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Abstract: Chromosomal abnormalities are the most common alterations in acute myeloid leukemia (AML). Among those 

abnormalities, chromosomal translocations that produce the oncogenic fusion proteins have been frequently observed in 

different subtypes of AML. Although molecular mechanisms underlying the consequences of the oncogenic 

transformation resulted from the fusion proteins have been extensively studied, little is known about the molecular events 

cooperative with the oncogenic fusion proteins in the pathogenesis of leukemia and the cellular mechanisms with regard 

to the predictive roles of the fusions in treatment response. In this article, we will present an overview of the important 

aspects of AML-associated fusion proteins and their regulated transcriptional networks in pathogenesis and prognosis of 

AML. We will also discuss the recent findings pertaining to the functional link between the oncogenic fusions and 

response of leukemic cells to the treatment. Understanding the regulation of AML-associated fusions and their association 

with disease characteristics, patient outcome and treatment response will be of fundamental importance for predicting the 

effectiveness of the treatment and design the specific therapeutic strategies. 
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INTRODUCTION 

 Hematopoiesis is a complicated multistage process that 
involves the differentiation and maturation of different blood 
cell types. Thus, to terminally differentiate and mature, cells 
have to pass through hierarchy of successive developmental 
stages [1, 2]. In each stage, the regulatory genes for 
hematopoiesis are either activated or silenced in a cell type-
specific or lineage-specific manner to ensure a precise fine-
tuning of the process [3-7]. The disruption of this regulatory 
process may result in different types of blood disorders. 
Acute myeloid leukemia (AML) is one of the major blood 
disorders that are associated with disruption of the regulatory 
processes. 

 AML is characterized by accumulation of cells at the 
early stages of the differentiation process [8-10]. This is 
mostly attributed to dysfunctional regulatory transcription 
factors, resulting in aberrant gene expression and function [7, 
9]. Dysfunction of the regulatory transcription factors in turn 
results in blocking of the passage of cells through a given 
developmental stage depending on the subtype of the disease 
[7]. Thus, AML is a heterogenous disease, which comprises 
multiple subtypes [11, 12]. The subtypes are classified 
according to the FAB classification system. The subtypes are 
denoted as M0-M7 [2, 4, 10, 13]. The grouping is made 
based on the degree of granulocytic maturation (M1, M2, 
M3) or monocytic differentiation (M4 & M5) or presence of 
large number of erythroblasts (M6) or magakaryoblasts (M7)  
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[10, 13]. The individual subtypes of this heterogenous 
disease can be identified using multiple methods such as 
cellular morphology, cytochemistry,  immunophenotypes and 
molecular analysis [14]. For instance, in the most common 
forms of leukemia, acute promyelocytic leukemia (APL), 
and acute myeloid leukemia, the differentiation process is 
blocked at a promyelocyte stage [15], and early myeloid 
stage [16], respectively. The blocked cells regain a self-
renewal capacity and continue to proliferate and 
overpopulate the bone marrow. The prognosis of leukemia 
varies in patients depending on ages of the patients. 
Combination of age, cytogenetics, and white blood cell count 
(WBC) is a good prognostic factor. Young age tends to be 
associated with favorable prognosis, while old age is 
associated with poor prognosis [13, 17]. Cytochemical 
staining for example is helpful in differentiating AML from 
ALL as well as identifying subtypes of AML [14]. On the 
other hand, the specific karyotype is age-independent 
predictor of the treatment outcome. For example, the t(8; 
21), inv(16) and t(15; 17) are indicators of favorable 
prognosis while, deletion or loss of chromosome 5 or 7 or 
both is associated with poor prognosis [13]. Multiple 
parameters have been taken into consideration for accurate 
diagnosis and better choice of treatment regimens. Genome-
wide studies in search of complex genetic alterations and 
identification of possible novel markers have provided novel 
tools for the diagnosis and treatment of AML [16]. 

 In AML, the underlying genetic or epigenetic events lead 
to disruption of this delicate regulatory mechanism affecting 
multiple cellular processes and regulatory pathways, 
especially the stage-specific regulations [6, 16]. A large 
number of diverse translocations have been described. The 
most frequent are the t(8; 21), t(15; 17), inv(16) which 
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together with their variants, account for approximately 40% 
of all AMLs [7]. These translocations produce the 
AML1/ETO, PML/RAR , CBFCBF  & CBF /SMMHC 
fusion proteins, respectively [18] and the RAR  [15]. These 
transcription factors are among the most important 
regulatory proteins that contribute to the normal 
differentiation and maturation of hematopoietic cells.  

 Great efforts have been made in treating leukemia to 
improve the clinical remission and disease-free survival. 
However, it is important to eliminate the unnecessary side 
effects that are usually associated with chemotherapy 
treatment and to improve specificity of drugs. Further, it 
remains to be investigated in detail whether the leukemic 
fusions are associated with leukemic subtypes and treatment 
response. 

THE AML1 

 The core binding factors are a small family of 
transcription factors CBF comprising a DNA binding CBF  
subunit and a non-DNA binding CBF  subunit. The gene 
encoding CBF  subunit, AML1 (also known as Runx1, 
CBFA2, and PEBPA2A), together with the gene encoding 
CBF  subunit are essential for hematopoiesis and are 
frequently fused with other genes to produce fusion genes in 
human leukemias [4, 19-23]. The gene for AML1, is located 
in 21q22, while the gene for CBF , is located on 16q22 [4, 
24, 25-30]. AML1 is the part that contains a DNA-binding 
and a trans-activation domain, while the CBF  does not 
contain any known DNA-binding or a trans-activation 
domain [4, 21, 26, 31, 32]. However, it is believed that the 
CBF  subunit strengthens the binding of the AML1 [31, 33]. 
Furthermore, the CBF  is believed to stabilize the AML1 by 
protecting it from ubiquitin-mediated degradation [21, 33]. 
Disruption in each subunit will result in total loss of function 
of the CBF. Since both subunits are equally important for the 
function of the CBF, knock-in of the AML1-fusion gene 
exerts similar phenotype as a AML1 knockout [4, 28]. This 
notion is supported by the fact that disruption of the CBF  
results in similar phenotype as the disruption of the AML1 
[4, 30, 34, 35]. 

 The CBF plays critical roles in lineage commitment of 
myeloid progenitors and terminal differentiation of 
hematopoietic cells [31, 36]. Many myeloid-specific 
regulatory genes have cis-acting binding sites for AML1, 
and activation of these genes are believed to be critical for 
the normal granulocyte development [3]. When the function 
of the CBF is affected by leukemogenesis, the development 
of the granulocytes is also affected [37]. Although the CBF  
is ubiquitously expressed, its function is not well-studied 
[38]. However, knockout of either AML1 or CBF  in mice 
results in embryonic lethality [18, 22, 39-42]. It is not clear 
whether AML1 or CBF  contributes to fetal hematopoiesis 
through additional pathways. Identification of the upstream 
actors or downstream targets of the AML1 might be helpful 
in designing disease-specific therapeutic methodologies. 

THE AML1 FUSIONS IN LEUKEMIA 

 The most commonly t(8;21), t(12;21), and t(3;21) for 
AML1 generate fusions that are frequently observed in M1 
and M2 subtypes of myeloid leukemia [26, 30]. The 
chromosomal translocation t(8;21) represents significant 

portion of the M2 subtype of AML [19, 43-45]. This 
translocation fuses AML1 (RUNX1) to ETO creating a novel 
hybrid AML1/ETO gene [24, 46-53]. The AML1-ETO 
interacts with other transcriptional factors act as repressors 
such as N-CoR, mSin3A and HDACs through its ETO part 
[9, 33, 37]. Thus, the fusion protein exhibits dominant 
negative effect over the wild type AML1 inhibiting 
transcription of the normally AML1-regulated genes that are 
essential for hematopoiesis [43, 51, 54-56]. Biological 
features of the fusion AML1-ETO is the disruption of 
hematopoiesis including the hypergranulation and strong 
myeloperoxidase-positivity of hematopoietic cells [31, 57,  
58]. 

TREATMENT RESPONSE IN PATIENTS WITH 
AML1-ETO 

 Choice of appropriate regimens for treatment of 
leukemias is mainly based on accurate diagnosis. The major 
treatment choice is the classical chemotherapy [10]. The M2 
AML responds well to high dose cytarabine exhibiting high 
remission rate and long disease-free survival [57]. 
Particularly, the AML1/ETO is serving as a paradigm for the 
M2 subtype of AML due partly to its high percentage of 
incidence that constitutes about 40% the M2 subtype [43, 
58]. Patients who harbor AML1/ETO fusion have favorable 
prognosis. Patients presenting AML1/ETO normally do not 
directly require bone marrow transplantation, and thus the 
transplantation related complications may be avoided in 
these patients [2]. However, high dose cytarabine is 
associated with multiple side effects such as cardiovascular 
and central nervous system damages. 

Leukemia Related to the Inv(16) 

 Inv(16) for CBF  is a result of a pericentric inversion of 
chromosome 16 [4, 24-30, 59-61]. This inversion results in 
fusion of the CBF  in frame to a myosin heavy chain gene 
(MYH11), which is located on the short arm (16p13) of the 
chromosome [4, 30, 59]. This chromosomal abnormality 
creates a novel hybrid gene (CBF /MYH11), which is 
expressed to produce a CBF /SMMHC chimeric protein [4, 
24, 62, 63]. The chimeric protein is composed of the first 
165 amino acids of CBF  and a half part of SMMHC 
including its coiled-coil domain [26, 32, 62, 64]. The 
chimeric protein is still able to heterodimerize with AML1 
[65, 66]. In fact, it has been reported that CBF /SMMHC 
binds to AML1 more avidly and with altered stochiometry 
[32]. This translocation is exclusively associated with the 
M4eo subtype of AML [24, 50, 59, 62, 67-70]. The M4eo is 
associated with abnormal eosinophils [12, 25, 26, 30, 59, 67, 
70]. The M4eo exhibits similar response to chemotherapy as 
that of the M2 subtype [40]. Similar to the AML1-ETO 
fusion, the CBF /SMMHC protein exerts dominant negative 
effect on the wild type AML1 [4, 27, 30, 32, 35, 64, 71, 72]. 
The CBF /SMMHC can sequester the AML1 into 
nonfunctional complex thus acting as an inhibitor of the CBF 
[73, 74]. Furthermore, the dominant inhibitory function of 
the CBF /SMMHC is partly attributed to sequesteration of 
the AML1 in the cytoplasm [26, 28, 36, 75]. Mice chimeras 
that express CBF /SMMHC exhibit a phenotype similar to 
AML1 or CBF  null mice [28, 63, 72, 73], and these 
observations emphasize that the inv(16) most likely exploit 
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similar biochemical mechanisms that are exploited by the 
other CBF leukemias to establish its effects. 

 

Leukemia Related to the t(3; 21) 

 This chromosomal translocation is relatively rare and it is 
tightly associated with chemotherapy-related myelodys-
plastic syndrome (MDS) and chronic myelogenous leukemia 
(CML) [4, 21, 76]. This translocation fuses AML1 to EPA, 
MDS1 or EVI1, depending on the location of the breakpoint 
within chromosome 3, because all the three genes are located 
within the same region of the long arm of the chromosome 
[21, 50, 77]. In any case, transcription of the fusion gene is 
driven by AML1 promoter [78]. The t(3; 21) may be induced 
by the chemotherapeutic agents including topoisomerase II 
inhibitors in patients [21]. EAP is a highly expressed small 
nuclear proteins related to Epstein-Barr virus small RNA 
[21]. MDS1 encodes for small RNA of unknown function, 
while EVI1 gene encodes a zinc finger transcription factor 
that seems to be involved in transactivation of some genes 
[21, 78-80] such as c-Fos [21]. In summary, all the AML1-
fusion products disrupt the normal function of the AML1, 
resulting in similar overall disease characteristics of the 
AML [4, 27]. 

TREATMENT RESPONSE IN PATIENTS WITH CBF 
FUSIONS 

 The CBF leukemias are responsive to the standard 
chemotherapy regimens such as the combination of 
anthracyclines and cytarabine (Ara-C) [57]. The intention of 
induction therapy is to achieve a clinical remission [10]. 
Once clinical remission is achieved, it is followed by 
postremission therapy which can be categorized as 
consolidation therapy or maintenance therapy. The purpose 
of consolidation therapy is to eradicate residual leukemic 
cells [10], while maintenance therapy is to preventing 
relapse. However most of the chemotherapeutic agents are 
not specific to the leukemic cells. They also attack the 
normal cells that are actively dividing. Such cells include the 
skin cells, immune cells, hair follicles, and cells of 
gastrointestinal lining. Therefore, the reversible side effects 
include skin rush, hair loss, nausea, vomiting, diarrhea, and 
poor appetite are frequently associated with the treatment. 
The irreversible side effects may further include permanent 
organ damage and introduction of secondary malignancies. 
Thus, although chemotherapy is effective for treatment of 
leukemia, it is an urgent need for develop novel treatment 
agents that can minimize the side-effects. 

THE RETINOIC ACID RECEPTOR  (RAR ) 

 Within the steroid/thyroid nuclear receptors, the 
subfamily of the retinoic acid receptors is composed of 
RARs and RXRs, each consisting of different isotypes ( , , 
and ) and each isotype is encoded by different genes [81, 
82]. All of the RAR family members (RAR , , and ) are 
activated by retinoic acids (RAs) [82]. The RAR  is a 
ligand-activated nuclear transcription factor [68, 81, 83, 84]. 
Retinoid-induced RAR  regulate various cellular processes 
form embryonic development to maintenance of homeostasis 
and induction of cell death in adults [85, 82]. RAR  
functions as a heterodimer and its heterodimeric partner is 
the RXR  [83, 86]. In the absence of the ligands, the 

RAR /RXR  heterodimers are believed to function as 
transcriptional inhibitors. The binding of the ligands coverts 
these transcriptional inhibitors into transcriptional activators, 
possibly by inducing conformational changes. The activated 
RARs in general bind to the response elements within the 
promoter regions of the RAR -regulated genes and induce 
gene expression, in general [83, 87]. Since the RARs are 
pleiotropic, treatment of multipotent cells such as FDCP 
mixA4 with erythropoietin results in inhibition of RAR  and 
commitment of the cells into erythroid lineage, while 
treatment with G-CSF results in upregulation of expression 
of RAR  resulting in commitment of the cells into myeloid 
lineage [84, 88]. Lines of evidence strengthen the notion that 
the AR/RAR  signaling is necessary for neutrophil 
maturation. Transgenic mice harboring a mutation within 
ligand-binding domain of RAR  exhibit increased immature 
neutrophil cell count suggesting the importance of RAR  in 
neutrophil maturation [83]. The RAR  pathway also plays 
very important roles driving the pluripotent hematopoietic 
cells along the granulocytic lineage [88-90]. 

RAR  ASSOCIATED FUSIONS IN SUBTYPES OF 
ACUTE MYELOID LEUKEMIA 

 The APL is a subtype of AML with a differentiation 
blockage at a promyelocytic stage of myeloid cell maturation 
[81, 91, 92]. Thus, the APL is characterized by expansion or 
proliferation of the myeloid lineage blocked at a 
promyelocyte stage of differentiation [10, 92-94]. This group 
of disease is generally categorized as a FAB M3 subtype of 
the AML, while the t(15;17) is the most representative of the 
group. The unique cytogenetic abnormalities that are tightly 
associated with APL are the chromosomal translocations that 
target RAR  [81, 95]. The genetic abnormalities underlying 
the initiation or the progression or the manifestation of APL 
include the chromosomal translocations t(15;17)(q22;q21), 
t(11;17)(q23;q21), t(11;17)(q13;q21), t(5;17)(q35;q21) and 
der(17) [83]. These reciprocal chromosomal translocations 
fuse RAR  to different partners such as PML, PLZF, 
NuMA, NPM, and STAT5b respectively [15, 81, 96-98]. 

 The leukemia that is cytogenetically characterized as 
having the t(15;17) chromosomal translocation is categorized 
as the M3 subtype of AML, which is also known as APL 
[89, 98-102]. The t(15;17)(q22;q21) is the most common 
form of the chromosomal translocations that target RAR , 
and seems to be responsible for transformed phenotype of 
APL [12, 15, 68, 81, 83, 88, 91]. This chromosomal 
translocation represents over 95% clinically relevant APL 
cases [1, 27, 83]. The PML/RAR  may disrupt the normal 
function of RAR  and PML [24, 98]. APL that harbors 
PML/RAR  fusion respond well to the current therapeutic 
regimens and exhibit favorable prognosis [101, 102]. 

 The t(11;17)(q23;q21) is also clinically relevant 
accounting for about 0.8% of APL cases [83]. This 
translocation fuses PLZF in frame to RAR  creating a 
disease-specific hybrid gene (PLZF/RAR ) [83, 103]. PLZF 
is a zinc finger transcription factor which seems to be 
expressed during early stage of hematopoietic cell 
development [83, 104]. PLZF may play important roles in 
maintenance or survival of early progenitor cells. PZLF is 
also known to regulate some powerful regulatory genes such 
as c-myc, cyclin A2. Therefore, PZLF may have direct or 
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indirect tumor-suppressor activity that is disrupted by the 
chromosomal translocation. Unlike the PML/RAR  
containing cells, the PLZF/RAR  containing cells do not 
respond to ATRA [81, 98]. 

 The t(5;21)(q35;q21) only represents less than 0.5% of 
the clinically relevant APL cases [83]. This translocation 
fuses NPM in frame with RAR  again creating a disease-
specific hybrid gene [83]. The NPM/RAR  fusion protein is 
believed to disrupt the normal function of RAR  [83]. NPM 
is a nuclear phosphoprotein that is ubiquitously expressed 
[83, 105]. Its main function is believed to be transportation 
of ribosomal materials between the nucleolus and the 
cytoplasm [83]. NPM is also a target of other chromosomal 
translocations [83], implying involvement of the protein in 
important regulatory processes. This protein is also 
implicated in regulation of p53, because it was found directly 
binding and stabilizing p53 in the events such as cellular 
stresses that induce expression of p53 [83, 105]. The APL 
cells that harbor the t(5;17)(q35;q21) have favorable 
prognosis because they respond well to ATRA treatment [81, 
83]. 

 The t(11;17)(q13;q21) is a rare chromosomal 
translocation that fuses NuMA to RAR  [83]. This 
translocation also exhibit favorable prognosis because it is 
sensitivity to ATRA [83]. NuMA seems to have important 
roles in mitosis, specifically in formation of spindle asters, 
and in re-formation of daughter nuclei [83, 106], and 
microtubule assembly [107]. Like the other RAR  partners, 
RAR -NuMA disrupts the normal function of RAR  and 
may lead to the leukemogenesis [81, 83]. 

 In der (17) chromosomal abnormality, an interstitial 
deletion spanning a 3Mb DNA region on the long arm of 
chromosome 17 results in the fusion of STAT4b with RAR  
[83]. This event is very rare and its response to therapeutic 
regimens has not been determined. The STAT5b belongs to a 
family of transcription factors that are involved in multiple 
cellular processes and their aberrant expression is implicated 
in many cancer types including leukemia [83]. STAT5b is 
widely expressed including in hematopoietic progenitors 
[83]. Like the other RAR  partners, this protein 
heterodimerizes with its coiled-coil motif. Disruption of the 
normal function of RAR  as well as that of STAT5b could 
contribute to the leukemogenesis, although the function of 
STAT5b is not known. 

TREATMENT RESPONSE IN PATIENTS WITH 
RAR  FUSIONS 

 The most studied and better understood mechanism 
exploited by the fusion proteins is to recruit the 
transcriptional corepressors to the RAR  regulated gene 
promoters, thus preventing RAR  to activate its targeting 
genes that are important for hematopoiesis [33, 108]. It has 
been established that RAR  and AML1 interacts with 
corepressors including N-CoR, mSin3A and HDACs [4, 21, 
51, 109-112]. The classical treatment of APL is the intensive 
chemotherapy. Overall, APL exhibits favorable prognosis 
due to its sensitivity to treatment in general [113]. During the 
last 15 years, ATRA has become the mainstay of the 
treatment of APL [86, 96, 114]. Although a physiological 
concentration of ATRA is not effective, a pharmacological 
concentration of ATRA causes terminal differentiation of 

leukemic cells, and results in long term survival in APL 
patients [86, 88, 115, 116]. Furthermore, simultaneous 
administration of chemotherapy and ATRA has improved 
the remission rate and significant reduction of relapse risk 
[10, 97]. This combination therapy is more effective than 
either chemotherapy or ATRA alone and improved an 
overall survival rate [10, 97]. Although the mechanism of 
action of ATRA is not clear, it is believed that ATRA forces 
the APL cells into neutrophil-like differentiation [81, 84, 85, 
88], which ultimately leads to apoptosis [81]. ATRA acts 
through the RAR  signaling pathway [82, 84]. ATRA is also 
is believed to be involved in interferon signaling pathways 
because induction of interferon regulatory factor-1 (IRF-1) 
has been observed during ATRA treatment, and IRF-1 
induces expression of interferons, which ultimately lead to 
apoptosis and cell death [84]. Most recently, use of an old 
medicine, As2O3, in APL has proven useful because it 
induces apoptosis in APL cells that are resistant to ATRA 
[81]. Furthermore, As2O3 has proven itself to be effective to 
treat the APL patients at disease recurrence [97]. 

 Although positive results have been achieved in treating 
APL, significant problems remain to be solved. For instance, 
APL is linked to bleeding diathesis which occurs during 
early stage of the treatment. The bleeding seems to occur due 
to disseminated intravascular coagulation and excessive 
fibrinolysis [81]. Severe coagulation that can lead to 
hemorrhagic complications has become clinical feature of 
the disease [97]. The coagulopathy is usually triggered or 
more exacerbated by chemotherapy leading to high induction 
death rate at 10%, meanwhile increased awareness has 
resulted in better supportive care that resulted in decreased 
induction death [97]. The side effects including fever, 
respiratory distress, pleural or pericardial effusion and 
interstitial lung infiltration usually occur during the first 
month of treatment and occasionally immediately after 
administration of the first dose of ATRA [81]. These side 
effects are so serious that if left untreated, they can lead to 
hypoxia, respiratory failure and ultimate death [81]. Other 
common and reversible side effects associated with ATRA 
treatment are headache, dry skin and mucosal membrane 
[81]. Hence, better treatment methods and regimens that 
eliminate the unnecessary side effects that affect the quality 
of life of the patients are urgently needed. 

THE COMMON CHARACTERISTICS OF THE CBF 
AND RAR , ASSOCIATED-FUSION PROTEINS AND 

NOVEL THERAPEUTIC APPROACHES 

 Remarkably, despite the structural and functional 
divergences among the fusion partners of the CBF and the 
RAR , the fusion proteins exploit similar, if not identical 
biochemical mechanisms to exert their dominant inhibitory 
efforts. The recruitment of corepressors and HDACs 
accompanied by some epigenetic changes such as 
hypermethylation of the promoters result in effective 
inhibition of gene expression [97]. It has been established 
that the AML1/ETO chimeric protein interacts with 
corepressors including N-CoR, mSin3A and HDACs [4, 21, 
51, 109-111]. The ETO part of the chimeric protein is 
responsible for the recruitment of the corepressors [4, 43, 54, 
113]. The RAR /fusion proteins also recruit corepressors 
and HADC-complexes in order to repress the genes that are 
normally activated by RAR  [83, 110]. In deed, it has been 
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demonstrated that the RAR  fusion proteins recruits N-CoR 
and HDAC3 [108]. The PML/RAR  fusion protein in 
particular recruits N-CoR/Sin3/HDAC1 complex to RAR -
target promoter regions and inhibits transcription [68]. These 
unifying themes of the diverse subtypes of leukemia may 
offer the opportunity for designing a single treatment agent 
that can specifically target the leukemic cells and improve 
therapeutic efficacy compared to the classical chemotherapy. 
The CBF leukemias and the RAR -targeting APL all exploit 
similar biochemical mechanisms including recruitment of 
HDACs to the promoter region of the genes that play crucial 
roles in hematopoiesis [33]. Usage of HDAC inhibitors is 
underway in research laboratories and shows some 
promising results [117]. For instance, treatment of leukemia 
cell lines with valproic acid (VPA) has shown encouraging 
results [117]. VPA is known to selectively inhibit some 
HDACs. Treatment of cell lines that harbor AML1/ETO 
with VPA resulted in inhibition of the recruitment of 
HDACs by AML1/ETO and induced histone hyperacety-
lation, which resulted in re-expression of the AML1/ETO 
repressed genes [117]. HDAC inhibitors are not as 
dangerous as chemotherapy because they exert their 
therapeutic effects at the epigenetic level, and therefore can 
offer milder yet effective treatment choice. 

 Molecular and gene targeting therapeutic approaches 
have been tested. Specific protein redirection as a 
transcriptional therapy approach for t(8;21) has been 
attempted [118]. In another study, overexpression of the 
domains of the fusion proteins that recruit corepressors has 
been attempted in cell lines that harbor the leukemic fusion 
genes [119]. In the protein redirection approach, it was 
intended to remove the fusion proteins such as the 
AML1/ETO form the AML1-regulated gene promoters. 
Epigenetic therapy combined with some molecular targeting 
methodologies might offer safer and more effective 
therapeutic choice in the future. 

FUTURE PERSPECTIVE 

 Genome-wide studies have allowed identification and 
further classification of risk groups and subtypes of AML. 
Gene-expression profiling allows a comprehensive 
classification of AML that includes previously identified 
genetically defined subgroups and a novel cluster with an 
adverse prognosis [120]. A unique cluster with a distinctive 
gene-expression signature included cases of AML with a 
poor treatment outcome has been identified [121]. The 
biological and prognostic heterogeneity of CBF-AML 
subtypes, including gene mutation and gene expression 
profiles as well as molecular response to therapy needed to 
be further studied. The future studies to address the 
heterogeneity and sub-risk group of CBF-AML will help to 
design a unique predefined strategy to treat these patients. 
Prognostic significance of microRNA expression signatures 
associated with, for example, CEBPA mutations in 
cytogenetically normal acute myeloid leukemia with high-
risk molecular features have been investigated [122]. More 
comprehensive gene-expression signature-based and 
microRNA expression-based classifiers are needed for 
predicting outcome for individual patients with greater 
accuracy in the future diagnostics. This information is likely 
to have a major impact on the clinical management of in 
selection of appropriate treatment, since many of the 

identified genetic alterations already constitute or will 
potentially become targets for specific therapeutic 
intervention. The molecular effects induced by 
chemotherapeutic agents such as panobinostat and 
doxorubicin have been investigated by analyzing gene 
expression, cell cycle, apoptosis and signaling pathways. 
Analyses of gene expression profiles identified many genes 
whose expression was exclusively affected by the 
combination of panobinostat and doxorubicin [123]. 
Molecular cytology and pathology will have a great future 
impact on the precise classification of subtypes of leukemia 
and define the risk groups for diagnostics and prognostics 
and treatment respond. These novel approaches will help 
clinicians to design unique strategies to treat individual 
patients and to minimize the side-effects. 
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