done in this area is very important to al-
low untrained users to work with image retrieval systems. A 
survey about such systems is available from Liu (Liu PR 
2007) [3]. None of the systems analysed there is really capa-
ble of closing the gap completely. Either the solutions are far 
too specific or require much human attention. The most im-
portant open tasks identified are ”query-language design, 
integration of image retrieval with database management 
system, high-dimensional image feature indexing” and ”in-
tegration of salient low-level feature extraction, effective 
learning of high-level semantics, friendly user interface, and 
efficient indexing tool” (Liu PR 2007) [3]. 

 The cross-language image retrieval campaign Image- 
CLEF (Clough AMIR 2006) [4] (Clough EMMIR 2007) [5] 
aims to evaluate different approaches of text and content 
based retrieval methods. The focus is set on a (natural) lan-
guage independent solution for image retrieval, which ex-
ploits both textual annotations as well as visual features. This 
effort also shows quite clearly the need for a powerful image 
retrieval system. 

 This paper introduces one approach to solve some of the 
claims stated above. It describes a query language which is 
designed to be reasonably user friendly and allows the inte-
gration of high-level semantics and low-level feature extrac-
tion in a single query.  

 Taking a look at current full text retrieval engines, it re-
veals the main differences to CBIR engines. Image retrieval  
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inevitably contains fuzzy aspects. A search based on image 
features usually produces a list of results with decreasing 
similarity. In contrast, a full text search can determine sepa-
rate hit and miss lists, even if some fuzziness is added by 
language analysis (e.g. ignoring word endings). 

 Such a language must tackle the tasks of synthesizing 
simple result sets with fuzzy sets (Fagin PODS 1996) [6] as 
well as keeping the final result in a maintainable size. The 
latter requirement is important because every similarity 
above 0.0 is somehow part of the hits.  

 At the same time, query composing in CBIR environ-
ments is often much more difficult as there are no keywords 
for low-level features. The query language presented in this 
paper is rooted in the established area of text retrieval and is 
extended by essential CBIR related additions. 

RELATED WORK 

 This section surveys some related research that are deal-
ing with query composing in information retrieval and using 
different ways of describing content. 

Query Language 

 The Lucene Query Language (Apache Lucene ASF 
2006) [7] is a full text retrieval language. The Lucene library 
includes a parser which converts a query string into a query 
object. This object represents all query details and the search 
engine generates the result based on it. This language is not 
suitable to handle fuzzy results out of the box, but provides a 
simple and clear structure. It allows boolean and nested que-
ries as well as the definition of document fields. These fields 
hold some meta information (i.e. title, content, author, etc ...) 
and can be used to compose reasonably complex queries. 

 With the development of object-oriented DBMS the 
ODMG-93 (Cattell SIGMOD 1994) [8] standard emerged. 
The OQL query language (Alashqur VLDB 1989) [9] has 
been created. It combines SQL syntax with the OMG object 
model. An interesting extension to this language is called 
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FOQL (Nepal ICDE 1999) [10]. This language extension 
tries to capture fuzzy aspects which are required for CBIR 
applications. The FOQL approach is to attach a set of match-
ing-methods to each stored objects. These methods are used 
to match any two objects of the same kind in a specific way. 
The resulting similarity is somewhere between 0.0 (no simi-
larity) and 1.0 (identity). The newly introduced data type is 
called Fuzzy-Boolean. In addition, the result can be limited 
by a threshold defining the minimum similarity. 

 Another query language is OQUEL (Town CBAIVL 
2001) [11] (Town IVC 2004) [12] which is designed to be 
user friendly. It is based on a simplified natural language and 
an extensible ontology. The system extracts a syntax tree 
from the query to retrieve images. 

Data Description 

 The feature vector paradigm states a plain list of several 
float values to create a vector. But looking at any random 
technique it reveals that features may be composed in many 
different ways, e.g. containing probably complex data struc-
tures. These structures need to be mapped to the query lan-
guage. 

 The language MPEG-7 (Martinez IEEEMM 2002) [13] is 
rather a multimedia description than a query language. It is 
an emerging standard used in multimedia archives, often 
containing high level semantic information. Using an XML 
based language for typed queries appears to be very unhandy 
and overly complex. 

 A possible alternative is the minimalistic approach in 
JSON. This sub set of JavaScript is an important part of the 
current Ajax technology. JSON is intended to be a simple 
data interchange format with minimal overhead. 

METHODOLOGY 

 The proposed query language is based on the Lucene 
Query Parser (Apache Lucene ASF 2006) [7] which defines 
a common language for full text search. It is intentionally 
chosen to provide beginners with a simple and familiar syn-
tax. The language allows queries similar to those used in 
traditional search engines and the parser is generated by 
JavaCC. 

 This approach tries to merge the design principles of dif-
ferent languages. Some are like OQUEL (Town CBAIVL 
2001) [11] where queries are kept as simple and natural as 
possible. Others like SQL define a strict grammar to be 
highly machine readable. 

 There are two changes made to the Lucene grammar to 
fit the requirements of an extensible feature vector based 
query language: fuzzy related operators and a nested two-
layer grammar. 

 The previous boost parameter for terms has been ex-
tended to multiple TermParams allowing additional control 
of fuzzy result sets. To provide a high extensibility the 
grammar is split into two different layers.  

 The basic layer is parsed and interpreted by the search 
engine directly. Here the grammar is predefined and fixed. 
Users may specify which meta information should be 
searched for by using fields. Images hold other fields than 

normal text documents, typically EXIF and IPTC informa-
tion. In the near future, this information may be replaced by 
the XML based XMP (Riecks IPTC 2005) [14]. Addition-
ally, a CBIR environment provides one or multiple feature 
vectors holding low-level information about the pixels. 
These feature vectors can be added by plug-ins, each one 
having a unique identifier which is the field name for content 
based queries. The difficulty now lies in specifying how the 
query feature vector is entered. There are at least three dif-
ferent ways possible: 

• ID of an image stored in the repository 

• URI of a query image 

• specification of the feature vector itself 

 The simplest way is to use an existing image for a query 
(query-by-example). Images already in the repository have 
the prepared feature vector available. Specifying the URI of 
an image requires the engine to load the image and to extract 
the feature vector. The most advanced and complicated way 
is to let the user specify a feature vector in detail. 

 As a custom feature vector may contain any kind of pro-
prietary data, offering an all-embracing language is not pos-
sible. Thus a second layer is added to the query language. A 
Term may contain the string <FEATURE START> [<FEA-
TURE CONTENT>] <FEATURE END>. The parenthesized 
part <FEATURE CONTENT> is extracted by the search 
engine and passed to the responsible plug-in. The plug-in is 
fully responsible for parsing and interpreting this string to 
return the object representation of the feature vector. 

Grammar 

Conjunction ::= [ <AND> | <OR> ] 
Modifiers ::= [ <PLUS> | <MINUS> | <NOT> ] 
Query ::= ( Conjunction Modifiers Clause )* 
Clause ::= 
[ LOOKAHEAD(2) 
(<TERM> <COLON> | <STAR> <COLON> ) 
] 
(Term | <LPAREN> Query <RPAREN> 
[TermParams]) 

Term ::= 
( 
( <TERM> | <STAR> | <PREFIXTERM> | 
<WILDTERM> | <NUMBER> | <URI> ) 
[ <FUZZY_SLOP> ] 
[ TermParams [ <FUZZY_SLOP> ] ] 
| ( <RANGEIN_START> 
( <RANGEIN_GOOP>|<RANGEIN_QUOTED> ) 
[ <RANGEIN_TO> ] 
( <RANGEIN_GOOP>|<RANGEIN_QUOTED> ) 
<RANGEIN_END> ) 
[ TermParams ] 
| ( <RANGEEX_START> 
( <RANGEEX_GOOP>|<RANGEEX_QUOTED> ) 
[ <RANGEEX_TO> ] 
( <RANGEEX_GOOP>|<RANGEEX_QUOTED> ) 
<RANGEEX_END> ) 
[ TermParams ] 
| 
( <FEATURE_START> 
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[ <FEATURE_CONTENT> ] 
<FEATURE_END> ) 
[ TermParams ] 
| <QUOTED> 
[<FUZZY_SLOP> ] 
[ TermParams ] 
) 

TermParams ::= 
( 
<CARAT> boost ( 
([ <HASH> maxCount ] [ <AT> threshold ]) 
| ([ <AT> threshold ] [ <HASH> maxCount ]) 
) 
| <HASH> maxCount ( 
([ <CARAT> boost ] [ <AT> threshold ]) 
| ([ <AT> threshold ] [ <CARAT> boost ]) 
) 
| <AT> threshold ( 
([ <CARAT> boost ] [ <HASH> maxCount ]) 
| ([ <HASH> maxCount ] [ <CARAT> boost ]) 
) 
) 

Operators 

 The main difficulty of combining sub results from a 
CBIR system is the fuzzy nature of the results. Some simple 
features with filtering character (e.g. keywords) deliver a 
rather clean set of hits. But it is essential to have a a fuzzy 
model for merging these with highly similarity based fea-
tures. Those results are usually a sorted list (Fagin PODS 
1996) [6] (Ramakrishna ADC 2002) [15]. 

 The approach by Fagin (Fagin PODS 1996) [6] interprets 
results as graded sets, which are lists sorted by similarity and 
set characteristics. He uses the basic rules defined by Zadeh 
(Zadeh WSPC 1996) [16]: 

• Conjunction: 
μA B(x) = min{μA(x), μB(x)} (AND) 

• Disjunction: 
μA B(x) = max{μA(x), μB(x)} (OR) 

• Negation: 
μ¬A(x) = 1 - μA(x) (NOT) 

 The text retrieval concept of boosting single terms by any 
float value is adapted to the extended engine. Before merg-
ing sub results, the similarities are boosted as specified to 
shift the importance into the desired direction.  

 An additional acknowledgement to the fuzzy nature is the 
use of additional set operators to keep the results at a reason-
able size. The minimum similarity is a value between0.0 and 
1.0 and forces the engine to drop all results below this simi-
larity threshold. As the efficiency of the threshold highly 
depends on the available images and features, a maximum 
size parameter limits the result to the specified size. 

Plug-Ins 

 The plug-in concept of the retrieval framework described 
in (Pein ICCS 2007) [17] allows the definition of any new 
feature. To make such a plug-in available in this language, 
only a few requirements need to be met. 

 The plug-in needs an identifier which is automatically 
used as a term field. With this information it is already pos-
sible to formulate queries containing an example image (ei-
ther by internal id or URI). 

 The tricky part is to develop syntax for user defined fea-
ture vector information embedded in a query. As features can 
be arbitrarily complex, it is intended to support a simple de-
fault language like JSON. Otherwise the embedded data 
string of a query is forwarded directly to the feature plug-in 
where it needs to be converted into a valid feature object. 

Wildcards and Ranges 

 Wildcards and ranges can be used to express uncertainty 
or to allow the search engine to be less strict during retrieval. 
The meaning of those concepts depends on the described 
feature. Some features may well benefit, but for others they 
may not be required. 

 In text retrieval, wildcards stand for letters in a word that 
don’t have to match an explicit query. In the example case of 
a RGB mean value, a wildcard can express, that a certain 
colour channel does not need to be considered. For spatial 
features it can be useful to define regions of interest as well 
as regions of non-interest. 

 Ranges are an intermediate concept between concrete 
queries and wildcards. They are used to specify a certain 
space where parameters can be matched. Searching for im-
ages with a creation time stamp is only feasible, if a range 
can be specified. It is very unlikely that the searcher knows 
the exact time, especially when it is extremely accurate (i.e. 
milliseconds). In such a case, usually a time span is provided 
(e.g. “between 03/06/08 and 10/06/08” or “within the last 
week”). Analogous, image features such as the trivial RGB 
mean could specify a tolerance range for each colour chan-
nel. 

 Unfortunately, these definitely useful concepts cannot be 
fully generalized. At this point, the plug-in developer needs 
to decide how to address them. Taking the RGB means of an 
image, the user could specify an array like ”[36, 255, *]”. In 
this case the results should contain some red and dominant 
green. The rate of blue does not matter at all. Putting some 
more effort into the feature abstraction, a more convenient 
query like ”some red and very much green”is also possible. 
This lies in the responsibility of the plug-in developer. 

Examples 

 The following examples demonstrate the use of different 
language constructs, where the ”keywords” field is the only 
text based one. 

1. IPTC keyword: 
keywords:oystercatcher 

2. external image, similarity at least 95%: 
histogram:”file://query.jpg”@0.95 

3. wavelet of three images by internal ID: 
wavelet:(3960 3941 3948) 

4. two histograms, maximum of 10 results each and the 
first one boosted by 2.0: 
histogram:3963#10^2.0 OR histogram:3960#10 
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5. spatial histogram without the 50 most similar images 
to image 190: 
spatial histo:5456 -histogram:190#50 

6. mean colour with embedded feature and filtering 
keyword: 
rgb mean:($[200, 50, *]$) +keywords:car 

 Example query 1 is a simple text based query based on 
the IPTC meta information. It works exactly as every com-
mon full text retrieval. The field ‘keywords’ is derived di-
rectly from the IPTC data and other fields such as ‘title’, 
‘author’ or ‘createdate’ are also available. 

 More interesting in this context are queries allowing 
CBIR relevant features. The fields are picked by the feature 
identifier and processed in the plug-ins. 

 Number 2 searches for similarities based on a histogram 
plug-in that implements a feature proposed by Al-Omari and 
Al-Jarrah (Al-Omari DKE 2005) [18]. An URI to an image 
is specified which is used for query-by-example. The engine 
loads the image and extracts the required query feature. The 
final result is limited to images with at least 95% similarity. 

 Query 3 calls the wavelet plug-in which is an implemen-
tation of a feature by Jacobs et al. (Jacobs ACS 1995) [19]. 
The query contains three internal image IDs. The engine 
performs three parallel sub retrievals and merges the three 
result lists by default with OR. Using the IDs shortens the 
query string itself and allows the engine to load the prepared 
feature vectors directly from the persistence. Because of the 
fuzziness in CBIR it is not clear how many results are re-
turned when giving a similarity threshold. Dependent on the 
quality of the feature implementation and the repository size, 
many thousands of images could have a similarity above a 
given threshold. This is usually a waste of resources because 
users want the result to appear in the first few hits, say the 
first result page. 

 Query 4 presents the second way to keep the result size 
tight. Here the result set of each term is cut off after a maxi-
mum of 10 results. This restricts the maximum result size to 
10 + 10 = 20 images. Additionally the first term is boosted 
by factor 2, giving it a higher weight than the second term. 

 Having access to multiple feature plug-ins opens an 
interesting new field to composing CBIR queries. Different 
features often mean very different result sets. The NOT 
modifier in query 5 shows an example how to remove un-
wanted content from the result. First the engine searches for 
the feature spatial histo, which is a histogram with additional 
information about spatial colour distribution (Pein IKE 
2006) [20]. As this query might return several images which 
do not correspond to the wanted context, a NOT term filters 
out the 50 highest results similar to an unwanted result which 
are hopefully very similar in the simpler histogram space. 

 Finally the conjunction of the two different worlds is 
done by example 6. The first term searches for the content 
based rgb mean. The embedded part within the brackets is 
interpreted by the simple rgb mean plug-in, where the three 
values stand for red, green and blue. The desired values for 
red and green are defined and the blue colour does not matter 
at all. Because this low-level feature is far too simple for 
efficient retrieval, a second term is specified. In this example 

the keywords field is mandatory (AND) and has a filtering 
effect. Only images containing the keyword ”car” are al-
lowed to be in the result. 

System Design 

 In order to test the new language in a meaningful context, 
it has been attached to the previously developed CBIR proto-
type (Pein MT 2008) [21]. This program was lacking a flexi-
ble interface to process complex queries. It was only capable 
of processing queries containing a set of weighted features. 
Concepts such as boolean joins were impossible to formu-
late. Plus, the interface required the use of some proprietary 
query objects. Adding a query language opened up a range 
of new possibilities. 

 Most retrieval systems follow a simple workflow cycle 
(Fig. 1) (Pein CIT 2008) [22]. A successful retrieval is per-
formed as follows. Users submit a query to the engine to 
trigger a search and receive a set of results. Those results 
may be satisfying and the user finds the required informa-
tion. If not, the user may navigate through the results and 
eventually refines the previous query to trigger a new search. 
In this paper, the stages from the query to the results are ex-
amined in more detail (Fig. 2). 

 

 

 

 

 

Fig. (1). Generic Retrieval Workflow (Pein CIT 2008) [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Layers in the Retrieval Process. 

 

 At a very high abstraction level, a simple retrieval system 
receives a query from the user, parses it somehow to under-
stand the meaning, gathers the most relevant documents and 
finally returns them. This workflow is very common and can 
be offered by a generic framework, which simply offers all 
the basic functionality required. Those framework compo-
nents do not have to be specialized. They only need to un-
derstand basic input and generate basic output. All the details 
and optimizing are meant to be implemented in exchange-
able plug-ins. 
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IMPLEMENTATION 

 The design proposed above has been implemented in 
Java. The prototype uses a modified version of the original 
Lucene Query Parser. The parser analyses an input string and 
converts it into the corresponding Query object. Dependent 
on the terms given, the Query is composed of different 
clauses, such as an array of boolean clauses or may be even 
nested. 

 For the new parser, some amendments are required. A 
block for additional term parameters and the encapsulation 
of arbitrary strings have been added. In the current version, 
the parser ignores everything between the opening brackets 
“($” and the corresponding closing ones “$)”. This part of 
the query is stored in a special sub query object as a simple 
string. At a later stage, this string gets parsed by the corre-
sponding module to create an object instance, that can be 
used for the partial retrieval itself. 

Query Objects 

 The retrieval software works internally with well defined 
query objects rather than a query string. This ensures that the 
query can be easily processed and does not contain syntactic 
errors. 

 In the Lucene library, queries are composed of different 
object types. The basic class is the abstract Query. It contains 
a boost parameter and either a simple Term (TermQuery) or 
a nested Query. A commonly used implementation of the 
nested query is the BooleanQuery, which contains a list of 
clauses. Each Clause instance wraps a query and an occur-
rence parameter (MUST, SHOULD, MUST NOT). 

 The proposed query language requires a set of additional 
classes to express the special needs of CBIR. Opposing to 
normal terms, the new classes are able to store information 
such as URLs, IDs or a FeatureVector instance. The latter 

needs to create the feature information from the embedded 
string. To achieve this, it calls the parsing method of the cor-
responding plug-in. 

Parse Trees 

 Based on the grammar, the parser generates a hierarchy 
of sub queries wrapped up in a single root query object. By 
traversing the tree, the sub results can be merged accord-
ingly. This section shows the decomposition on a relatively 
complicated query. The images used in this example are part 
of the Caltech-101 collection (Fergus CVPR 2003) [23]. 

( 
  ( 
    histogram:"file://query.jpg" OR 
    rgb_mean:($[200, 50, *]$)ˆ2.0 
  )@0.8 
-wavelet:(89 244 345)@0.9 
  +keywords:airplane 
)#100 

 Verbally, this query can be read as follows: 

 “Find me images, that have a similar histogram as the 
sample image query.jpg OR have a mean colour close to 200 
red and 50 green. The blue channel can be anything. Rank 
the mean colour twice as high as normal. Both sub results 
should have at least a similarity value of 0.8. Please remove 
any result, which has a minimum wavelet similarity of 0.9 to 
the images 89, 244 and 345. Every result must be annotated 
with the keyword airplane. Give me not more than 100 re-
sults in total.” 

 After parsing, the query string is converted into a parse 
tree that contains all of the relevant concepts (Fig. 3). The 
root node is represented by a Query, which is the single data 
object that is processed by the retrieval core. Each leaf is a 
Term, representing a partial search, which generates a sub 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Parse Tree of a complex Query. 
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result. The tree structure in between represents the rules how 
to merge the sub results into a final one. 

 The search engine then traverses the tree and generates 
the answer to this particular request. At this point, it is advis-
able to integrate a query optimizer to reduce the response 
time. In the current prototype, some straightforward query 
optimizing already takes place. 

 First, the MUST clauses are processed, then the 
SHOULD and finally the MUST NOT clauses. This allows 
for an early reduction of the search space, which is especially 
of importance, if no or only a slow index is available for 
certain features. Depending on the availability of indexes, 
certain other term could also be pre-drawn. The optimization 
strategy should always be aimed at an early reduction of 
search space as well as preferring the use of fast indexes. 
The strategy used in this cases uses a strict definition of 
MUST and MUST NOT. If an image is not part of all the 
MUST clauses or part of a MUST NOT clause, it is removed 
from the final result. This approach is considered to be a 
useful trade-off between a perfect fuzzy algebra and speed 
optimizations. 

 In this case, the first term to be processed is “key-
words:airplane”. This triggers a keyword search, which is 
backed by a fast and efficient index, resulting in a list of 
matching images. As the parent BooleanClause is flagged as 
MUST, the final results of the query can only be amongst 
those sub results. Assuming, that only about 1% of the re-
pository is related to the keyword “airplane”, every subse-
quent linear search time can also be reduced to only 1% of 
the otherwise total scan time. 

 The second branch to be processed is the SHOULD 
clause on the left, that is split into a nested boolean query. 
One leaf contains a UrlTerm, pointing at an external query 
image and requesting a comparison based on its histogram. 
To process this part, the engine reads the image from the 
URL and extracts the histogram automatically. This search 
only needs to compare the query histogram with the stored 
histograms from the previous sub result. 

 The other leaf contains a FeatureVectorTerm. The string 
embedded between the “($” “$)” brackets is parsed by the 
rgb mean plug-in. In this case, the string stands for the three 
mean colour values red (200), green (50) and blue (“don’t 
care” wildcard) of an image. Again, the search space is dras-
tically reduced by the first sub result. 

 After both terms have been processed, the sub results are 
merged into a single one. Their combined similarity must be 
at least 0.8, otherwise the image is removed from the result 
set. There is no “best” rule to merge the sub results. In the 
current prototype, the combined similarity is calculated by 
determining the weighted and normalized sum of the sub 
similarities. In this case, the rgb mean branch has a weight of 
2.0 and thus gains a higher importance in the merged result. 

 The last main branch is flagged as MUST NOT and re-
quires a minimum combined similarity of 0.9. All of the 
three clauses contain a plain IdQuery with an IdTerm. They 
require a retrieval on the wavelet feature and use sample 
images from the repository by stating the image id directly. 
Again, the search space is already limited, not only by the 
MUST branch, but also by the SHOULD branch. It is only 

necessary to check the images contained in the previously 
retrieved sub result. The sub results of the middle branch are 
merged accordingly and cropped at a minimum similarity of 
0.9. 

 To generate the final answer, the MUST NOT results are 
removed from the temporary sub result. The last step re-
quired is to cut the sorted list after the 100 best hits. 

Alternative Data Representation 

 The string representation of a query can be manipulated 
directly by users. This query string can be edited in every 
basic text editor without the need for any extended user in-
terface. It also allows experienced users to access every as-
pect of the search engine directly. 

 As the query language is based on the Lucene tool kit, it 
always has an object representation of the whole query. This 
query object could also be created by a suitable front end. 
Such a tool eliminates parsing errors, because the query 
structure would always be bound to the components. 

XML 

 The parse tree containing a query can be directly mapped 
to an XML hierarchy. Plug-ins could also specify their fea-
ture conversion into XML and back to. This allows for con-
sistent XML files and simplifies the use of the MPEG-7. 
Below, the XML structure matching the example parse tee is 
shown: 

<boolean-query max-count="100"> 
 

 <boolean-clause occur="SHOULD"> 

  <boolean-query threshold="0.8"> 

 

   <boolean-clause occur="SHOULD"> 

    <url-query> 

     <url-term> 

      <field>histogram</field> 

      <url>file://query.jpg</url> 

     </url-term> 

    </url-query> 

   </boolean-clause> 
 

   <boolean-clause occur="SHOULD"> 

    <feature-vector-query boost="2.0"> 

     <feature-vector-term> 

      <field>rgb_mean</field> 

      <string-data>[200, 50, *]</string-data> 

      <data> 

       <red>200</red> 

       <green>50</green> 

       <blue>*</blue> 

      </data> 
     </feature-vector-term> 

    </feature-vector-query> 

   </boolean-clause> 

 

  </boolean-query> 

 </boolean-clause> 

 

 <boolean-clause occur="MUST_NOT"> 
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  <boolean-query threshold="0.9"> 

   <boolean-clause occur="SHOULD"> 

    <id-query> 

     <id-term> 

      <field>wavelet</field> 

      <id>3960</id> 

     </id-term> 

    </id-query> 

   </boolean-clause> 
   <boolean-clause occur="SHOULD"> 

    <id-query> 

     <id-term> 

      <field>wavelet</field> 

      <id>3941</id> 

     </id-term> 

    </id-query> 

   </boolean-clause> 

   <boolean-clause occur="SHOULD"> 

    <id-query> 

     <id-term> 

      <field>wavelet</field> 
      <id>3948</id> 

     </id-term> 

    </id-query> 

   </boolean-clause> 

  </boolean-query> 

 </boolean-clause> 

 

 <boolean-clause occur="MUST"> 

  <term-query> 

   <term> 

    <field>keywords</field> 
    <text>airplane</text> 

   </term> 

  </term-query> 

 </boolean-clause> 

 
</boolean-query> 

 This XML data contains the same information as the ex-
ample query string. Clearly, this format is much more ver-
bose than the suggested query language. Being probably less 
readable for humans, its advantage is the standardized for-
mat. The XML code does ot require a special parser to be 
processed or validated by any program. 

 One example of generic and specialized data representa-
tion is contained in the XML query above. The featurevec-
tor-term for the rgb mean plug-in shows two alternatives. In 
the generic case, the string-data is left untouched. This is the 
output generated by the main parser. To extract the real 
meaning of the data string, it needs to be processed by the 
corresponding plug-in. The resulting data tag would then 
contain each piece of feature data separately. 

<feature-vector-term> 

 <field>rgb_mean</field> 

 <string-data> 

  [200, 50, *] 

 </string-data> 

 <data> 

  <red>200</red> 

  <green>50</green> 

  <blue>*</blue> 

 </data> 
</feature-vector-term> 

Visual Query 

 A clearly structured query language like the proposed 
one can optionally be mapped to a visual representation to 
guide the user. The resulting graphical user interface helps to 
assemble queries that are syntactically correct, displays 
query images, provides a canvas for query-by-example and 
may also support to adjust feature plug-in specific parame-
ters. 

 Fig. (4) shows the visual query composer of the proto-
type, where the example query has been assembled from 
multiple clauses. Every clause of the parse tree is modelled 
by a window. Each clause window contains several options 
to choose the occurrence, the added parameters, a field name 
and the query type. Textual queries usually contain a generic 
term with one ore multiple keywords. 

 Queries for CBIR can manage a query URL, a specified 
feature, the id to an existing image or a canvas to draw a 
query image. Clause windows specifying a query image can 
directly display a small preview image to provide feedback 
what is going to be searched. Windows containing a feature 
description can either show the data fields directly (e.g. red, 
green, blue) or a convenient editor (e.g. a colour chooser). 

TESTING 

Language Features 

 There are only a few query languages which try to tackle 
the task of merging aspects of full text and CBIR retrieval. 
These languages need to address the requirements of fuzzy 
decisions between hit and miss. Above, several important 
features are discussed. Below, some languages are checked 
against them. Additionally, the proposed query language is 
tested against some synthetic retrieval tasks to evaluate its 
expressiveness in a reasonably realistic environment. 

Test Repository 

 The testing repository consists of 6480 images from three 
different sources. Each source contains several photographs 
with certain topics. The level of annotation for each source is 
varying. As the images were from German sources, most 
image annotation is in German. 

 The first set of 415 images contains images from the cit-
ies of Dublin and Liverpool. There are many buildings and 
bird views as well as scenes from a football stadium, without 
any annotation. The only textual hints can be taken from the 
file names and paths. 

 The second set contains 5399 images and is by far the 
largest part of the repository. Apart from 417 photographs 
from a botanical garden and some large animals, the main 
content is birds. Most images contain a bird in the centre part 
and the background is dominated by water, grass or sky. Al-
most every photograph contains IPTC annotation with the 
name of the depicted animal. Some keywords also denote the 
location where the photograph was taken. 
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 In the third set there are 666 images from 4 different lo-
cations, Beijing, Shanghai, Dubai and the USA. The images 
have an average of 3 keywords describing the location and 
the content. Similar to the first set, most pictures show build-
ings or landscapes. 

Single Feature Test Cases 

 To assess the retrieval quality of single features, two im-
age series from the repository are chosen. In these series 
there are several images with similar content as well as some 
more difficult changes. Each feature plug-in is tested by tak-
ing some of the images and afterwards precision and recall 
are determined on the results. 

 The first testing set contains 14 closeup views from 
Highland cattle (Fig. 5). The images are dominated by the 
typical auburn fur and some water in the background. In hu-
man perception there are no other images with similar con-
tent in the repository. 

 The second testing set containing 57 images of a meadow 
pipit (Fig. 6) is much more challenging. More than 50 per-
cent of the repository images show birds. This image set 
consists of 7 different sceneries. The feature vectors should 
at least be able to find the images of the same series. As none 
of the implemented feature vector plug-ins is capable of 
identifying a small bird in the central part of images, it is 
expected that all of them will get to serious issues to find 
images depicting the same bird from another series. 

 For testing some of the images from the image sets are 
taken as query. For the first set only one image (Fig. (5a)) is 
used, because of the relative high similarity within the set. 
From the second set always the first image of each series is 
chosen as query except from the single one (Fig. (6b)) are 
used for the query. Sometimes the first image is obviously 
not the best choice but these test cases try to capture real and 
maybe unclear conditions. 

Multi Feature Language Test Cases 

 In this testing series it is attempted to create queries 
which are more efficient than the simple queries from the 
section above. To allow a “natural” progress of query com-
posing and refining, the IDs of the other related images are 
treated as unknown. Each related ID needs to be present in a 
previous result set in order to be used in the next query. Each 
retrieval starts with the query image. 

 A search by keywords would result in the correct small 
subset of 14/57 images. Using CBIR on the remaining im-
ages would be pointless for testing. The impact of keywords 
is examined in the user survey below. 

 The basic search strategy is as follows: First the query 
image is used with every basic single feature. Only the first 
50 hits are browsed for found relevant images. Starting with 
the best performing feature, the IDs of all relevant images 
are used in new queries. Other images found are also used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Visual query composer. 
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Fig. (5). Selected meadow pipit images. 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Cattle images. 

for querying. If still some images are missing, the same pro-
cedure is repeated with the other available features. The 
found images are then combined in a single query and opti-
mized for a high recall. In difficult cases the results are 
browsed in depth and the approximate ranking of the related 
images is determined. 

 If other image series with a high similarity clutter the 
results, it is attempted to filter them out with a NOT term. 
The final query containing all targeted images is then cut to 
the minimum size possible. 

User Survey 

 A first small-scale user survey has been carried out to 
evaluate the language in the context of the related master 
thesis (Pein MT 2008) [21]. For this survey, the same reposi-
tory as described above is used. It has been carried out with 
5 testers with at least basic experience in computing sci-
ences. The testing prototype only offered a plain HTML 
page with a single input line for textual queries. The visual 
query composer was not available at that time.  

 Each tester got a short introduction into the query lan-
guage and some technical basics of the different available 
features. During the procedure the testers were allowed to 

ask for further advice concerning the system abilities and 
usage. It is important that the direct influence of the test su-
pervisor is kept as low as possible. He must not give direct 
hints how to solve a task. The only support allowed is to 
mention basic technical possibilities available or work-
arounds to avoid bugs. 

Tasks 

 The tasks demand both CBIR and keyword based ap-
proaches. The basic tasks were: retrieving images based on a 
textual description or visual examples, tracking a given ex-
ample image, optimizing queries (high Precision/Recall) for 
a specific content and ascertain the name of birds from given 
images. 

 The first task is starting simple to let the testers get used 
to the search engine. First some blue images need to be 
found. This could be easily done by using the RGB Mean 
plug-in and the word “blue” or alternatively the 

 RGB value [0,0,255]. The second subtask is basically the 
same with “white” or [255,255,255]. The two remaining 
subtasks are not trivial, because no query-by-sketch module 
is available. The testers need to find examples directly from 
the repository and then use them for querying. It is expected 
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that a random search produces a suitable query image and 
that the Spatial Histogram feature or promising keywords are 
used. 

 The second task is to spot predefined images. All of them 
have some keyword annotation. One image (a Chinese stop 
sign) is very easy to find. The keywords “stop”, “sign” and 
“china” all narrow down the search space drastically. Addi-
tionally a search for red content can be helpful. The other 
images require to use less obvious keywords and maybe 
CBIR. In one case, some background knowledge in ornithol-
ogy was beneficial. Testers knowing that a “great crested 
grebe” was depicted, could find this image by keyword. Oth-
ers need to browse a bit more and do some CBIR. 

 Task 3 is similar to the previous one. The difference is 
that instead of a specific image, several similar images need 
to be found. The first image was one of 441 “oystercatcher” 
images in the repository. Knowing the name is already very 
helpful, but from the remaining images the ones with the 
highest similarity need to be found. A combination of key-
words and one of the CBIR features returns a nicely sorted 
list. The second image was much harder to find. It shows a 
brown cathedral, that has been photographed from several 
different angles and distances. The keyword “liverpool” re-
duces the search space to 315 images. This city name could 
be found by recognizing the building or by looking at the 
keywords of random results. 

 After having collected some experience with the system, 
the testers are challenged to do some query optimizing in the 
fourth task. The first subtask to find pictures of the Great 

Wall of China was trivial when using the keywords. Alterna-
tively a CBIR query could be composed based on random 
results. The second one requests images from a desert is 
more difficult, because the real keyword was “sandy-desert” 
(in German “Sandwüste” instead of the more general 
“Wüste”) and requires the use of a wild card or the correctly 
spelled keyword. Alternatively, the retrieval by yellow con-
tent or less specific keywords like “Dubai” lead to success. 
The final sub task was to find city skylines. The search for 
the “city” only returns pictures from the “forbidden city” in 
Beijing. Here it is advisable to either use known city names 
from the repository or by picking random images. 

 The final task was a bit tricky. The testers are supplied 
with a small image of a certain bird. Either they know the 
name or they need to do some retrieval work. There are sev-
eral ways to find the images. This required some kind of 
freestyle retrieval with no best solution or short cut (except 
from knowing the bird names). 

RESULTS 

Language Features 

 Table 1 compares some query languages and lists which 
important requirements are met. Each language addresses all 
of the fuzzy aspects. They only differ in “comfort functions”. 
The language proposed here lacks a user-defined sorting and 
the direct implementation of high-level concepts. FOQL is 
very expressive, but is very verbose in comparison. OQUEL 
is a very high-level language and its abilities ultimately de-
pend on the ontology used. 

Table 1. Languages Compared 
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FOQL  Y Y Y Y Y Y Y N ODMG/OQL 

OQUEL  Y Y N N Y Y Y Y None/natural 

Table 2. Single Features Recall, Recall for the First 50 Hits 

 

5(a) 6(a) 6(c) 6(d) 6(e) 6(f) 6(g)  

       

RGB Mean 0.85 0.0 0.83 0.13 1.0 0.0 0.0 

Histogram 0.23 0.8 1.0 0.19 0.29 0.0 0.0 

Spatial Histogram 0.0 0.0 0.0 0.19 0.14 0.13 0.0 

Wavelet 0.23 1.0 0.83 0.13 0.0 0.25 0.0 
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Single Feature Test Cases 

 The results of the testing is summarized in Tables 2 and 
3. 

 Table 2 shows the recall values for a result set of 50 im-
ages. This size is chosen because it is assumed that 50 results 
are reasonably displayable at the same time. Sometimes a 
couple of relevant images still show up in later positions, but 
these may be already ignored by an impatient user (in fact, 
the user survey revealed, that single hits are often overlooked 
when scrolling quickly through the results). The query image 
is always at the first position and is deducted from the recall. 
A recall of 1.0 means that all expected images could be suc-
cessfully retrieved. The value 0.0 however indicates a com-
plete failure. 

 Table 3 lists the similarity values of the 50th image in the 
result. This value indicates how satisfactorily a feature is 
capable to avoid a false positive. The more images gain a 
high similarity, the more difficult it is to do the final ranking 
in a right way. In the end, the similarity is simply an indica-
tor for the manner how the results should be sorted. The 
quality itself is determined by the ranking. 

Multi Feature Language Test Cases 

 In this section a possible progress of query refining is 
listed. Each query image from the tests above is used as ini-
tial query to find all the other ones from the related series. It 
is aimed to gain the highest recall possible with the final 
query. During optimization, usually the hard limitation of 
images has been chosen (#) to indicate the final result set 
size. In a repository that is assumed to be changing, it is rec-
ommended to use the more flexible similarity (@) restric-
tion. Otherwise, hits may be pushed out by new false posi-
tives. 

Search for Image Series 5(a) 

 The best results are achieved by using the simple RGB 
mean feature. This query already returns 12 of the 14 possi-
ble images among the 50 highest ranked results. Only two 
images are missing. To find them, the other images found are 
used for querying. With only two additional queries all 14 
images are successfully retrieved, resulting in the optimized 
query: 

( 
fv_mean:4833#40 
fv_wavelet:4839#5 
fv_wavelet:4843#5 
)#42 

Search for Image Series 6(a) 

 The second task is trivial, as the wavelet feature is almost 
perfect to solve it: 

fv_wavelet:6424#10 

Search for Image Series 6(c) 

 Similar to the previous one this image series is easily 
found by a single feature: 

fv_stochastic:6431#37 

 Yet, some of the false positives can be removed by defin-
ing some NOT terms cutting away some of the unwanted 
content. Three NOT clauses already suffice to narrow down 
the result set from 37 to 21 images. Notably the last clause 
needs to be restricted to a total of 600 images. Otherwise this 
term would contain a relevant image and thus cut it away. 
The others default to a maximum of 1000 hits: 

( 

fv_stochastic:6431#37 

-fv_wavelet:4280#1000 

-fv_mean:4345#1000 

-fv_wavelet:5461#600 

)#21 

Search for Image Series 6(d) 

 This one is the first challenging task. For this reason, all 
search iterations are described. The four available features all 
return some relevant images but they differ. In the first itera-
tion, the user gets in 7 different hits in total: 

fv_mean:6444 3 hits 

fv_stochastic:6444 4 hits 

fv_stoch_quad:6444 4 hits 

fv_wavelet:6444 3 hits 

 Because the Wavelet feature does not add much new con-
tent the three other features are combined by SHOULD 
clause. The result is promising and contains 12 hits. Com-
pared to the previous simple queries 6 new images are re-
trieved. In this series only 5 other images are missing: 

fv_mean:6444 

fv_stochastic:6444 

fv_stoch_quad:6444 

 Playing around a bit with NOT clauses reveals more im-
ages. This simple addition already caused a 15th image to 
appear: 

Table 3. Single Features Similarity, Similarity for the 50
th

 Rank 

 

5(a) 6(a) 6(c) 6(d) 6(e) 6(f) 6(g)  

       

RGB Mean 0.9939 0.9997 0.9992 0.9997 0.9975 0.9992 0.9992 

Histogram 0.9936 0.9837 0.9862 0.9972 0.9947 0.9971 0.9926 

Spatial Histogram 0.9943 0.9877 0.9880 0.9951 0.9969 0.9834 0.9937 

Wavelet 0.7190 0.7044 0.7809 0.7569 0.7094 0.7626 0.7951 
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fv_mean:6444 
fv_stochastic:6444 
fv_stoch_quad:6444 
-fv_wavelet:1476#1000 

 Some exhaustive testing with lengthy queries finally re-
vealed all 17 relevant images. Each NOT clause is first 
checked for positive hits. If it contains some irrelevant im-
ages and no relevant one, it is simply added to the query. The 
new query should now generate fewer results and still con-
tain all previous relevant images. Else, the NOT clause is 
simply cut down to a smaller size: 

fv_mean:6444 fv_stochastic:6444 
fv_stoch_quad:6444 
-fv_wavelet:1476 -fv_wavelet:2753#50 
-fv_stochastic:2765#200 
-fv_wavelet:2003#800 
-fv_stochastic:5154#400 
-fv_mean:2588#500 

 Based on the retrieved images each feature is tested with 
the other images for query. In this case a combination of 
three SHOULD-clauses proves to be highly efficient. Among 
the 17 hits only two false positives are contained. The opti-
mized and reasonably compact query retrieves all 17 target 
images within 19 hits: 

( 
fv_wavelet:6460@0.75 
fv_wavelet:6457@0.7 
fv_stoch_quad:6444@0.995 
)#19 

Search for Image Series 6(e) 

 Again this task is very easily solved by a single feature, 
but further optimization is possible. All 8 images are already 
among the first 50 results. Taking another image for query-
ing shows that the 7 other images of the series are very 
closely related. The Wavelet feature easily retrieves all of the 
required images with a perfect precision. Only the initial 
query image cannot be found again without big effort. To get 
the perfect result set, the Wavelet feature is used to find the 7 
closely related images and the single one is directly retrieved 
by id. If there would be more images similar, a feature 
should be used instead: 

(id:6461 fv_wavelet:6466@0.75)#8 

Search for Image Series 6(f) 

 Here the best result to start with is achieved by the Spa-
tial Histogram. The first 3 relevant hits are in good ranks. 
The other images are too dark to be retrieved directly and the 
next relevant image appears at rank 390. Assuming that the 
user is persistent, he might have tracked the missing image 
and find its ID. Based on this ID the remaining images are 
very easily found by a single feature, in this case the Wave-
let. Having this information at hand, the final query is short 
and concise. The precision is also very good and all 9 rele-
vant images are contained in a result of only 10 hits. 

( 

fv_wavelet:6469@0.8 

fv_wavelet:6472 

)#10 

Search for Image Series 6(g) 

 The final retrieval task completely failed with the avail-
able features. As already visible in the previous section, none 
was able to find a single relevant image. An analysis of the 
result set showed that the best ranked image was by RGB 
Mean at position 800. The other features performed even 
worse. 

User Survey 

 The survey was carried out with 5 volunteers aged be-
tween 20 and 40 years old. A questionnaire indicates that all 
of them were experienced computer users. Their expertise in 
digital photography and image processing was mostly 
slightly below average. A remarkable result is that all of 
them were very comfortable with Internet search engines, 
about average with local search engines and had almost no 
experience with CBIR engines. It was further revealed in the 
questionnaire, that no one has a very specific knowledge of 
any of the images stored in the repository. Only a single per-
son declared that he knows more than average from China. 
These preconditions are quite useful, because it is not very 
likely that all of the testers succeed by only using the key-
word search. 

 After a short training time, most testers were able to use 
both textual and content aspects in their queries. Mostly 
understandable features (colour mean, histogram) were used 
in combination with the query image IDs and the wavelet 
plug-in was often ignored. The simple rgb mean with its 3 
values was a preferred feature. In some cases even the 
detailed histogram specification was tried out. As it was not 
allowed to draw query images, a popular approach was the 
use of random images to start with. 

 Most tasks were solved by the testers within less than 10 
query iterations, but in some cases the available information 
and tools were not sufficient to ensure a quick success. The 
testers requested additional tools for query-by-sketch and 
complex feature composing. 

Tasks 

 This section briefly describes the different approaches the 
testers chose. Except from single constellations, the testers 
succeeded in most tasks. Sometimes the search engine re-
turned unexpected results. The testers learned the basic syn-
tax very quickly. 

 The first two subtasks were solved by all testers in a sin-
gle attempt. Interestingly some users chose the natural lan-
guage and others chose to type in the appropriate RGB val-
ues. The remaining tasks were difficult without the ability to 
submit a query image. Some testers endeavoured to find 
suitable images by keywords, but failed because of missing 
annotation. Finally the random search combined with the 
Spatial Histogram was the most used approach. 

 The “stop” sign was nearly almost found immediately by 
a keyword search containing “stop” or “sign”. One tester 
chose to use the RGB Mean in combination with the chang-
ing keywords “beijing”, “china”, and finally “sign”. He suc-
ceeded after he set the keyword clause mandatory. Finding 
the second image, a lotus pond, turned out to be very chal-
lenging. The query with the RGB Mean to find green images 
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returned hundreds of green images with the target image at 
rank 457. No one attempted to browse the results to this 
point. One person tried to filter out irrelevant images by 
keyword, but the annotation was simply too sparse. Only the 
hint that it might be a plant from china helped the testers to 
succeed very quickly. The “great crested grebe” was found 
very quickly. Either the testers knew the bird or they found it 
by a random search followed by a direct keyword search. 

 The “oyster catcher” series was found by either random 
search or the RGB Mean to find green images in combina-
tion with the folder name to narrow down the search space. 
Finding the cathedral from different angles took a long time. 
Using the RGB Mean to find the brownish building with the 
blue sky did not succeed, but sometimes it was helpful to 
find out the city’s name faster than by random search. Hav-
ing pinpointed a single image, it was used for relatively suc-
cessful CBIR queries. 

 At task 4, everybody had an immediate success in finding 
the Great Wall of China by entering the correct keywords. 
The next subtask of finding images of a desert turned out to 
be more difficult. When entering the keywords a simple “de-
sert” was not enough. One tester made use of wild cards and 
found all relevant images. Some other ones tried to find the 
images by RGB Mean and the parameter “yellow”, which 
not immediately returns correct results. One user tried to 
alter the RGB parameters manually. After a few queries all 
of the users found the useful keyword “Dubai”. To find city 
images, three users simply typed “city” and found the “for-
bidden city”. Based on these images they either used differ-
ent features with an adequate query image or they used the 
keyword “beijing”. The other two testers exploited their pre-
vious results. One chose the keyword “dubai” and the other 
one picked some images for pure CBIR queries. 

 The last task turned out to be the most challenging one. 
Because no one knew any of the birds, there was no indica-
tion on how to begin. The favourite solution in all three cases 
was to start with a random search. Based on images with a 
promising content the testers massively used the CBIR fea-
tures. With some luck the correct bird appeared in a result set 
and the name could be verified. Sometimes the result set 
reduction by NOT clauses was helpful. A captivating way to 
success was chosen by two users. Instead of giving up at this 
point, they used an external program to determine the mean 
colour values of the desired images and used them in a well 
directed RGB Mean query. 

Tester Comments 

 The most wanted addition was tool support for query-by-
sketch or to upload example images. Also the keyword qual-
ity was often criticized. They were often far too specific or 
too general to be of real use. 

 In general the query language was accepted due to the 
prototype status of the system. However, the wish for a more 
comfortable user interface was obvious. 

Observations 

 Throughout the tests it was observed that the searcher 
sometimes simply missed relevant images in the result set. In 
some cases the relevant image was already visible on the 
screen, but not noticed. 

 Concerning the available features, an aversion against the 
more complicated features is obvious. Actually only a single 
person used the Wavelet feature. Most testers preferred the 
RGB Mean for simple tasks and the Histogram for more 
complex ones. The offer with the natural language in the 
RGB Mean feature was generally accepted. In two cases, the 
testers opened an external program to determine the exact 
mean values of an example query image. Only two persons 
attempted to enter the 12 rather cryptic values for the Histo-
gram. 

 The boost parameter was only used by a single person. 
The other parameters for result set restriction were not even 
tried out. This could be explained by the fact, that in most 
cases, the basic functionality was sufficient. Only the opti-
mization task required its use, but the testers were hardly 
motivated to optimize their results further. 

DISCUSSION 

Language Features 

 The language presented in this paper represents the mid-
dleware of the previously described retrieval framework 
(Pein ICCS 2007) [17]. It is easily parseable and allows 
composition of any query that is supported by the frame-
work. New feature plug-ins extend the language automati-
cally by adding a new field. Currently the language does not 
inherently support high-level concepts. A plug-in for seman-
tics could surely be implemented with some effort by col-
lecting predefined queries with low-level features. 

 FOQL appears to be too complex and thus unsuitable for 
untrained users. Nevertheless many concepts like Fuzzy-
Booleans and Fuzzy-Sets are valuable. It is possible to add 
any kind of feature by defining an appropriate method for 
object comparison. Due to its complexity and sorting ability 
the language is adequate in SQL like environments. 

 A closer view to OQUEL reveals some interesting fea-
tures. The language itself has been designed to be easy to 
use. Users only need to specify the desired features in simple 
words (e.g. ”people in centre”)(Town IVC 2004) [12]. It is 
very close to a natural language, however the ambiguity of 
these requires additional attention and a well designed ontol-
ogy. Concepts of this language help creating a convenient 
user interface. 

Single Feature Test Cases 

 The results in Table 2 may seem confusing at the first 
glance. The performance of most queries is very poor. 

 One reason is that there are many images in the reposi-
tory which are actually really similar to the queries but 
which are not contained in the related set for evaluation. If 
the query results would be judged by humans by asking 
which results are acceptable, they would often perform much 
better. 

 It is remarkable that the simplest feature of all, the RGB 
mean proves to be very efficient in some cases where more 
detailed ones completely failed. In return the similarity val-
ues always remain on a very high level (Table 3) leaving not 
much space to avoid false positives. 
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Queries 

Query 5(a) 

 Starting with the cattle, this image series contains several 
different images compared to the query image. The only ad-
vantage is, that the repository does not contain other images 
with semantically similar content. From an algorithmic point 
of view the changes of the background are challenging. 
Sometimes there is blue water visible and sometimes not. 
Interestingly the RGB Mean performs very well. The impact 
of the blue water is too small to cause trouble. Also the 
amount of this brownish shade of red seems to be not too 
prominent in the database. 

 The Spatial Histogram is very weak in this case. Only 
very few images of the relevant part are actually composed 
similarly. While three quarters on the left side are dominated 
by the animal, the right margin is dominated by water. Yet 
many greenish or brownish images with a brindled texture 
have been retrieved. The impact of colours should have been 
higher. 

Query 6(a) 

 In this case the Wavelet can play out its strengths. Every 
single image has been found, even if the lighting and the 
waves on the water changed. The feature vector seems to be 
very robust against these changes. The Histogram also per-
formed very well, but it missed out the image with the 
strongest change in lighting. The two other features seem to 
have stumbled over the lack of difference in the similarity. 
Both ranked other images way too high. This query is not 
very specific about the bird in the center. Instead, most of the 
image is featureless background showing a water surface. 
Taking the Spatial Histogram, about 40 results in the first 50 
hits actually show birds surrounded by water. 

Query 6(c) 

 Here three of the four feature vectors were obviously 
suitable. They are very robust against the slight changes in 
the images. Especially the Histogram feature was able to find 
all relevant images. The only feature with not a single hit is 
again the Spatial Histogram. Most of the retrieved results 
contain much blue and a darker, brownish central part. Again 
the ranking is blinded by the other possible matches. The 
modifications in the image composition seem to be too 
strong to be caught. 

Query 6(d) 

 At this point the retrieval gets wrong with all four fea-
tures even if each one is able to find some of the related im-
ages. Each feature actually finds different images of the tar-
geted ones. For the Spatial Histogram the shifting perspec-
tive remains the main problem. In general the image colours 
from many images are similar. 

Query 6(e) 

 The bird sitting in the green grass is a very captivating 
query. The image is dominated by the grass and with a closer 
look the grass pattern of the query image is indeed different 
from the other ones. Taking this into account it is not very 
surprising that features focusing on the spatial information 
fail. In this case the Wavelet feature is the only one with no 
results. The RGB Mean obviously benefits from the fact that 

most images contain different shades of green. If another 
image of the series is selected for query, all features are ca-
pable of retrieving most images correctly. 

Query 6(f) 

 This series again contains two differently illuminated sub 
series. In the query one of the lighter set is used. Under those 
conditions the most detailed features Spatial Histogram and 
Wavelet are at least able to pick the correct sub series. The 
two simpler features fail because they rank too many wrong 
images too high. In this case a feature robust to the change of 
lighting seems to be appropriate. 

Query 6(g) 

 The last query is indeed very challenging. None of the 
feature plug-ins was able to find even a single match of the 
series (Fig. 7). In the human perception these three images 
are actually quite similar, but the implemented features ob-
viously did not capture the relevant information to achieve 
good ranking results. 

 

 

 

 

 
Fig. (7). Meadow pipit series 6. 

 

Conclusion 

 The analysis of the different features acknowledges that 
each feature vector has certain strengths and weaknesses. 

 The remarkably good performance of the RGB Mean in 
special cases is surprising. At least it is very robust against 
several changes in the image composition as long as the col-
our does not change very much. Of course this feature gets 
very weak as soon as there are other images with similar 
colours. 

 The lighting of the scene has a visible impact on the re-
trieval. Under these circumstances a feature with a high ro-
bustness against it is required. It should be based on shapes 
or maybe also wavelets without colour information. Con-
ceivably also a region based approach would be beneficial in 
many cases. 

Multi Feature Language 

 Testing the multi feature ability revealed many advan-
tages compared to the single feature search. Nevertheless 
there is still much work to do. 

 Using the query language with boolean clauses some-
times helps to improve the result. Especially searching for 
the third bird series (Fig. (6d)) was much more efficient by 
using three SHOULD clauses with different features. Of 
course the following optimisation effort by adding several 
NOT clauses does not seem to be very realistic in daily use, 
but it showed that a directed filtering may indeed help. It 
needs to be pointed out that it is advisable to use different 
features for NOT clauses to avoid that correct hits are re-
moved. 
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 Another issue when combining two features is the 
discrepancy of similarities. The normalisation to a the range 
from 0.0 to 1.0 is only part of the solution. In addition the 
calculation needs to be calibrated to be efficient. Some fea-
tures return many results with a similarity above 0.99 (espe-
cially RGB Mean), while others have a much lower similar-
ity even for images from the same set. The Wavelet imple-
mentation often returned similarities of about 0.75. Merging 
the two subsets is very inefficient because the less distinctive 
features are dominant. Altering the boost for single terms can 
be used as a workaround to reduce the problem. 

 The effort of constructing a well performing query may 
be too high in many retrieval scenarios if the user only wants 
to find a certain image. In other scenarios, the optimised 
query can be seen as some kind of classificator for a certain 
type of images. 

Retrieval Hints 

 Using the advanced capabilities of the query language 
requires deeper understanding and some experience with the 
underlying ranking system. For this prototype some default 
techniques should be used. 

 If a fuzzy retrieval is performed, the clauses in a  boolean 
query should be used normally, i.e. they are best joined by 
SHOULD. This ensures that no relevant document is cut 
away from the result set. 

 Having a more specific query with a high separability 
between hit and miss, the MUST clause is helpful to effi-
ciently restrict search space. 

 Finally the MUST NOT clause needs to be used care-
fully. It is useful for removing a certain image series com-
pletely from the result set, if it is annotated and the wanted 
results are not. Using it for a fuzzy search term may be dan-
gerous, because all of the documents contained in the sub 
result are removed. In this case the size of the MUST NOT 
clause should be restricted by appropriate parameters. 

Recommended Tools 

 Optimising queries is already possible with the current 
user interface but it is a tedious task. Some additional tools 
seem to be beneficial. 

 It should be possible to mark all desired images. Then the 
engine may check whether single documents are missing 
when performing a refined query. Especially when adding 
MUST and MUST NOT terms, a warning message could be 
generated. 

 Especially for MUST NOT clauses it might be helpful to 
see a preview which documents are going to be filtered out. 
This helps to tune the restriction parameters and to control 
the size of the filtered out documents. 

 In a productive environment the similarity could be 
spread by a power-law function analogous to the gamma 
correction known from image processing. Based on a set of 
reference images the parameters could be tuned to achieve a 
sound calibration. 

User Survey 

 In general the testers behaved as expected and solved the 
tasks. Additional knowledge of certain image content (e.g. 

bird names) sometimes sped up the retrieval drastically. 
Where no or insufficient annotation was available, the search 
took much longer. 

 Some of the main critics were actually intentionally built 
into the repository. Especially the demand for better key-
words clearly shows that a sound annotation is a very impor-
tant factor for retrieval systems. Extending the current key-
word search to a more powerful semantic environment like 
topic maps could boost the quality. An internal substitution 
mechanism of very specific words to more general ones 
could be the first step. 

 What needs to be done as soon as possible is to create a 
simple user interface where queries can be easily composed 
and images can be uploaded. Also an integrated drawing tool 
seems to be beneficial. Especially the features which are 
difficult to understand could profit by a stronger integration 
and by hiding the complexity. 

 Further the testers had almost no problems in understand-
ing the query language and the boolean operators. During the 
first testing sessions a small bug in the ranking system 
caused strange effects. Fortunately a simple workaround in 
the query was enough to avoid serious problems and the bug 
could be fixed soon. The three different operators MUST, 
SHOULD and MUSTNOT were accepted by all testers. 

 All testers are quite professional computer users and have 
some experience in searching. But no one had experienced a 
CBIR system before and the user interface was very basic. 
Keeping that in mind, this is still a remarkable success for 
the query language. 

Addendum 

 At the time of the main survey, the user interface only 
consisted of a simple HTML web page. Queries had to be 
typed manually into a single text field. Many problems were 
caused by syntax errors. In the beginning, it usually took a 
couple of attempts to formulate a valid query. After a while, 
they got accustomed to the language and were able to create 
more complex ones. This quick learning was surely affected 
by the fact that most testers were used to programming lan-
guages. 

 In the current prototype, a visual query composer has 
been added. For evaluation purposes, a testing person with 
no programming experience performed the same survey with 
the new interface. Due to the fact, that there was only a sin-
gle tester, this second survey was absolutely non-
representative. Nonetheless, it indicated, that the visual com-
poser can be a helpful tool. The tester clearly preferred the 
visual composer to the plain text field but still understood the 
language itself. The new functionality to specify an external 
query image was considered helpful. In one case, the drawn 
query (Fig. (8b)) was good enough to retrieve the requested 
image (Fig. (8a)) at the first position. 

CONCLUSION 

Achievements  

 The proposed query language has a simple structure and 
is very similar to a full text search engine while also allow-
ing fuzzy terms. Further it is easily extensible and allows 
arbitrary constructs for individual features. Complex queries 
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are possible but not necessary, giving experts the chance to 
fine tune all parameters as required. Normal users could ei-
ther enter simple queries or generate them with a graphical 
user interface. 

 

 

 

 

 

 

Fig. (8). Query-by-example. 

 
 One interesting feature of boolean queries is the ability to 
reduce the search space. Setting the occurrences of the 
clauses restrictively, it provides a way to cut the retrieval 
time drastically, even if the CBIR terms require a linear scan. 

 Further the language can be easily mapped to machine 
readable formats like objects or XML.  

Problems Remaining  

 Providing a basic parser like JSON only simplifies the 
low-level query information. To support higher abstractions 
it is necessary to fully understand the feature itself, which is 
impossible for a generic language. For this reason, keeping 
the language simple is the task of the feature developers. 
They need to design appropriate sub languages which con-
tain all feature specific information and remain as readable 
as possible. 

 Another issue is the naming of feature vector based 
fields. Currently the prototype compares each field name in 
the query with the list of available feature plug-in identifiers. 
If the field name does not match a feature identifier, the term 
is handled by the underlying Lucene engine, executing a 
“classical” full text search on the field. Otherwise the term is 
forwarded to the corresponding feature plug-in. Having over-
lapping feature identifiers, basic search fields could be hid-
den. It is necessary to formulate naming conventions like 
reserved words or a prefix for each feature identifier. 

Future Work  

 Unlike FOQL/SQL the language does not support user 
defined sorting like ORDER BY but sorts results by an over-
all similarity. It is to decide whether this extension is rele-
vant for retrieval issues or not. 

 Depending on the combining functions and feature vec-
tors used, query processing can be sped up drastically. A 
heuristic approach to query optimizing has been evaluated by 
Ramakrishna (Ramakrishna ADC 2002) [15]. 

 The currently implemented indexing structures for the 
plug-ins are merely a proof-of-concept. A set of generic in-
dexing structures (such as for multidimensional vectors) is 
planned to support standard types of features directly. 

 Another crucial topic is the merging strategies. Espe-
cially for iterative search, additional work needs to be done. 
Until now, the engine always returns the optimal result by 
checking all features and keeping the whole result in the 

memory. An approach to get page-wise additional results as 
requested is planned. 

 The query language proposed in this article does not yet 
support query-by-example directly. This requires to encode 
pixel images in a string, which may be done by mime encod-
ing. 

 The support of high-level concepts is not realized yet. 
This could be a feature of the language itself by introducing 
constructs like define in FOQL which substitute certain 
terms by a pre-defined low level term. Alternatively the re-
trieval engine itself could be extended by high-level plug-ins 
which map semantics to predefined low level requests. De-
veloping such feature plug-ins is a very complex task. A lot 
of testing is required to capture meaningful feature vectors 
information which represents semantics. 
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