
 The Open Information Systems Journal, 2009, 3, 81-97 81

 1874-1339/09 2009 Bentham Open

Open Access

An Extensible Query Language for Content Based Image Retrieval

Raoul Pascal Pein*,1,2, Zhongyu Lu1 and Wolfgang Renz2

1
Department of Informatics, School of Computing and Engineering, University of Huddersfield, Queensgate,

Huddersfield HD1 3DH, UK

2
Multimedia Systems Laboratory (MMLab), Faculty of Engineering and Computer Science, Hamburg University of

Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany

Abstract: One of the most important bits of every search engine is the query interface. Complex interfaces may cause us-

ers to struggle in learning the handling. An example is the query language SQL. It is really powerful, but usually remains

hidden to the common user. On the other hand the usage of current languages for Internet search engines is very simple

and straightforward. Even beginners are able to find relevant documents.

This paper presents a hybrid query language suitable for both image and text retrieval. It is very similar to those of a full

text search engine but also includes some extensions required for content based image retrieval. The language is extensi-

ble to cover arbitrary feature vectors and handle fuzzy queries.

INTRODUCTION

 After several years of research the idea of content based
image retrieval (CBIR) (Eakins JISCTAP 1999) [1] (Renz
OTDGI 2000) [2] is still not established in daily life. Cur-
rently most effort in CBIR is put into closing the semantic
gap between simple visual features and the real image se-
mantics. The work done in this area is very important to al-
low untrained users to work with image retrieval systems. A
survey about such systems is available from Liu (Liu PR
2007) [3]. None of the systems analysed there is really capa-
ble of closing the gap completely. Either the solutions are far
too specific or require much human attention. The most im-
portant open tasks identified are ”query-language design,
integration of image retrieval with database management
system, high-dimensional image feature indexing” and ”in-
tegration of salient low-level feature extraction, effective
learning of high-level semantics, friendly user interface, and
efficient indexing tool” (Liu PR 2007) [3].

 The cross-language image retrieval campaign Image-
CLEF (Clough AMIR 2006) [4] (Clough EMMIR 2007) [5]
aims to evaluate different approaches of text and content
based retrieval methods. The focus is set on a (natural) lan-
guage independent solution for image retrieval, which ex-
ploits both textual annotations as well as visual features. This
effort also shows quite clearly the need for a powerful image
retrieval system.

 This paper introduces one approach to solve some of the
claims stated above. It describes a query language which is
designed to be reasonably user friendly and allows the inte-
gration of high-level semantics and low-level feature extrac-
tion in a single query.

 Taking a look at current full text retrieval engines, it re-
veals the main differences to CBIR engines. Image retrieval

*Address correspondence to this author at the Department of Informatics,

School of Computing and Engineering, University of Huddersfield, Queens-
gate, Huddersfield HD1 3DH, UK; E-mail: r.p.pein@hud.ac.uk

inevitably contains fuzzy aspects. A search based on image
features usually produces a list of results with decreasing
similarity. In contrast, a full text search can determine sepa-
rate hit and miss lists, even if some fuzziness is added by
language analysis (e.g. ignoring word endings).

 Such a language must tackle the tasks of synthesizing
simple result sets with fuzzy sets (Fagin PODS 1996) [6] as
well as keeping the final result in a maintainable size. The
latter requirement is important because every similarity
above 0.0 is somehow part of the hits.

 At the same time, query composing in CBIR environ-
ments is often much more difficult as there are no keywords
for low-level features. The query language presented in this
paper is rooted in the established area of text retrieval and is
extended by essential CBIR related additions.

RELATED WORK

 This section surveys some related research that are deal-
ing with query composing in information retrieval and using
different ways of describing content.

Query Language

 The Lucene Query Language (Apache Lucene ASF
2006) [7] is a full text retrieval language. The Lucene library
includes a parser which converts a query string into a query
object. This object represents all query details and the search
engine generates the result based on it. This language is not
suitable to handle fuzzy results out of the box, but provides a
simple and clear structure. It allows boolean and nested que-
ries as well as the definition of document fields. These fields
hold some meta information (i.e. title, content, author, etc ...)
and can be used to compose reasonably complex queries.

 With the development of object-oriented DBMS the
ODMG-93 (Cattell SIGMOD 1994) [8] standard emerged.
The OQL query language (Alashqur VLDB 1989) [9] has
been created. It combines SQL syntax with the OMG object
model. An interesting extension to this language is called

82 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

FOQL (Nepal ICDE 1999) [10]. This language extension
tries to capture fuzzy aspects which are required for CBIR
applications. The FOQL approach is to attach a set of match-
ing-methods to each stored objects. These methods are used
to match any two objects of the same kind in a specific way.
The resulting similarity is somewhere between 0.0 (no simi-
larity) and 1.0 (identity). The newly introduced data type is
called Fuzzy-Boolean. In addition, the result can be limited
by a threshold defining the minimum similarity.

 Another query language is OQUEL (Town CBAIVL
2001) [11] (Town IVC 2004) [12] which is designed to be
user friendly. It is based on a simplified natural language and
an extensible ontology. The system extracts a syntax tree
from the query to retrieve images.

Data Description

 The feature vector paradigm states a plain list of several
float values to create a vector. But looking at any random
technique it reveals that features may be composed in many
different ways, e.g. containing probably complex data struc-
tures. These structures need to be mapped to the query lan-
guage.

 The language MPEG-7 (Martinez IEEEMM 2002) [13] is
rather a multimedia description than a query language. It is
an emerging standard used in multimedia archives, often
containing high level semantic information. Using an XML
based language for typed queries appears to be very unhandy
and overly complex.

 A possible alternative is the minimalistic approach in
JSON. This sub set of JavaScript is an important part of the
current Ajax technology. JSON is intended to be a simple
data interchange format with minimal overhead.

METHODOLOGY

 The proposed query language is based on the Lucene
Query Parser (Apache Lucene ASF 2006) [7] which defines
a common language for full text search. It is intentionally
chosen to provide beginners with a simple and familiar syn-
tax. The language allows queries similar to those used in
traditional search engines and the parser is generated by
JavaCC.

 This approach tries to merge the design principles of dif-
ferent languages. Some are like OQUEL (Town CBAIVL
2001) [11] where queries are kept as simple and natural as
possible. Others like SQL define a strict grammar to be
highly machine readable.

 There are two changes made to the Lucene grammar to
fit the requirements of an extensible feature vector based
query language: fuzzy related operators and a nested two-
layer grammar.

 The previous boost parameter for terms has been ex-
tended to multiple TermParams allowing additional control
of fuzzy result sets. To provide a high extensibility the
grammar is split into two different layers.

 The basic layer is parsed and interpreted by the search
engine directly. Here the grammar is predefined and fixed.
Users may specify which meta information should be
searched for by using fields. Images hold other fields than

normal text documents, typically EXIF and IPTC informa-
tion. In the near future, this information may be replaced by
the XML based XMP (Riecks IPTC 2005) [14]. Addition-
ally, a CBIR environment provides one or multiple feature
vectors holding low-level information about the pixels.
These feature vectors can be added by plug-ins, each one
having a unique identifier which is the field name for content
based queries. The difficulty now lies in specifying how the
query feature vector is entered. There are at least three dif-
ferent ways possible:

• ID of an image stored in the repository

• URI of a query image

• specification of the feature vector itself

 The simplest way is to use an existing image for a query
(query-by-example). Images already in the repository have
the prepared feature vector available. Specifying the URI of
an image requires the engine to load the image and to extract
the feature vector. The most advanced and complicated way
is to let the user specify a feature vector in detail.

 As a custom feature vector may contain any kind of pro-
prietary data, offering an all-embracing language is not pos-
sible. Thus a second layer is added to the query language. A
Term may contain the string <FEATURE START> [<FEA-
TURE CONTENT>] <FEATURE END>. The parenthesized
part <FEATURE CONTENT> is extracted by the search
engine and passed to the responsible plug-in. The plug-in is
fully responsible for parsing and interpreting this string to
return the object representation of the feature vector.

Grammar

Conjunction ::= [<AND> | <OR>]
Modifiers ::= [<PLUS> | <MINUS> | <NOT>]
Query ::= (Conjunction Modifiers Clause)*
Clause ::=
[LOOKAHEAD(2)
(<TERM> <COLON> | <STAR> <COLON>)
]
(Term | <LPAREN> Query <RPAREN>
[TermParams])

Term ::=
(
(<TERM> | <STAR> | <PREFIXTERM> |
<WILDTERM> | <NUMBER> | <URI>)
[<FUZZY_SLOP>]
[TermParams [<FUZZY_SLOP>]]
| (<RANGEIN_START>
(<RANGEIN_GOOP>|<RANGEIN_QUOTED>)
[<RANGEIN_TO>]
(<RANGEIN_GOOP>|<RANGEIN_QUOTED>)
<RANGEIN_END>)
[TermParams]
| (<RANGEEX_START>
(<RANGEEX_GOOP>|<RANGEEX_QUOTED>)
[<RANGEEX_TO>]
(<RANGEEX_GOOP>|<RANGEEX_QUOTED>)
<RANGEEX_END>)
[TermParams]
|
(<FEATURE_START>

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 83

[<FEATURE_CONTENT>]
<FEATURE_END>)
[TermParams]
| <QUOTED>
[<FUZZY_SLOP>]
[TermParams]
)

TermParams ::=
(
<CARAT> boost (
([<HASH> maxCount] [<AT> threshold])
| ([<AT> threshold] [<HASH> maxCount])
)
| <HASH> maxCount (
([<CARAT> boost] [<AT> threshold])
| ([<AT> threshold] [<CARAT> boost])
)
| <AT> threshold (
([<CARAT> boost] [<HASH> maxCount])
| ([<HASH> maxCount] [<CARAT> boost])
)
)

Operators

 The main difficulty of combining sub results from a
CBIR system is the fuzzy nature of the results. Some simple
features with filtering character (e.g. keywords) deliver a
rather clean set of hits. But it is essential to have a a fuzzy
model for merging these with highly similarity based fea-
tures. Those results are usually a sorted list (Fagin PODS
1996) [6] (Ramakrishna ADC 2002) [15].

 The approach by Fagin (Fagin PODS 1996) [6] interprets
results as graded sets, which are lists sorted by similarity and
set characteristics. He uses the basic rules defined by Zadeh
(Zadeh WSPC 1996) [16]:

• Conjunction:
μA B(x) = min{μA(x), μB(x)} (AND)

• Disjunction:
μA B(x) = max{μA(x), μB(x)} (OR)

• Negation:
μ¬A(x) = 1 - μA(x) (NOT)

 The text retrieval concept of boosting single terms by any
float value is adapted to the extended engine. Before merg-
ing sub results, the similarities are boosted as specified to
shift the importance into the desired direction.

 An additional acknowledgement to the fuzzy nature is the
use of additional set operators to keep the results at a reason-
able size. The minimum similarity is a value between0.0 and
1.0 and forces the engine to drop all results below this simi-
larity threshold. As the efficiency of the threshold highly
depends on the available images and features, a maximum
size parameter limits the result to the specified size.

Plug-Ins

 The plug-in concept of the retrieval framework described
in (Pein ICCS 2007) [17] allows the definition of any new
feature. To make such a plug-in available in this language,
only a few requirements need to be met.

 The plug-in needs an identifier which is automatically
used as a term field. With this information it is already pos-
sible to formulate queries containing an example image (ei-
ther by internal id or URI).

 The tricky part is to develop syntax for user defined fea-
ture vector information embedded in a query. As features can
be arbitrarily complex, it is intended to support a simple de-
fault language like JSON. Otherwise the embedded data
string of a query is forwarded directly to the feature plug-in
where it needs to be converted into a valid feature object.

Wildcards and Ranges

 Wildcards and ranges can be used to express uncertainty
or to allow the search engine to be less strict during retrieval.
The meaning of those concepts depends on the described
feature. Some features may well benefit, but for others they
may not be required.

 In text retrieval, wildcards stand for letters in a word that
don’t have to match an explicit query. In the example case of
a RGB mean value, a wildcard can express, that a certain
colour channel does not need to be considered. For spatial
features it can be useful to define regions of interest as well
as regions of non-interest.

 Ranges are an intermediate concept between concrete
queries and wildcards. They are used to specify a certain
space where parameters can be matched. Searching for im-
ages with a creation time stamp is only feasible, if a range
can be specified. It is very unlikely that the searcher knows
the exact time, especially when it is extremely accurate (i.e.
milliseconds). In such a case, usually a time span is provided
(e.g. “between 03/06/08 and 10/06/08” or “within the last
week”). Analogous, image features such as the trivial RGB
mean could specify a tolerance range for each colour chan-
nel.

 Unfortunately, these definitely useful concepts cannot be
fully generalized. At this point, the plug-in developer needs
to decide how to address them. Taking the RGB means of an
image, the user could specify an array like ”[36, 255, *]”. In
this case the results should contain some red and dominant
green. The rate of blue does not matter at all. Putting some
more effort into the feature abstraction, a more convenient
query like ”some red and very much green”is also possible.
This lies in the responsibility of the plug-in developer.

Examples

 The following examples demonstrate the use of different
language constructs, where the ”keywords” field is the only
text based one.

1. IPTC keyword:
keywords:oystercatcher

2. external image, similarity at least 95%:
histogram:”file://query.jpg”@0.95

3. wavelet of three images by internal ID:
wavelet:(3960 3941 3948)

4. two histograms, maximum of 10 results each and the
first one boosted by 2.0:
histogram:3963#10^2.0 OR histogram:3960#10

84 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

5. spatial histogram without the 50 most similar images
to image 190:
spatial histo:5456 -histogram:190#50

6. mean colour with embedded feature and filtering
keyword:
rgb mean:($[200, 50, *]$) +keywords:car

 Example query 1 is a simple text based query based on
the IPTC meta information. It works exactly as every com-
mon full text retrieval. The field ‘keywords’ is derived di-
rectly from the IPTC data and other fields such as ‘title’,
‘author’ or ‘createdate’ are also available.

 More interesting in this context are queries allowing
CBIR relevant features. The fields are picked by the feature
identifier and processed in the plug-ins.

 Number 2 searches for similarities based on a histogram
plug-in that implements a feature proposed by Al-Omari and
Al-Jarrah (Al-Omari DKE 2005) [18]. An URI to an image
is specified which is used for query-by-example. The engine
loads the image and extracts the required query feature. The
final result is limited to images with at least 95% similarity.

 Query 3 calls the wavelet plug-in which is an implemen-
tation of a feature by Jacobs et al. (Jacobs ACS 1995) [19].
The query contains three internal image IDs. The engine
performs three parallel sub retrievals and merges the three
result lists by default with OR. Using the IDs shortens the
query string itself and allows the engine to load the prepared
feature vectors directly from the persistence. Because of the
fuzziness in CBIR it is not clear how many results are re-
turned when giving a similarity threshold. Dependent on the
quality of the feature implementation and the repository size,
many thousands of images could have a similarity above a
given threshold. This is usually a waste of resources because
users want the result to appear in the first few hits, say the
first result page.

 Query 4 presents the second way to keep the result size
tight. Here the result set of each term is cut off after a maxi-
mum of 10 results. This restricts the maximum result size to
10 + 10 = 20 images. Additionally the first term is boosted
by factor 2, giving it a higher weight than the second term.

 Having access to multiple feature plug-ins opens an
interesting new field to composing CBIR queries. Different
features often mean very different result sets. The NOT
modifier in query 5 shows an example how to remove un-
wanted content from the result. First the engine searches for
the feature spatial histo, which is a histogram with additional
information about spatial colour distribution (Pein IKE
2006) [20]. As this query might return several images which
do not correspond to the wanted context, a NOT term filters
out the 50 highest results similar to an unwanted result which
are hopefully very similar in the simpler histogram space.

 Finally the conjunction of the two different worlds is
done by example 6. The first term searches for the content
based rgb mean. The embedded part within the brackets is
interpreted by the simple rgb mean plug-in, where the three
values stand for red, green and blue. The desired values for
red and green are defined and the blue colour does not matter
at all. Because this low-level feature is far too simple for
efficient retrieval, a second term is specified. In this example

the keywords field is mandatory (AND) and has a filtering
effect. Only images containing the keyword ”car” are al-
lowed to be in the result.

System Design

 In order to test the new language in a meaningful context,
it has been attached to the previously developed CBIR proto-
type (Pein MT 2008) [21]. This program was lacking a flexi-
ble interface to process complex queries. It was only capable
of processing queries containing a set of weighted features.
Concepts such as boolean joins were impossible to formu-
late. Plus, the interface required the use of some proprietary
query objects. Adding a query language opened up a range
of new possibilities.

 Most retrieval systems follow a simple workflow cycle
(Fig. 1) (Pein CIT 2008) [22]. A successful retrieval is per-
formed as follows. Users submit a query to the engine to
trigger a search and receive a set of results. Those results
may be satisfying and the user finds the required informa-
tion. If not, the user may navigate through the results and
eventually refines the previous query to trigger a new search.
In this paper, the stages from the query to the results are ex-
amined in more detail (Fig. 2).

Fig. (1). Generic Retrieval Workflow (Pein CIT 2008) [22].

Fig. (2). Layers in the Retrieval Process.

 At a very high abstraction level, a simple retrieval system
receives a query from the user, parses it somehow to under-
stand the meaning, gathers the most relevant documents and
finally returns them. This workflow is very common and can
be offered by a generic framework, which simply offers all
the basic functionality required. Those framework compo-
nents do not have to be specialized. They only need to un-
derstand basic input and generate basic output. All the details
and optimizing are meant to be implemented in exchange-
able plug-ins.

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 85

IMPLEMENTATION

 The design proposed above has been implemented in
Java. The prototype uses a modified version of the original
Lucene Query Parser. The parser analyses an input string and
converts it into the corresponding Query object. Dependent
on the terms given, the Query is composed of different
clauses, such as an array of boolean clauses or may be even
nested.

 For the new parser, some amendments are required. A
block for additional term parameters and the encapsulation
of arbitrary strings have been added. In the current version,
the parser ignores everything between the opening brackets
“($” and the corresponding closing ones “$)”. This part of
the query is stored in a special sub query object as a simple
string. At a later stage, this string gets parsed by the corre-
sponding module to create an object instance, that can be
used for the partial retrieval itself.

Query Objects

 The retrieval software works internally with well defined
query objects rather than a query string. This ensures that the
query can be easily processed and does not contain syntactic
errors.

 In the Lucene library, queries are composed of different
object types. The basic class is the abstract Query. It contains
a boost parameter and either a simple Term (TermQuery) or
a nested Query. A commonly used implementation of the
nested query is the BooleanQuery, which contains a list of
clauses. Each Clause instance wraps a query and an occur-
rence parameter (MUST, SHOULD, MUST NOT).

 The proposed query language requires a set of additional
classes to express the special needs of CBIR. Opposing to
normal terms, the new classes are able to store information
such as URLs, IDs or a FeatureVector instance. The latter

needs to create the feature information from the embedded
string. To achieve this, it calls the parsing method of the cor-
responding plug-in.

Parse Trees

 Based on the grammar, the parser generates a hierarchy
of sub queries wrapped up in a single root query object. By
traversing the tree, the sub results can be merged accord-
ingly. This section shows the decomposition on a relatively
complicated query. The images used in this example are part
of the Caltech-101 collection (Fergus CVPR 2003) [23].

(
 (
 histogram:"file://query.jpg" OR
 rgb_mean:($[200, 50, *]$)ˆ2.0
)@0.8
-wavelet:(89 244 345)@0.9
 +keywords:airplane
)#100

 Verbally, this query can be read as follows:

 “Find me images, that have a similar histogram as the
sample image query.jpg OR have a mean colour close to 200
red and 50 green. The blue channel can be anything. Rank
the mean colour twice as high as normal. Both sub results
should have at least a similarity value of 0.8. Please remove
any result, which has a minimum wavelet similarity of 0.9 to
the images 89, 244 and 345. Every result must be annotated
with the keyword airplane. Give me not more than 100 re-
sults in total.”

 After parsing, the query string is converted into a parse
tree that contains all of the relevant concepts (Fig. 3). The
root node is represented by a Query, which is the single data
object that is processed by the retrieval core. Each leaf is a
Term, representing a partial search, which generates a sub

Fig. (3). Parse Tree of a complex Query.

86 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

result. The tree structure in between represents the rules how
to merge the sub results into a final one.

 The search engine then traverses the tree and generates
the answer to this particular request. At this point, it is advis-
able to integrate a query optimizer to reduce the response
time. In the current prototype, some straightforward query
optimizing already takes place.

 First, the MUST clauses are processed, then the
SHOULD and finally the MUST NOT clauses. This allows
for an early reduction of the search space, which is especially
of importance, if no or only a slow index is available for
certain features. Depending on the availability of indexes,
certain other term could also be pre-drawn. The optimization
strategy should always be aimed at an early reduction of
search space as well as preferring the use of fast indexes.
The strategy used in this cases uses a strict definition of
MUST and MUST NOT. If an image is not part of all the
MUST clauses or part of a MUST NOT clause, it is removed
from the final result. This approach is considered to be a
useful trade-off between a perfect fuzzy algebra and speed
optimizations.

 In this case, the first term to be processed is “key-
words:airplane”. This triggers a keyword search, which is
backed by a fast and efficient index, resulting in a list of
matching images. As the parent BooleanClause is flagged as
MUST, the final results of the query can only be amongst
those sub results. Assuming, that only about 1% of the re-
pository is related to the keyword “airplane”, every subse-
quent linear search time can also be reduced to only 1% of
the otherwise total scan time.

 The second branch to be processed is the SHOULD
clause on the left, that is split into a nested boolean query.
One leaf contains a UrlTerm, pointing at an external query
image and requesting a comparison based on its histogram.
To process this part, the engine reads the image from the
URL and extracts the histogram automatically. This search
only needs to compare the query histogram with the stored
histograms from the previous sub result.

 The other leaf contains a FeatureVectorTerm. The string
embedded between the “($” “$)” brackets is parsed by the
rgb mean plug-in. In this case, the string stands for the three
mean colour values red (200), green (50) and blue (“don’t
care” wildcard) of an image. Again, the search space is dras-
tically reduced by the first sub result.

 After both terms have been processed, the sub results are
merged into a single one. Their combined similarity must be
at least 0.8, otherwise the image is removed from the result
set. There is no “best” rule to merge the sub results. In the
current prototype, the combined similarity is calculated by
determining the weighted and normalized sum of the sub
similarities. In this case, the rgb mean branch has a weight of
2.0 and thus gains a higher importance in the merged result.

 The last main branch is flagged as MUST NOT and re-
quires a minimum combined similarity of 0.9. All of the
three clauses contain a plain IdQuery with an IdTerm. They
require a retrieval on the wavelet feature and use sample
images from the repository by stating the image id directly.
Again, the search space is already limited, not only by the
MUST branch, but also by the SHOULD branch. It is only

necessary to check the images contained in the previously
retrieved sub result. The sub results of the middle branch are
merged accordingly and cropped at a minimum similarity of
0.9.

 To generate the final answer, the MUST NOT results are
removed from the temporary sub result. The last step re-
quired is to cut the sorted list after the 100 best hits.

Alternative Data Representation

 The string representation of a query can be manipulated
directly by users. This query string can be edited in every
basic text editor without the need for any extended user in-
terface. It also allows experienced users to access every as-
pect of the search engine directly.

 As the query language is based on the Lucene tool kit, it
always has an object representation of the whole query. This
query object could also be created by a suitable front end.
Such a tool eliminates parsing errors, because the query
structure would always be bound to the components.

XML

 The parse tree containing a query can be directly mapped
to an XML hierarchy. Plug-ins could also specify their fea-
ture conversion into XML and back to. This allows for con-
sistent XML files and simplifies the use of the MPEG-7.
Below, the XML structure matching the example parse tee is
shown:

<boolean-query max-count="100">

 <boolean-clause occur="SHOULD">

 <boolean-query threshold="0.8">

 <boolean-clause occur="SHOULD">

 <url-query>

 <url-term>

 <field>histogram</field>

 <url>file://query.jpg</url>

 </url-term>

 </url-query>

 </boolean-clause>

 <boolean-clause occur="SHOULD">

 <feature-vector-query boost="2.0">

 <feature-vector-term>

 <field>rgb_mean</field>

 <string-data>[200, 50, *]</string-data>

 <data>

 <red>200</red>

 <green>50</green>

 <blue>*</blue>

 </data>
 </feature-vector-term>

 </feature-vector-query>

 </boolean-clause>

 </boolean-query>

 </boolean-clause>

 <boolean-clause occur="MUST_NOT">

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 87

 <boolean-query threshold="0.9">

 <boolean-clause occur="SHOULD">

 <id-query>

 <id-term>

 <field>wavelet</field>

 <id>3960</id>

 </id-term>

 </id-query>

 </boolean-clause>
 <boolean-clause occur="SHOULD">

 <id-query>

 <id-term>

 <field>wavelet</field>

 <id>3941</id>

 </id-term>

 </id-query>

 </boolean-clause>

 <boolean-clause occur="SHOULD">

 <id-query>

 <id-term>

 <field>wavelet</field>
 <id>3948</id>

 </id-term>

 </id-query>

 </boolean-clause>

 </boolean-query>

 </boolean-clause>

 <boolean-clause occur="MUST">

 <term-query>

 <term>

 <field>keywords</field>
 <text>airplane</text>

 </term>

 </term-query>

 </boolean-clause>

</boolean-query>

 This XML data contains the same information as the ex-
ample query string. Clearly, this format is much more ver-
bose than the suggested query language. Being probably less
readable for humans, its advantage is the standardized for-
mat. The XML code does ot require a special parser to be
processed or validated by any program.

 One example of generic and specialized data representa-
tion is contained in the XML query above. The featurevec-
tor-term for the rgb mean plug-in shows two alternatives. In
the generic case, the string-data is left untouched. This is the
output generated by the main parser. To extract the real
meaning of the data string, it needs to be processed by the
corresponding plug-in. The resulting data tag would then
contain each piece of feature data separately.

<feature-vector-term>

 <field>rgb_mean</field>

 <string-data>

 [200, 50, *]

 </string-data>

 <data>

 <red>200</red>

 <green>50</green>

 <blue>*</blue>

 </data>
</feature-vector-term>

Visual Query

 A clearly structured query language like the proposed
one can optionally be mapped to a visual representation to
guide the user. The resulting graphical user interface helps to
assemble queries that are syntactically correct, displays
query images, provides a canvas for query-by-example and
may also support to adjust feature plug-in specific parame-
ters.

 Fig. (4) shows the visual query composer of the proto-
type, where the example query has been assembled from
multiple clauses. Every clause of the parse tree is modelled
by a window. Each clause window contains several options
to choose the occurrence, the added parameters, a field name
and the query type. Textual queries usually contain a generic
term with one ore multiple keywords.

 Queries for CBIR can manage a query URL, a specified
feature, the id to an existing image or a canvas to draw a
query image. Clause windows specifying a query image can
directly display a small preview image to provide feedback
what is going to be searched. Windows containing a feature
description can either show the data fields directly (e.g. red,
green, blue) or a convenient editor (e.g. a colour chooser).

TESTING

Language Features

 There are only a few query languages which try to tackle
the task of merging aspects of full text and CBIR retrieval.
These languages need to address the requirements of fuzzy
decisions between hit and miss. Above, several important
features are discussed. Below, some languages are checked
against them. Additionally, the proposed query language is
tested against some synthetic retrieval tasks to evaluate its
expressiveness in a reasonably realistic environment.

Test Repository

 The testing repository consists of 6480 images from three
different sources. Each source contains several photographs
with certain topics. The level of annotation for each source is
varying. As the images were from German sources, most
image annotation is in German.

 The first set of 415 images contains images from the cit-
ies of Dublin and Liverpool. There are many buildings and
bird views as well as scenes from a football stadium, without
any annotation. The only textual hints can be taken from the
file names and paths.

 The second set contains 5399 images and is by far the
largest part of the repository. Apart from 417 photographs
from a botanical garden and some large animals, the main
content is birds. Most images contain a bird in the centre part
and the background is dominated by water, grass or sky. Al-
most every photograph contains IPTC annotation with the
name of the depicted animal. Some keywords also denote the
location where the photograph was taken.

88 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

 In the third set there are 666 images from 4 different lo-
cations, Beijing, Shanghai, Dubai and the USA. The images
have an average of 3 keywords describing the location and
the content. Similar to the first set, most pictures show build-
ings or landscapes.

Single Feature Test Cases

 To assess the retrieval quality of single features, two im-
age series from the repository are chosen. In these series
there are several images with similar content as well as some
more difficult changes. Each feature plug-in is tested by tak-
ing some of the images and afterwards precision and recall
are determined on the results.

 The first testing set contains 14 closeup views from
Highland cattle (Fig. 5). The images are dominated by the
typical auburn fur and some water in the background. In hu-
man perception there are no other images with similar con-
tent in the repository.

 The second testing set containing 57 images of a meadow
pipit (Fig. 6) is much more challenging. More than 50 per-
cent of the repository images show birds. This image set
consists of 7 different sceneries. The feature vectors should
at least be able to find the images of the same series. As none
of the implemented feature vector plug-ins is capable of
identifying a small bird in the central part of images, it is
expected that all of them will get to serious issues to find
images depicting the same bird from another series.

 For testing some of the images from the image sets are
taken as query. For the first set only one image (Fig. (5a)) is
used, because of the relative high similarity within the set.
From the second set always the first image of each series is
chosen as query except from the single one (Fig. (6b)) are
used for the query. Sometimes the first image is obviously
not the best choice but these test cases try to capture real and
maybe unclear conditions.

Multi Feature Language Test Cases

 In this testing series it is attempted to create queries
which are more efficient than the simple queries from the
section above. To allow a “natural” progress of query com-
posing and refining, the IDs of the other related images are
treated as unknown. Each related ID needs to be present in a
previous result set in order to be used in the next query. Each
retrieval starts with the query image.

 A search by keywords would result in the correct small
subset of 14/57 images. Using CBIR on the remaining im-
ages would be pointless for testing. The impact of keywords
is examined in the user survey below.

 The basic search strategy is as follows: First the query
image is used with every basic single feature. Only the first
50 hits are browsed for found relevant images. Starting with
the best performing feature, the IDs of all relevant images
are used in new queries. Other images found are also used

Fig. (4). Visual query composer.

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 89

Fig. (5). Selected meadow pipit images.

Fig. (6). Cattle images.

for querying. If still some images are missing, the same pro-
cedure is repeated with the other available features. The
found images are then combined in a single query and opti-
mized for a high recall. In difficult cases the results are
browsed in depth and the approximate ranking of the related
images is determined.

 If other image series with a high similarity clutter the
results, it is attempted to filter them out with a NOT term.
The final query containing all targeted images is then cut to
the minimum size possible.

User Survey

 A first small-scale user survey has been carried out to
evaluate the language in the context of the related master
thesis (Pein MT 2008) [21]. For this survey, the same reposi-
tory as described above is used. It has been carried out with
5 testers with at least basic experience in computing sci-
ences. The testing prototype only offered a plain HTML
page with a single input line for textual queries. The visual
query composer was not available at that time.

 Each tester got a short introduction into the query lan-
guage and some technical basics of the different available
features. During the procedure the testers were allowed to

ask for further advice concerning the system abilities and
usage. It is important that the direct influence of the test su-
pervisor is kept as low as possible. He must not give direct
hints how to solve a task. The only support allowed is to
mention basic technical possibilities available or work-
arounds to avoid bugs.

Tasks

 The tasks demand both CBIR and keyword based ap-
proaches. The basic tasks were: retrieving images based on a
textual description or visual examples, tracking a given ex-
ample image, optimizing queries (high Precision/Recall) for
a specific content and ascertain the name of birds from given
images.

 The first task is starting simple to let the testers get used
to the search engine. First some blue images need to be
found. This could be easily done by using the RGB Mean
plug-in and the word “blue” or alternatively the

 RGB value [0,0,255]. The second subtask is basically the
same with “white” or [255,255,255]. The two remaining
subtasks are not trivial, because no query-by-sketch module
is available. The testers need to find examples directly from
the repository and then use them for querying. It is expected

90 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

that a random search produces a suitable query image and
that the Spatial Histogram feature or promising keywords are
used.

 The second task is to spot predefined images. All of them
have some keyword annotation. One image (a Chinese stop
sign) is very easy to find. The keywords “stop”, “sign” and
“china” all narrow down the search space drastically. Addi-
tionally a search for red content can be helpful. The other
images require to use less obvious keywords and maybe
CBIR. In one case, some background knowledge in ornithol-
ogy was beneficial. Testers knowing that a “great crested
grebe” was depicted, could find this image by keyword. Oth-
ers need to browse a bit more and do some CBIR.

 Task 3 is similar to the previous one. The difference is
that instead of a specific image, several similar images need
to be found. The first image was one of 441 “oystercatcher”
images in the repository. Knowing the name is already very
helpful, but from the remaining images the ones with the
highest similarity need to be found. A combination of key-
words and one of the CBIR features returns a nicely sorted
list. The second image was much harder to find. It shows a
brown cathedral, that has been photographed from several
different angles and distances. The keyword “liverpool” re-
duces the search space to 315 images. This city name could
be found by recognizing the building or by looking at the
keywords of random results.

 After having collected some experience with the system,
the testers are challenged to do some query optimizing in the
fourth task. The first subtask to find pictures of the Great

Wall of China was trivial when using the keywords. Alterna-
tively a CBIR query could be composed based on random
results. The second one requests images from a desert is
more difficult, because the real keyword was “sandy-desert”
(in German “Sandwüste” instead of the more general
“Wüste”) and requires the use of a wild card or the correctly
spelled keyword. Alternatively, the retrieval by yellow con-
tent or less specific keywords like “Dubai” lead to success.
The final sub task was to find city skylines. The search for
the “city” only returns pictures from the “forbidden city” in
Beijing. Here it is advisable to either use known city names
from the repository or by picking random images.

 The final task was a bit tricky. The testers are supplied
with a small image of a certain bird. Either they know the
name or they need to do some retrieval work. There are sev-
eral ways to find the images. This required some kind of
freestyle retrieval with no best solution or short cut (except
from knowing the bird names).

RESULTS

Language Features

 Table 1 compares some query languages and lists which
important requirements are met. Each language addresses all
of the fuzzy aspects. They only differ in “comfort functions”.
The language proposed here lacks a user-defined sorting and
the direct implementation of high-level concepts. FOQL is
very expressive, but is very verbose in comparison. OQUEL
is a very high-level language and its abilities ultimately de-
pend on the ontology used.

Table 1. Languages Compared

L

a
n

g
u

a
g

e

C
B

IR
 a

p
p

r
o

a
c
h

F
u

z
z
y

 B
o

o
le

a
n

M
in

 t
h

r
e
sh

o
ld

U
se

r
 d

e
fi

n
e
d

 s
o

r
ti

n
g

E
x

te
n

si
b

le
 (

fe
a

tu
r
e
s)

A
N

D
-O

R
-N

O
T

w
e
ig

h
ts

H
ig

h
-l

e
v

e
l

c
o

n
c
e
p

ts

U
se

r
 o

r
ie

n
te

d
 s

tr
u

c
tu

r
e

B
a

se
 l

a
n

g
u

a
g

e

This Y Y N Y Y Y N Y Lucene

FOQL Y Y Y Y Y Y Y N ODMG/OQL

OQUEL Y Y N N Y Y Y Y None/natural

Table 2. Single Features Recall, Recall for the First 50 Hits

5(a) 6(a) 6(c) 6(d) 6(e) 6(f) 6(g)

RGB Mean 0.85 0.0 0.83 0.13 1.0 0.0 0.0

Histogram 0.23 0.8 1.0 0.19 0.29 0.0 0.0

Spatial Histogram 0.0 0.0 0.0 0.19 0.14 0.13 0.0

Wavelet 0.23 1.0 0.83 0.13 0.0 0.25 0.0

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 91

Single Feature Test Cases

 The results of the testing is summarized in Tables 2 and
3.

 Table 2 shows the recall values for a result set of 50 im-
ages. This size is chosen because it is assumed that 50 results
are reasonably displayable at the same time. Sometimes a
couple of relevant images still show up in later positions, but
these may be already ignored by an impatient user (in fact,
the user survey revealed, that single hits are often overlooked
when scrolling quickly through the results). The query image
is always at the first position and is deducted from the recall.
A recall of 1.0 means that all expected images could be suc-
cessfully retrieved. The value 0.0 however indicates a com-
plete failure.

 Table 3 lists the similarity values of the 50th image in the
result. This value indicates how satisfactorily a feature is
capable to avoid a false positive. The more images gain a
high similarity, the more difficult it is to do the final ranking
in a right way. In the end, the similarity is simply an indica-
tor for the manner how the results should be sorted. The
quality itself is determined by the ranking.

Multi Feature Language Test Cases

 In this section a possible progress of query refining is
listed. Each query image from the tests above is used as ini-
tial query to find all the other ones from the related series. It
is aimed to gain the highest recall possible with the final
query. During optimization, usually the hard limitation of
images has been chosen (#) to indicate the final result set
size. In a repository that is assumed to be changing, it is rec-
ommended to use the more flexible similarity (@) restric-
tion. Otherwise, hits may be pushed out by new false posi-
tives.

Search for Image Series 5(a)

 The best results are achieved by using the simple RGB
mean feature. This query already returns 12 of the 14 possi-
ble images among the 50 highest ranked results. Only two
images are missing. To find them, the other images found are
used for querying. With only two additional queries all 14
images are successfully retrieved, resulting in the optimized
query:

(
fv_mean:4833#40
fv_wavelet:4839#5
fv_wavelet:4843#5
)#42

Search for Image Series 6(a)

 The second task is trivial, as the wavelet feature is almost
perfect to solve it:

fv_wavelet:6424#10

Search for Image Series 6(c)

 Similar to the previous one this image series is easily
found by a single feature:

fv_stochastic:6431#37

 Yet, some of the false positives can be removed by defin-
ing some NOT terms cutting away some of the unwanted
content. Three NOT clauses already suffice to narrow down
the result set from 37 to 21 images. Notably the last clause
needs to be restricted to a total of 600 images. Otherwise this
term would contain a relevant image and thus cut it away.
The others default to a maximum of 1000 hits:

(

fv_stochastic:6431#37

-fv_wavelet:4280#1000

-fv_mean:4345#1000

-fv_wavelet:5461#600

)#21

Search for Image Series 6(d)

 This one is the first challenging task. For this reason, all
search iterations are described. The four available features all
return some relevant images but they differ. In the first itera-
tion, the user gets in 7 different hits in total:

fv_mean:6444 3 hits

fv_stochastic:6444 4 hits

fv_stoch_quad:6444 4 hits

fv_wavelet:6444 3 hits

 Because the Wavelet feature does not add much new con-
tent the three other features are combined by SHOULD
clause. The result is promising and contains 12 hits. Com-
pared to the previous simple queries 6 new images are re-
trieved. In this series only 5 other images are missing:

fv_mean:6444

fv_stochastic:6444

fv_stoch_quad:6444

 Playing around a bit with NOT clauses reveals more im-
ages. This simple addition already caused a 15th image to
appear:

Table 3. Single Features Similarity, Similarity for the 50
th

 Rank

5(a) 6(a) 6(c) 6(d) 6(e) 6(f) 6(g)

RGB Mean 0.9939 0.9997 0.9992 0.9997 0.9975 0.9992 0.9992

Histogram 0.9936 0.9837 0.9862 0.9972 0.9947 0.9971 0.9926

Spatial Histogram 0.9943 0.9877 0.9880 0.9951 0.9969 0.9834 0.9937

Wavelet 0.7190 0.7044 0.7809 0.7569 0.7094 0.7626 0.7951

92 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

fv_mean:6444
fv_stochastic:6444
fv_stoch_quad:6444
-fv_wavelet:1476#1000

 Some exhaustive testing with lengthy queries finally re-
vealed all 17 relevant images. Each NOT clause is first
checked for positive hits. If it contains some irrelevant im-
ages and no relevant one, it is simply added to the query. The
new query should now generate fewer results and still con-
tain all previous relevant images. Else, the NOT clause is
simply cut down to a smaller size:

fv_mean:6444 fv_stochastic:6444
fv_stoch_quad:6444
-fv_wavelet:1476 -fv_wavelet:2753#50
-fv_stochastic:2765#200
-fv_wavelet:2003#800
-fv_stochastic:5154#400
-fv_mean:2588#500

 Based on the retrieved images each feature is tested with
the other images for query. In this case a combination of
three SHOULD-clauses proves to be highly efficient. Among
the 17 hits only two false positives are contained. The opti-
mized and reasonably compact query retrieves all 17 target
images within 19 hits:

(
fv_wavelet:6460@0.75
fv_wavelet:6457@0.7
fv_stoch_quad:6444@0.995
)#19

Search for Image Series 6(e)

 Again this task is very easily solved by a single feature,
but further optimization is possible. All 8 images are already
among the first 50 results. Taking another image for query-
ing shows that the 7 other images of the series are very
closely related. The Wavelet feature easily retrieves all of the
required images with a perfect precision. Only the initial
query image cannot be found again without big effort. To get
the perfect result set, the Wavelet feature is used to find the 7
closely related images and the single one is directly retrieved
by id. If there would be more images similar, a feature
should be used instead:

(id:6461 fv_wavelet:6466@0.75)#8

Search for Image Series 6(f)

 Here the best result to start with is achieved by the Spa-
tial Histogram. The first 3 relevant hits are in good ranks.
The other images are too dark to be retrieved directly and the
next relevant image appears at rank 390. Assuming that the
user is persistent, he might have tracked the missing image
and find its ID. Based on this ID the remaining images are
very easily found by a single feature, in this case the Wave-
let. Having this information at hand, the final query is short
and concise. The precision is also very good and all 9 rele-
vant images are contained in a result of only 10 hits.

(

fv_wavelet:6469@0.8

fv_wavelet:6472

)#10

Search for Image Series 6(g)

 The final retrieval task completely failed with the avail-
able features. As already visible in the previous section, none
was able to find a single relevant image. An analysis of the
result set showed that the best ranked image was by RGB
Mean at position 800. The other features performed even
worse.

User Survey

 The survey was carried out with 5 volunteers aged be-
tween 20 and 40 years old. A questionnaire indicates that all
of them were experienced computer users. Their expertise in
digital photography and image processing was mostly
slightly below average. A remarkable result is that all of
them were very comfortable with Internet search engines,
about average with local search engines and had almost no
experience with CBIR engines. It was further revealed in the
questionnaire, that no one has a very specific knowledge of
any of the images stored in the repository. Only a single per-
son declared that he knows more than average from China.
These preconditions are quite useful, because it is not very
likely that all of the testers succeed by only using the key-
word search.

 After a short training time, most testers were able to use
both textual and content aspects in their queries. Mostly
understandable features (colour mean, histogram) were used
in combination with the query image IDs and the wavelet
plug-in was often ignored. The simple rgb mean with its 3
values was a preferred feature. In some cases even the
detailed histogram specification was tried out. As it was not
allowed to draw query images, a popular approach was the
use of random images to start with.

 Most tasks were solved by the testers within less than 10
query iterations, but in some cases the available information
and tools were not sufficient to ensure a quick success. The
testers requested additional tools for query-by-sketch and
complex feature composing.

Tasks

 This section briefly describes the different approaches the
testers chose. Except from single constellations, the testers
succeeded in most tasks. Sometimes the search engine re-
turned unexpected results. The testers learned the basic syn-
tax very quickly.

 The first two subtasks were solved by all testers in a sin-
gle attempt. Interestingly some users chose the natural lan-
guage and others chose to type in the appropriate RGB val-
ues. The remaining tasks were difficult without the ability to
submit a query image. Some testers endeavoured to find
suitable images by keywords, but failed because of missing
annotation. Finally the random search combined with the
Spatial Histogram was the most used approach.

 The “stop” sign was nearly almost found immediately by
a keyword search containing “stop” or “sign”. One tester
chose to use the RGB Mean in combination with the chang-
ing keywords “beijing”, “china”, and finally “sign”. He suc-
ceeded after he set the keyword clause mandatory. Finding
the second image, a lotus pond, turned out to be very chal-
lenging. The query with the RGB Mean to find green images

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 93

returned hundreds of green images with the target image at
rank 457. No one attempted to browse the results to this
point. One person tried to filter out irrelevant images by
keyword, but the annotation was simply too sparse. Only the
hint that it might be a plant from china helped the testers to
succeed very quickly. The “great crested grebe” was found
very quickly. Either the testers knew the bird or they found it
by a random search followed by a direct keyword search.

 The “oyster catcher” series was found by either random
search or the RGB Mean to find green images in combina-
tion with the folder name to narrow down the search space.
Finding the cathedral from different angles took a long time.
Using the RGB Mean to find the brownish building with the
blue sky did not succeed, but sometimes it was helpful to
find out the city’s name faster than by random search. Hav-
ing pinpointed a single image, it was used for relatively suc-
cessful CBIR queries.

 At task 4, everybody had an immediate success in finding
the Great Wall of China by entering the correct keywords.
The next subtask of finding images of a desert turned out to
be more difficult. When entering the keywords a simple “de-
sert” was not enough. One tester made use of wild cards and
found all relevant images. Some other ones tried to find the
images by RGB Mean and the parameter “yellow”, which
not immediately returns correct results. One user tried to
alter the RGB parameters manually. After a few queries all
of the users found the useful keyword “Dubai”. To find city
images, three users simply typed “city” and found the “for-
bidden city”. Based on these images they either used differ-
ent features with an adequate query image or they used the
keyword “beijing”. The other two testers exploited their pre-
vious results. One chose the keyword “dubai” and the other
one picked some images for pure CBIR queries.

 The last task turned out to be the most challenging one.
Because no one knew any of the birds, there was no indica-
tion on how to begin. The favourite solution in all three cases
was to start with a random search. Based on images with a
promising content the testers massively used the CBIR fea-
tures. With some luck the correct bird appeared in a result set
and the name could be verified. Sometimes the result set
reduction by NOT clauses was helpful. A captivating way to
success was chosen by two users. Instead of giving up at this
point, they used an external program to determine the mean
colour values of the desired images and used them in a well
directed RGB Mean query.

Tester Comments

 The most wanted addition was tool support for query-by-
sketch or to upload example images. Also the keyword qual-
ity was often criticized. They were often far too specific or
too general to be of real use.

 In general the query language was accepted due to the
prototype status of the system. However, the wish for a more
comfortable user interface was obvious.

Observations

 Throughout the tests it was observed that the searcher
sometimes simply missed relevant images in the result set. In
some cases the relevant image was already visible on the
screen, but not noticed.

 Concerning the available features, an aversion against the
more complicated features is obvious. Actually only a single
person used the Wavelet feature. Most testers preferred the
RGB Mean for simple tasks and the Histogram for more
complex ones. The offer with the natural language in the
RGB Mean feature was generally accepted. In two cases, the
testers opened an external program to determine the exact
mean values of an example query image. Only two persons
attempted to enter the 12 rather cryptic values for the Histo-
gram.

 The boost parameter was only used by a single person.
The other parameters for result set restriction were not even
tried out. This could be explained by the fact, that in most
cases, the basic functionality was sufficient. Only the opti-
mization task required its use, but the testers were hardly
motivated to optimize their results further.

DISCUSSION

Language Features

 The language presented in this paper represents the mid-
dleware of the previously described retrieval framework
(Pein ICCS 2007) [17]. It is easily parseable and allows
composition of any query that is supported by the frame-
work. New feature plug-ins extend the language automati-
cally by adding a new field. Currently the language does not
inherently support high-level concepts. A plug-in for seman-
tics could surely be implemented with some effort by col-
lecting predefined queries with low-level features.

 FOQL appears to be too complex and thus unsuitable for
untrained users. Nevertheless many concepts like Fuzzy-
Booleans and Fuzzy-Sets are valuable. It is possible to add
any kind of feature by defining an appropriate method for
object comparison. Due to its complexity and sorting ability
the language is adequate in SQL like environments.

 A closer view to OQUEL reveals some interesting fea-
tures. The language itself has been designed to be easy to
use. Users only need to specify the desired features in simple
words (e.g. ”people in centre”)(Town IVC 2004) [12]. It is
very close to a natural language, however the ambiguity of
these requires additional attention and a well designed ontol-
ogy. Concepts of this language help creating a convenient
user interface.

Single Feature Test Cases

 The results in Table 2 may seem confusing at the first
glance. The performance of most queries is very poor.

 One reason is that there are many images in the reposi-
tory which are actually really similar to the queries but
which are not contained in the related set for evaluation. If
the query results would be judged by humans by asking
which results are acceptable, they would often perform much
better.

 It is remarkable that the simplest feature of all, the RGB
mean proves to be very efficient in some cases where more
detailed ones completely failed. In return the similarity val-
ues always remain on a very high level (Table 3) leaving not
much space to avoid false positives.

94 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

Queries

Query 5(a)

 Starting with the cattle, this image series contains several
different images compared to the query image. The only ad-
vantage is, that the repository does not contain other images
with semantically similar content. From an algorithmic point
of view the changes of the background are challenging.
Sometimes there is blue water visible and sometimes not.
Interestingly the RGB Mean performs very well. The impact
of the blue water is too small to cause trouble. Also the
amount of this brownish shade of red seems to be not too
prominent in the database.

 The Spatial Histogram is very weak in this case. Only
very few images of the relevant part are actually composed
similarly. While three quarters on the left side are dominated
by the animal, the right margin is dominated by water. Yet
many greenish or brownish images with a brindled texture
have been retrieved. The impact of colours should have been
higher.

Query 6(a)

 In this case the Wavelet can play out its strengths. Every
single image has been found, even if the lighting and the
waves on the water changed. The feature vector seems to be
very robust against these changes. The Histogram also per-
formed very well, but it missed out the image with the
strongest change in lighting. The two other features seem to
have stumbled over the lack of difference in the similarity.
Both ranked other images way too high. This query is not
very specific about the bird in the center. Instead, most of the
image is featureless background showing a water surface.
Taking the Spatial Histogram, about 40 results in the first 50
hits actually show birds surrounded by water.

Query 6(c)

 Here three of the four feature vectors were obviously
suitable. They are very robust against the slight changes in
the images. Especially the Histogram feature was able to find
all relevant images. The only feature with not a single hit is
again the Spatial Histogram. Most of the retrieved results
contain much blue and a darker, brownish central part. Again
the ranking is blinded by the other possible matches. The
modifications in the image composition seem to be too
strong to be caught.

Query 6(d)

 At this point the retrieval gets wrong with all four fea-
tures even if each one is able to find some of the related im-
ages. Each feature actually finds different images of the tar-
geted ones. For the Spatial Histogram the shifting perspec-
tive remains the main problem. In general the image colours
from many images are similar.

Query 6(e)

 The bird sitting in the green grass is a very captivating
query. The image is dominated by the grass and with a closer
look the grass pattern of the query image is indeed different
from the other ones. Taking this into account it is not very
surprising that features focusing on the spatial information
fail. In this case the Wavelet feature is the only one with no
results. The RGB Mean obviously benefits from the fact that

most images contain different shades of green. If another
image of the series is selected for query, all features are ca-
pable of retrieving most images correctly.

Query 6(f)

 This series again contains two differently illuminated sub
series. In the query one of the lighter set is used. Under those
conditions the most detailed features Spatial Histogram and
Wavelet are at least able to pick the correct sub series. The
two simpler features fail because they rank too many wrong
images too high. In this case a feature robust to the change of
lighting seems to be appropriate.

Query 6(g)

 The last query is indeed very challenging. None of the
feature plug-ins was able to find even a single match of the
series (Fig. 7). In the human perception these three images
are actually quite similar, but the implemented features ob-
viously did not capture the relevant information to achieve
good ranking results.

Fig. (7). Meadow pipit series 6.

Conclusion

 The analysis of the different features acknowledges that
each feature vector has certain strengths and weaknesses.

 The remarkably good performance of the RGB Mean in
special cases is surprising. At least it is very robust against
several changes in the image composition as long as the col-
our does not change very much. Of course this feature gets
very weak as soon as there are other images with similar
colours.

 The lighting of the scene has a visible impact on the re-
trieval. Under these circumstances a feature with a high ro-
bustness against it is required. It should be based on shapes
or maybe also wavelets without colour information. Con-
ceivably also a region based approach would be beneficial in
many cases.

Multi Feature Language

 Testing the multi feature ability revealed many advan-
tages compared to the single feature search. Nevertheless
there is still much work to do.

 Using the query language with boolean clauses some-
times helps to improve the result. Especially searching for
the third bird series (Fig. (6d)) was much more efficient by
using three SHOULD clauses with different features. Of
course the following optimisation effort by adding several
NOT clauses does not seem to be very realistic in daily use,
but it showed that a directed filtering may indeed help. It
needs to be pointed out that it is advisable to use different
features for NOT clauses to avoid that correct hits are re-
moved.

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 95

 Another issue when combining two features is the
discrepancy of similarities. The normalisation to a the range
from 0.0 to 1.0 is only part of the solution. In addition the
calculation needs to be calibrated to be efficient. Some fea-
tures return many results with a similarity above 0.99 (espe-
cially RGB Mean), while others have a much lower similar-
ity even for images from the same set. The Wavelet imple-
mentation often returned similarities of about 0.75. Merging
the two subsets is very inefficient because the less distinctive
features are dominant. Altering the boost for single terms can
be used as a workaround to reduce the problem.

 The effort of constructing a well performing query may
be too high in many retrieval scenarios if the user only wants
to find a certain image. In other scenarios, the optimised
query can be seen as some kind of classificator for a certain
type of images.

Retrieval Hints

 Using the advanced capabilities of the query language
requires deeper understanding and some experience with the
underlying ranking system. For this prototype some default
techniques should be used.

 If a fuzzy retrieval is performed, the clauses in a boolean
query should be used normally, i.e. they are best joined by
SHOULD. This ensures that no relevant document is cut
away from the result set.

 Having a more specific query with a high separability
between hit and miss, the MUST clause is helpful to effi-
ciently restrict search space.

 Finally the MUST NOT clause needs to be used care-
fully. It is useful for removing a certain image series com-
pletely from the result set, if it is annotated and the wanted
results are not. Using it for a fuzzy search term may be dan-
gerous, because all of the documents contained in the sub
result are removed. In this case the size of the MUST NOT
clause should be restricted by appropriate parameters.

Recommended Tools

 Optimising queries is already possible with the current
user interface but it is a tedious task. Some additional tools
seem to be beneficial.

 It should be possible to mark all desired images. Then the
engine may check whether single documents are missing
when performing a refined query. Especially when adding
MUST and MUST NOT terms, a warning message could be
generated.

 Especially for MUST NOT clauses it might be helpful to
see a preview which documents are going to be filtered out.
This helps to tune the restriction parameters and to control
the size of the filtered out documents.

 In a productive environment the similarity could be
spread by a power-law function analogous to the gamma
correction known from image processing. Based on a set of
reference images the parameters could be tuned to achieve a
sound calibration.

User Survey

 In general the testers behaved as expected and solved the
tasks. Additional knowledge of certain image content (e.g.

bird names) sometimes sped up the retrieval drastically.
Where no or insufficient annotation was available, the search
took much longer.

 Some of the main critics were actually intentionally built
into the repository. Especially the demand for better key-
words clearly shows that a sound annotation is a very impor-
tant factor for retrieval systems. Extending the current key-
word search to a more powerful semantic environment like
topic maps could boost the quality. An internal substitution
mechanism of very specific words to more general ones
could be the first step.

 What needs to be done as soon as possible is to create a
simple user interface where queries can be easily composed
and images can be uploaded. Also an integrated drawing tool
seems to be beneficial. Especially the features which are
difficult to understand could profit by a stronger integration
and by hiding the complexity.

 Further the testers had almost no problems in understand-
ing the query language and the boolean operators. During the
first testing sessions a small bug in the ranking system
caused strange effects. Fortunately a simple workaround in
the query was enough to avoid serious problems and the bug
could be fixed soon. The three different operators MUST,
SHOULD and MUSTNOT were accepted by all testers.

 All testers are quite professional computer users and have
some experience in searching. But no one had experienced a
CBIR system before and the user interface was very basic.
Keeping that in mind, this is still a remarkable success for
the query language.

Addendum

 At the time of the main survey, the user interface only
consisted of a simple HTML web page. Queries had to be
typed manually into a single text field. Many problems were
caused by syntax errors. In the beginning, it usually took a
couple of attempts to formulate a valid query. After a while,
they got accustomed to the language and were able to create
more complex ones. This quick learning was surely affected
by the fact that most testers were used to programming lan-
guages.

 In the current prototype, a visual query composer has
been added. For evaluation purposes, a testing person with
no programming experience performed the same survey with
the new interface. Due to the fact, that there was only a sin-
gle tester, this second survey was absolutely non-
representative. Nonetheless, it indicated, that the visual com-
poser can be a helpful tool. The tester clearly preferred the
visual composer to the plain text field but still understood the
language itself. The new functionality to specify an external
query image was considered helpful. In one case, the drawn
query (Fig. (8b)) was good enough to retrieve the requested
image (Fig. (8a)) at the first position.

CONCLUSION

Achievements

 The proposed query language has a simple structure and
is very similar to a full text search engine while also allow-
ing fuzzy terms. Further it is easily extensible and allows
arbitrary constructs for individual features. Complex queries

96 The Open Information Systems Journal, 2009, Volume 3 Pein et al.

are possible but not necessary, giving experts the chance to
fine tune all parameters as required. Normal users could ei-
ther enter simple queries or generate them with a graphical
user interface.

Fig. (8). Query-by-example.

 One interesting feature of boolean queries is the ability to
reduce the search space. Setting the occurrences of the
clauses restrictively, it provides a way to cut the retrieval
time drastically, even if the CBIR terms require a linear scan.

 Further the language can be easily mapped to machine
readable formats like objects or XML.

Problems Remaining

 Providing a basic parser like JSON only simplifies the
low-level query information. To support higher abstractions
it is necessary to fully understand the feature itself, which is
impossible for a generic language. For this reason, keeping
the language simple is the task of the feature developers.
They need to design appropriate sub languages which con-
tain all feature specific information and remain as readable
as possible.

 Another issue is the naming of feature vector based
fields. Currently the prototype compares each field name in
the query with the list of available feature plug-in identifiers.
If the field name does not match a feature identifier, the term
is handled by the underlying Lucene engine, executing a
“classical” full text search on the field. Otherwise the term is
forwarded to the corresponding feature plug-in. Having over-
lapping feature identifiers, basic search fields could be hid-
den. It is necessary to formulate naming conventions like
reserved words or a prefix for each feature identifier.

Future Work

 Unlike FOQL/SQL the language does not support user
defined sorting like ORDER BY but sorts results by an over-
all similarity. It is to decide whether this extension is rele-
vant for retrieval issues or not.

 Depending on the combining functions and feature vec-
tors used, query processing can be sped up drastically. A
heuristic approach to query optimizing has been evaluated by
Ramakrishna (Ramakrishna ADC 2002) [15].

 The currently implemented indexing structures for the
plug-ins are merely a proof-of-concept. A set of generic in-
dexing structures (such as for multidimensional vectors) is
planned to support standard types of features directly.

 Another crucial topic is the merging strategies. Espe-
cially for iterative search, additional work needs to be done.
Until now, the engine always returns the optimal result by
checking all features and keeping the whole result in the

memory. An approach to get page-wise additional results as
requested is planned.

 The query language proposed in this article does not yet
support query-by-example directly. This requires to encode
pixel images in a string, which may be done by mime encod-
ing.

 The support of high-level concepts is not realized yet.
This could be a feature of the language itself by introducing
constructs like define in FOQL which substitute certain
terms by a pre-defined low level term. Alternatively the re-
trieval engine itself could be extended by high-level plug-ins
which map semantics to predefined low level requests. De-
veloping such feature plug-ins is a very complex task. A lot
of testing is required to capture meaningful feature vectors
information which represents semantics.

ACKNOWLEDGEMENTS

 A major part of the testing repository images were con-
tributed by external persons. Many thanks to Prof. Dr. Jörg
Raasch from the Hamburg University of Applied Sciences
for his large and nicely annotated collection. Also thanks to
Benjamin Striepke for his contribution of many images.

 Finally, I want to thank all testers involved in the usabil-
ity study and gave much useful feedback.

REFERENCES

[1] J. Eakins and M. Graham, “Content-based Image Retrieval. A
Report to the JISC Technology Applications Programme,” Univer-
sity of Northumbria at Newcastle, Tech. Rep., Jan. 1999. [Online].
Available: http://www.jisc.ac.uk/uploaded documents/ jtap-039.doc

[2] M. Renz and W. Renz, “Neue Verfahren im Bildretrieval. Perspek-
tiven f¨ur die Anwendung,” in Proceedings der 22. Online-Tagung

der DGI, R. Schmidt, Ed., May 2000, pp. 102-128.
[3] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-

based image retrieval with high-level semantics,” Pattern Recogni-
tion, vol. 40, pp. 262-282, 2007.

[4] P. Clough, H. Müller, T. Deselaers, M. Grubinger, T. M. Lehmann,
J. Jensen, and W. Hersh, Accessing Multilingual Information Re-

positories. Springer, 2006, vol. 4022/2006, ch. The CLEF 2005
Cross-Language Image Retrieval Track, pp. 535-557.

[5] P. Clough, M. Grubinger, T. Deselaers, A. Han-bury, and H. M¨
uller, Evaluation of Multilingual and Multi-modal Information Re-

trieval. Springer, 2007, vol. 4730/2007, ch. Overview of the Im-
ageCLEF 2006 Photographic Retrieval and Object Annotation
Tasks, pp. 579-594.

[6] R. Fagin, “Combining fuzzy information from multiple systems
(extended abstract),” in PODS ’96: Proceedings of the fifteenth
ACM SIGACTSIGMOD-SIGART symposium on Principles of data-

base systems. New York, NY, USA: ACM, 1996, pp. 216-226.
[7] Apache Software Foundation, “Apache Lucene,” 2006. [Online].

Available: http://lucene.apache.org/
[8] R. G. G. Cattell, “ODMG-93: a standard for object-oriented

DBMSs,” in SIGMOD ’94: Proceedings of the 1994 ACM SIG-
MOD international conference on Management of data. New York,
NY, USA: ACM, 1994, p. 480.

[9] A. M. Alashqur, S. Y. W. Su, and H. Lam, “OQL: a query language
for manipulating object-oriented databases,” in VLDB ’89: Pro-
ceedings of the 15th international conference on Very large data

bases. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1989, pp. 433-442.

[10] S. Nepal and M. Ramakrishna, “Query Processing Issues in Im-
age(Multimedia) Databases,” International Conference on Data

Engineering, 1999, pp. 22-29.
[11] C. Town and D. Sinclair, “Ontological query language for content

based image retrieval,” in Content-Based Access of Image and
Video Libraries, 2001. (CBAIVL 2001). IEEE Workshop on, 14
Dec. 2001, pp. 75-80.

An Extensible Query Language for Content Based Image Retrieval The Open Information Systems Journal, 2009, Volume 3 97

[12] C. Town and D.Sinclair, “Language-based querying of image col-
lections on the basis of an extensible ontology,” Image and Vision
Computing, vol. 22, pp. 251-267, 2004.

[13] J. Martinez, R. Koenen, and F. Pereira, “MPEG-7: The Generic
Multimedia Content Description Standard, Part 1,” IEEE MultiMe-

dia, vol. 09, no. 2, pp. 78-87, 2002.
[14] D. Riecks, “”IPTC Core” Schema for XMP -Version 1.0,” Interna-

tional Press Telecommunications Council, Tech. Rep., 2005.
[15] M. V. Ramakrishna, S. Nepal, and P. K. Srivastava, “A heuristic

for combining fuzzy results in multimedia databases,” in ADC ’02:
Proceedings of the 13th Australasian database conference. Dar-
linghurst, Australia, Australia: Australian Computer Society, Inc.,
2002, pp. 141-144.

[16] L. A. Zadeh, Fuzzy sets. River Edge, NJ, USA: World Scientific
Publishing Co., Inc., 1996.

[17] R. P. Pein and Z. Lu, “A Flexible Image Retrieval Framework,” in
International Conference on Computational Science (3), ser. Lec-
ture Notes in Computer Science, Y. Shi, G. D. van Albada, J. Don-
garra, and P. M. A. Sloot, Eds., vol. 4489. Springer, may 2007, pp.
754-761.

[18] F. A. Al-Omari and M. A. Al-Jarrah, “Query by image and video
content: a colored-based stochastic model approach,” Data Knowl.
Eng., vol. 52, no. 3, pp. 313-332, 2005.

[19] C. E. Jacobs, A. Finkelstein, and D. H. Salesin, “Fast Multiresolu-
tion Image Querying,” Computer Graphics, vol. 29, no. Annual
Conference Series, pp. 277-286, 1995. [Online]. Available: cite-
seer.ist. psu.edu/jacobs95fast.html

[20] R. P. Pein and Z. Lu, “Content Based Image Retrieval by Combin-
ing Features and Query-By-Sketch.” in International Conference
on Information & Knowledge Engineering (IKE), H. R. Arabnia
and R. R. Hashemi, Eds. Las Vegas, USA: CSREA Press, Jun.
2006, pp. 49-55.

[21] R. P. Pein, “Hot-Pluggable Multi-Feature Search Engine,” Master’s
thesis, Hamburg University of Applied Sciences, 2008.

[22] R. P. Pein, M. Amador, J. Lu, and W. Renz, “Using CBIR and
Semantics in 3D-Model Retrieval,” in Computer and Information

Technology, 2008. CIT 2008. 8th IEEE International Conference
on, Jul. 2008, pp. 173-178.

[23] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition
by unsupervised scale-invariant learning,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,
vol. 2, Madison, Wisconsin, June 2003, pp. 264-271.

Received: February 15, 2009 Revised: May 25, 2009 Accepted: June 03, 2009

© Pein et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

