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WAVELET BASIS IN THE SPACE C*~[-1,1]

ALEXANDER P. GONCHAROV AND ALI SAMIL KAVRUK

ABSTRACT. We show that the polynomial wavelets suggested by T.Kilgor
and J.Prestin in [12] form a topological basis in the space C*°[—1, 1].

During the last twenty years wavelets have found a lot of applications in
mathematics, physics and engineering. Our interest in wavelets is related to
their ability to represent a function, not only in the corresponding Hilbert
space, but also in other function spaces with perhaps quiet different topol-
ogy. Wavelets form unconditional Schauder bases in Lebesgue spaces ([16],
8], see also [3] and [11]) and in the Hardy space (23], [16]). Weighted spaces
LP(w), HP(w) were considered in [4], [5]. For the multidimensional case, see
also [19]. Wavelet topological bases were found in Sobolev spaces (][9], [2])
and in their generalizations, as in Besov ([1],[10]) and Triebel-Lizorkin ([14])
spaces. The list is far from being complete. Using "multiresolution analysis”
of the space of continuous functions, Girgensohn and Prestin constructed
in [6] (see also [18], [15] and [13]) a polynomial Schauder basis of optimal
degree in the space C[—1,1]. Here we show that the polynomial wavelets
suggested in [12] form a topological basis in the space C*°[—1,1]. As far
as we know this is the first (but we are sure not the last!) example when
wavelets form a topological basis in non-normed Fréchet space. Since the
space is nuclear, the basis is absolute.

1. Polynomial wavelets.

T.Kilgor and J.Prestin suggested in [12] the following wavelets constructed
from the Chebysev polynomials. Let II,, denote the set of all polynomi-
als of degree at most n. For n € Ny := {0,1,2,---} and |z| < 1 let
T, (z) = cos(n -arccos x) be the Chebyshev polynomial of the first kind. Let
wo(z) =1 — 2% and for n € Ny let

Wnyt(z) = 2" (1 — 2®) Ty (2) To() Ty() - - - Ton ().
The scaling functions are given by the condition

90,k<x): 7rj . kzoalv"'72]7J€N0'
’ wj(cos A1) (2 — cos &)
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Now the Kilgor-Prestin wavelets are defined as

Tj T . .
wj,k(x) = 2](%(]3],]6) [200](1’) _Wj(xj,k)]y k’ = O, 1, cee ,2j — 1, ] c No

. o (2k+1)m
with z; , = cos 57—

Then (see [12] for more details) the subspaces W_; := II; and W; =
span{y;r, k =0,1,--- 27 — 1} = span{Tyi 1, Toita, ..., Toi+1 }, j € Ny give
the decomposition

My =W, W@ --- & W, (1)

which is orthogonal with respect to the inner product

1
(r9)= | f@g@)1 -2t da,
-1
By H we denote the corresponding Hilbert space. Let ¢; ,, take the value
Lfor 1<n<2 —landejo=c¢;q9 =1/2.

Lemma 1. (Lemma 2.2 in [12]) The wavelets can be written as
27+1

Vi e(x) =277 Z T (%) T (@), k)€ j+1,n-

n=27+1
Let us express the Chebyshev polynomials in terms of the system {;}.
Lemma 2. If 27 +1<n<2*! for j € Ny then

27 -1
To =Y Tulwjn)tix
k=0
Proof - _
Since the decomposition (1) is orthogonal, we get T, = i:ol d,(ﬂn)wjyk. To

find d,(fn) we can use the following interpolational property of wavelets ([12],

(2.4))

Vi k(Tj.m) = O, 1, for m k=0,1,...,27 — 1.
Hence, d\" = T, (z; ). O

Lemma 3. Any function f € H can be represented in the form

oo 29-1
1 2
f = ;<f7 TO>T0 + ;(fa T1>T1 + Z Z Cj,k%',k
j=0 k=0
where
9 2j+1
Cj k= % ZZ 1<f7 Tn>Tn(Ij,k)
n=27+

and convergence is considered with respect to the Hilbert norm.
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Proof: The Chebyshev polynomials form a Hilbert basis in the space H.
Since (T, T,) = m/2 for n > 1 and (Tp, Tp) = m, we have f = L(f, Ty)T, +
2(f, )T+ 2 Z;io ZZZ;]-H(J“, T,)T,. By using Lemma 2 and changing the
order of summation we get the desired result. O
20+l 931

n=2i41, k=0 and

Lemma 4. For any j € Ny the matrices X; = (T,,(z; 1))

_ ol—j ‘ ' 271, 29+1 .
Yy =270 (To(@j k) €j4+1,n) o, negiq1 @r€ nOL singular.

Proof: We get the matrix Y; if we transpose X;, then multiply the last
column by 1/2 and take the common coefficient 2177, Let us multiply the
p—th row of Y by the ¢g—th column of Xj :

27+1
2! Z T (), p) Tn (T, 0)€ 41,0 = Vs p(Tj,q) = Op,g-
n=27+1
Therefore, Y; - X; = I and both matrices are not singular.

Since det(Y;) = 277 det(X;), we get det(X;) = 42/ and det(Y;) =
+279/2. 0

Remark. If we multiply the p—th row of X; by the ¢g—th column of Y},
then we get the orthogonality property (1.141) from [21].

2. Wavelet Schauder basis in C*[—1,1].

Topology 7 of the space C*°[—1, 1] of all infinitely differentiable functions
on [—1,1] can be given by the system of norms

[flp = sup{|fO(@)]  |o] < 1,0 < p}, p € No.

The first basis in C*°[—1, 1], namely the Chebyshev polynomials, was found
by Mityagin ([17], L.25). And what is more, by the Dynin-Mityagin theorem
([17], T.9), every topological basis of nuclear Fréchet space is absolute. In
our case we see that the series L(f,To)Ty + 2 >\ (f,T,)T, converges to
f € C*[—1,1] in the topology 7. The convergence is absolute, that is for any
p € Ny the series Y o [(f, Tn)| - |T|, converges. Furthermore, if {e,, &,} is
a biorthogonal system with the total ( that is &,(f) = 0,Vn = f = 0) over
C*[—1,1] sequence of functionals and for every p € Ny there exist ¢ € Ny
and C' > 0 such that

lenlp - [&nl—q < C  forall n,

then (e,) is a Schauder basis in C*°[—1, 1].
Here and subsequently, | -|_, denotes the dual norm: for a bounded linear
functional £ let |&|_, = sup{|&(f)|: |fl; < 1}

Theorem 1. The system {Ty, T4, (@/ij);";OQZ;é} is a topological basis in the
space C*[—1,1].

Proof: We suggest two proofs of the theorem.
The 1% proof is similar in spirit to the arguments of Mityagin in [17], L.25.
Let &(f) = +(f,To), &(f) = 2(f,T1) and for j € Ng, 0 < k <2 — 1 let
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& k(f) = ¢j k, where ¢; i, are given in Lemma 3. Then & (¢;,;) = 0if i # 7,
as is easy to see. For the wavelets and functionals of the same level we get

27 +1 27 +1

2 .
&inWs0) = — > Talwin) 277 ) Tulwieiorm(Tn(), Tu()) =
n=2i+1 m=27+1
92j+1
=2'7 " Ty ) T(50)E 010 = Vj.0(2k) = 01,
n=27+1

Therefore the functionals {&g, &1, (&, k)jileJc;(l)} are biorthogonal to the

system {Tp, 11, (¢;, k);i’o?;;é}. Let us check that this sequence of functionals
is total over C*>°[—1,1]. Suppose that &; ,(f) = 0 for all j and k. For
fixed j we get the system of 27 linear equations (f,T,)T,(z; ) = 0, n =
2741, , 27" with unknowns (f, T;,). By Lemma 4 the system has only the
trivial solution. Together with &(f) = & (f) = 0 it follows that (f,7,,) =0
for all n. But the Chebyshev polynomials form a basis in C*°[—1, 1] and so
f = 0. Thus it is enough to check the Dynin-Mityagin condition. Let us fix
p € Noy. For Chebyshev polynomials we have (see e.g.[21])

n*(n?—1)(n*—-2%..-(n* - (m—1)?)
1-3-5--(2m—1)

| Tl = T3 (1) = (2)

By Lemma 1,
27 +1
[Wiklp <277 sup Y [Ty <2772 | Ty |, < 207024
P 9it1 (3)

On the other hand, by orthogonality

(f,T,) = /07r f(cost) cosntdt = /Oﬁ[f(cost) — Q(cost)] cosntdt

for any polynomial @ € II,,_y. As in [7] we can take the polynomial @) =
Q-1 of best approximation to f on [—1, 1] in the norm |- |o. By the Jackson
theorem (see e.g. [20], T.1.5) for any ¢ € Ny there exists a constant C,, such
that for any n > ¢

|f_QTL—1‘O S aniq‘f|q‘
Therefore, |(f,T,)| < 7C,n"1| f|, and for 27 > ¢ we get

|§5,kl-g < 2C027 ()7

Taking into account (3) we see that the values ¢ = 2p + 1 and C = 4P*1C,
will give us the desired conclusion.

In the 2" proof we introduce the operator A first on the basis (7},) and
then by linearity. Let ATy = Ty, ATy = Ty and AT,, = ), forn = 27+k+1,
where j € Ng, k = 0,1,---,2/ — 1. Let us show that for any p € Ny there
exist ¢ € Ny and C' > 0 such that

il p < Ol Torsnialy  forall j and k. (4)

Goncharov and Kavruk
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For the left side we already have the bound (3). Also, from (2) we obtain
1
1-3-5---(2¢—1)
Clearly, the value ¢ = p + 1 provides the inequality (4) for large enough j.
Hence there exists C' depending only on p that ensures the result for all j

and k.
From (4) we deduce that the operator

| Toirii1lg > | Toslg > (2% — ¢*)".

A:C¥[-1,1] — C¥[=L1]: f=> & T — Y & AT,
0 0

is well defined and continuous. If Af = 0, then for any j € Ny we have
Zi:)l &5k = 0. Lemma 4 implies &y, = 0. Therefore, kerA = 0.
In the same way, one can easily show that A is surjective. Therefore the
operator A is a continuous linear bijection. By the open mapping theorem,
A is an isomorphism. Thus the system {7¢, 71, (¢;, k);i’o?;;(l]} is a topological
basis and what is more, it is equivalent to the classical basis (75,)5° (see e.g.
[22] for the definition of equivalent bases).

O

Remark. Since {Tj, T, (wj,k)jo.oz’o?;;é} is a block-system with respect to
the basis (77,)3°, one can suggest also a third proof based on a generalization
of Corollary 7.3 from [22], Ch.1 for the case of countably normed space.
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