
RECURSIVE FORMULAS RELATED TO THE SUMMATION
OF THE MÖBIUS FUNCTION

MANUEL BENITO AND JUAN L. VARONA

Abstract. For positive integers n, let µ(n) be the Möbius function, and M(n) its sum

M(n) =
Pn

k=1 µ(k). We find some identities and recursive formulas for computing M(n);
in particular, we present a two-parametric family of recursive formulas.

1. Introduction

The well-known Möbius function µ(n) is defined, for positive integers n, as

µ(n) :=

 1 if n = 1,
(−1)k if n is a product of k different prime numbers,
0 if there exists a prime p such that p2 divides n

(see [1, Chapter 2]). Then, for every real number x ≥ 0, the summation of the Möbius
function is defined by taking

M(x) = M(bxc) :=
bxc∑
k=1

µ(k).

In what follows, and as usually, we refer to M(x) as the Mertens function, although, before
F. Mertens (who used it in 1897, see [2]), T. J. Stieltjes already had introduced this function
in his attempts to prove the Riemann Hypothesis (see [3, Lettre 79, p. 160–164], dated in
1885).

The behaviour of M(x) is rather erratic and difficult of analyze, but it is very important
in analytic number theory. In 1912, J. E. Littlewood [4] proved that the Riemann Hypothesis
is equivalent to this fact:

(1) |M(x)| = O(x1/2+ε), when x→∞, for every ε > 0;

in relation to this subject, see also [5]. Of course, it is not yet known if (1) is true or false.
Previously, in 1897, Mertens [2] had given a table of values of M(n) for 1 ≤ n ≤ 10000.
Relying on this table, he conjectured that, for x > 1,

|M(x)| <
√
x.

This conjecture was disproved, in 1985, by A. M. Odlyzko and H. te Riele [6], but they
did not find an explicit counterexample. Actually, for every value of M(n) computed up to
that date, always happened |M(n)| < 0.6

√
n. In 1987, J. Pintz [7] proved that the Mertens

conjecture is false for some n < exp(3.21 × 1064); and this was improved further recently
in 2006 by T. Kotnik and H. te Riele [8], who showed that the Mertens conjecture is false
for some n < exp(1.59 × 1040). More studies about the order of the Mertens function can
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be found in [9] and [10]. Nowadays, to find an explicit counterexample of the Mertens
conjecture is yet a very pursued result in number theory, and it generally believed that no
counterexample will be found for n < 1020.

To evaluate M(n), a big quantity of recursive formulas appear in the mathematical liter-
ature. For instance, Stieltjes [3, Letter 79, p. 163] proved the expression

(2)
∑
k≤
√
n

(−1)k−1M(n/k) = −1 +M(
√
n)z(
√
n)−

∑
k≤
√
n

z(n/k)µ(k)

where z(x) = 0 if bxc is even and 1 if it is odd; some other recursive formulas appear in
the famous Primzahlen of E. Landau [11]. In 1996, M. Deléglise and J. Rivat [12], used an
algorithm derived from the recurrence formula

(3) M(x) = M(u)−
∑
a≤u

µ(a)
∑

u
a<b≤

x
a

M
( x
ab

)
(being 1 ≤ u ≤ x) to evaluate M(1016) = −3195437. More recursive formulas can be found
in [13], and [14]; also, a large number of further references to related studies, including a
nice historical review, are given in [15].

The aim of this paper is to prove different identities and recursive formulas satisfied by
the Mertens function M . We devote to this end sections 2, 3 and 4; see Theorems 2, 3, 6,
9, and 10. For instance, in Theorem 3 we present a formula to evaluate M(n) similar to the
one given by its definition, but with only

⌊
n
3

⌋
summands. Also, let us note the interesting

expansion for 2M(n)+3 that appears in Theorem 6, as well as the properties of the involved
coefficients, studied below; they will lead us to Theorems 9 and 10. In particular, Theorem 10
gives a two-parametric family of recursive formulas for computing the Mertens function. As
long as we know, all the “theorems” that we present in these sections are new; however,
some of the “propositions” are already known, and we have included them by completeness.

Finally, in section 5, we study some properties of a function (that we will denote H(n,m))
related with the ones that appear in the previous sections; in particular, we prove the
periodicity of this function.

2. Formulas in which only M appears

Let us begin by recalling the following well-known property of the Möbius function:

(4)
∑
d|n

µ(d) =
{

1 if n = 1,
0 if n > 1.

Indeed, it is trivial for n = 1. And, for n > 1, if n =
∏k
j=1 p

αj

j > 1 (pj primes, pj 6= pi for
j 6= i), then ∑

d|n

µ(d) =
(
k

0

)
−
(
k

1

)
+ · · ·+ (−1)k

(
k

k

)
= (1− 1)k = 0.

The identity (4) allows to find a way of relating the value M(n) with the values of M(m),
with m less than n. This result, also known (and whose proof we reproduce by completeness),
is the following:

Proposition 1. For every positive n, the Mertens function verifies

(5) 1 =
n∑
a=1

M
(n
a

)
.
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Proof. Actually, we will prove (5) also for real numbers x ≥ 1. From the definition M(x) =∑
k≤x µ(k), we have

bxc∑
a=1

M
(x
a

)
=
bxc∑
a=1

b x
a c∑
b=1

µ(b).

If ab = k, then a|k and, moreover, when the values of a and b vary, k takes the values
1, 2, . . . , bxc. Then, we have

bxc∑
a=1

b x
a c∑
b=1

µ(b) =
∑

1≤k≤bxc

∑
a|k

µ(a).

By applying (4), we get (5). �

Of course, from (5) we obtain the following recursive formula satisfied by M(n):

(6) M(n) = 1−
n∑
a=2

M
(n
a

)
,

which is essentially one of the recursive formulae used by Neubauer [13] to compute M(n)
up to 1010. Moreover, let us note that (4) and (5) were used by Deléglise and Rivat [12] to
find the identity (3).

In (6), n summands appear. In the following theorem, we reduce the number of summands
up to

⌊
n−1

2

⌋
.

Theorem 2. If n ≥ 3, then

(7) M(n) = −
bn−1

2 c∑
a=1

M

(
n

2a+ 1

)
.

Proof. If n = 2m with m > 1, by applying (6) and (5), we get

M(2m) = 1−
2m∑
a=2

M

(
2m
a

)
=

m∑
a=1

M
(m
a

)
−

2m∑
a=2

M

(
2m
a

)

= −
m−1∑
a=1

M

(
2m

2a+ 1

)
= −

bn−1
2 c∑

a=1

M

(
n

2a+ 1

)
.

For the case n = 2m+1, let us first note that the greatest remainder that can be obtained
when m is divided by a is a− 1, and, moreover

a− 1
a

+
1
2a

=
2a− 2 + 1

2a
=

2a− 1
2a

< 1.

Thus, it is clear that

M

(
2m+ 1

2a

)
= M

(
m

a
+

1
2a

)
= M

(m
a

)
.

Then, by applying (6), (5), and this fact, we get

M(2m+ 1) = 1−
2m+1∑
a=2

M

(
2m+ 1
a

)
=

m∑
a=1

M
(m
a

)
−

2m+1∑
a=2

M

(
2m+ 1
a

)

= −
m∑
a=1

M

(
2m+ 1
2a+ 1

)
= −

bn−1
2 c∑

a=1

M

(
n

2a+ 1

)
. �
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3. Formulas in which only µ appears

In the following theorem, we expand M(n) as a sum with
⌊
n
3

⌋
summands, in which only

µ and the integer-part function appear. In particular, this result provides a more efficient
way to compute M(n) than just to use its definition M(n) =

∑n
k=1 µ(k).

Theorem 3. If n ≥ 3, then

(8) M(n) = −
bn

3 c∑
k=1

⌊
n− k

2k

⌋
µ(k).

Proof. Let us remind (7) in Theorem 2. The greatest value achieved by
⌊

n
2a+1

⌋
is
⌊
n
3

⌋
.

Moreover,
⌊

n
2a+1

⌋
takes value k if

k ≤ n

2a+ 1
< k + 1,

i.e.,
n− (k + 1)

2(k + 1)
< a ≤ n− k

2k
.

In this way,
⌊

n
2a+1

⌋
= k for

⌊
n−k
2k

⌋
−
⌊
n−(k+1)
2(k+1)

⌋
values of a.

As a consequence,

M(n) = −
bn

3 c∑
k=1

(⌊
n− k

2k

⌋
−
⌊
n− (k + 1)

2(k + 1)

⌋)
M(k)

= −

((⌊
n− 1

2

⌋
−
⌊
n− 2
2 · 2

⌋)
M(1) +

(⌊
n− 2
2 · 2

⌋
−
⌊
n− 3
2 · 3

⌋)
M(2) + · · ·

+

(⌊
n−

⌊
n
3

⌋
2
⌊
n
3

⌋ ⌋− ⌊n− ⌊n3 ⌋− 1
2
(⌊
n
3

⌋
+ 1
) ⌋)M (⌊n

3

⌋))

= −

(⌊
n− 1

2

⌋
µ(1) +

⌊
n− 2
2 · 2

⌋
µ(2) +

⌊
n− 3
2 · 3

⌋
µ(3) + · · ·

+

⌊
n−

⌊
n
3

⌋
2
⌊
n
3

⌋ ⌋µ(⌊n
3

⌋)
−

⌊
n−

⌊
n
3

⌋
− 1

2
(⌊
n
3

⌋
+ 1
) ⌋M (⌊n

3

⌋))
.

Now, let us observe

n−
⌊
n
3

⌋
− 1

2
(⌊
n
3

⌋
+ 1
) =


3m−m−1

2m+2 = 2m−1
2m+2 < 1 if n = 3m,

3m+1−m−1
2m+2 = 2m

2m+2 < 1 if n = 3m+ 1,
3m+2−m−1

2m+2 = 2m+1
2m+2 < 1 if n = 3m+ 2,

and so ⌊
n−

⌊
n
3

⌋
− 1

2
(⌊
n
3

⌋
+ 1
) ⌋ = 0.

Then, (8) follows. �

The following result relates the value of µ(n) to the values of µ(m) for 1 ≤ m < n.
Actually, this result is already known (see [1, Theorem 3.12]), although the proof that we
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make in this paper is different and, perhaps, new; here, we use an argument similar to the
one used in the proof of Theorem 3.

Proposition 4. The Möbius function satisfies

(9) 1 =
n∑
k=1

⌊n
k

⌋
µ(k).

Proof. By Proposition 1, 1 =
∑n
a=1M

(
n
a

)
. Here, we have

⌊
n
a

⌋
= k if and only if

k ≤ n

a
< k + 1,

i.e.,
n

k + 1
< a ≤ n

k
,

and so M
(
n
a

)
= M

(⌊
n
a

⌋)
= M(k) for

⌊
n
k

⌋
−
⌊

n
k+1

⌋
values of a.

Then

1 =
n∑
a=1

M
(n
a

)
=

n∑
k=1

(⌊n
k

⌋
−
⌊

n

k + 1

⌋)
M(k)

=
(⌊n

1

⌋
−
⌊n

2

⌋)
M(1) +

(⌊n
2

⌋
−
⌊n

3

⌋)
M(2) + · · ·+

(⌊n
n

⌋
−
⌊

n

n+ 1

⌋)
M(n)

=
⌊n

1

⌋
+
⌊n

2

⌋
(M(2)−M(1)) + · · ·+

⌊n
n

⌋
(M(n)−M(n− 1))−

⌊
n

n+ 1

⌋
M(n)

=
⌊n

1

⌋
µ(1) +

⌊n
2

⌋
µ(2) + · · ·+

⌊n
n

⌋
µ(n) =

n∑
k=1

⌊n
k

⌋
µ(k). �

Now, let us prove another expansion of 1 as a sum of µ’s. We will use this result in the
proof of Theorem 6.

Proposition 5. For n ≥ 3, the Möbius function satisfies

1 =
bn

3 c∑
k=1

⌊ n
3k

⌋
µ(k).

Proof. First, let us suppose n = 3m. By Proposition 4, we have

1 =
m∑
k=1

⌊m
k

⌋
µ(k) =

n
3∑

k=1

⌊
3m
3k

⌋
µ(k) =

bn
3 c∑

k=1

⌊ n
3k

⌋
µ(k).

If n = 3m+ 1,
bn

3 c∑
k=1

⌊ n
3k

⌋
µ(k) =

m∑
k=1

⌊
3m+ 1

3k

⌋
µ(k) =

m∑
k=1

⌊m
k

⌋
µ(k) = 1,

because, in ⌊
3m+ 1

3k

⌋
=
⌊
m

k
+

1
3k

⌋
,

the remainder when m is divided by k is always less or equal than k − 1; and, by being
k − 1
k

+
1
3k

=
3k − 2

3k
< 1,
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we have ⌊
3m+ 1

3k

⌋
=
⌊m
k

⌋
.

If n = 3m+ 2, ⌊
3m+ 2

3k

⌋
=
⌊
m

k
+

2
3k

⌋
=
⌊m
k

⌋
by being

k − 1
k

+
2
3k

=
3k − 1

3k
< 1;

thus,
bn

3 c∑
k=1

⌊ n
3k

⌋
µ(k) =

m∑
k=1

⌊
3m+ 2

3k

⌋
µ(k) =

m∑
k=1

⌊m
k

⌋
µ(k) = 1. �

Then, we establish the following result, in which, as in Theorem 3, we show an expansion
of M(n) as a sum of bn3 c summands; in every summand, only the Möbius function and a
coefficient (related to the integer-part function) appear. This will be a fruitful result, because,
later in this paper, we will find some alternative formulas and interesting properties for the
coefficients.

Theorem 6. For n ≥ 3, we have

(10) 2M(n) + 3 =
bn

3 c∑
k=1

g(n, k)µ(k)

with

(11) g(n, k) = 3
⌊ n

3k

⌋
− 2

⌊
n

2k
− 1

2

⌋
.

Proof. Let us add 2 times the expansion for M(n) in Theorem 3 plus 3 times the expansion
for 1 in Proposition 5. �

The next result presents an alternative way for computing g(n, k):

Proposition 7. For k > 0 and n ≥ 0, let us take n0 such that

n ≡ n0 mod 6k, 0 ≤ n0 < 6k.

Then

(12) g(n, k) =


2 if 0 ≤ n0 < k,
0 if k ≤ n0 < 3k,
1 if 3k ≤ n0 < 5k,
−1 if 5k ≤ n0 < 6k.

Proof. Le us decompose n = n0 + 6kn1, with 0 ≤ n0 < 6k. By (11),

g(n, k) = 3
⌊
n0 + 6kn1

3k

⌋
− 2

⌊
n0 + 6kn1 − k

2k

⌋
.

Then, it is clear that

if 0 ≤ n0 < k, g(n, k) = 6n1 − 2
⌊

6k(n1−1)
2k + 5k+n0

2k

⌋
= 2;

if k ≤ n0 < 3k, g(n, k) = 6n1 − 6n1 = 0;

if 3k ≤ n0 < 5k, g(n, k) = 3 + 6n1 − 6n1 − 2 = 1;

if 5k ≤ n0 < 6k, g(n, k) = 3 + 6n1 − 6n1 − 4 = −1. �

30    The Open Mathematics Journal, 2008, Volume 1                        Benito and Varona



4. Formulas in which both M and µ appear

Let us consider the function g(n, k) for fixed n, i.e., as a function of k. In the following
proposition, we show how g(n, k) is constant when k varies a certain interval.

Proposition 8. Let a and n be positive integers, with a < n. When k varies in the interval
n

a+ 1
< k ≤ n

a

the value of g(n, k) remains constant. This value depends only upon the remainder of a
modulus 6.

Proof. Let us decompose a = a0 + 6a1 with 0 ≤ a0 < 6. If n
a+1 < k ≤ n

a , then ka ≤ n <

k(a+ 1) and so

(13) ka0 + 6ka1 ≤ n < k(a0 + 6a1 + 1).

Thus, n = n0 + 6ka1 for some n0 verifying 0 ≤ n0 < 6k. By substituting this value of n
in (13), it becomes

(14) ka0 ≤ n0 < ka0 + k.

By (12), g(n, k) takes the same value for all n0 that satisfies (14), and this value of g(n, k)
depends only on a0. �

As a consequence of Proposition 8, we can define the function

(15) h(a) = g(n, k) for
n

a+ 1
< k ≤ n

a
.

By using (12) (pay attention to a0 in the proof of Proposition 8), h(a) takes these values:

(16) h(a) =



2, if a ≡ 0 mod 6,
0, if a ≡ 1 mod 6,
0, if a ≡ 2 mod 6,
1, if a ≡ 3 mod 6,
1, if a ≡ 4 mod 6,
−1, if a ≡ 5 mod 6.

Now, we will split the sum in (10) in two parts, introducing a parameter r. The first
part will consist in the b n

r+1c first terms of the sum in (10). The second part will be, of
course, the summands that remain; they will be manipulated in such way that we will get
r sumands in which only the functions h and M appear. We can say that this is a mixed
recursive formula for computing M : M(n) is obtained from µ(m) and M(m) with m < n.

Theorem 9. Let n and r two integers satisfying 3 ≤ r ≤ n− 1. Then

(17) 2M(n) + 3 =
b n

r+1 c∑
k=1

g(n, k)µ(k) +
r∑
a=3

h(a)
(
M
(n
a

)
−M

(
n

a+ 1

))
.

Proof. By (10) and (15),

2M(n) + 3 =
bn

3 c∑
k=1

g(n, k)µ(k) =
b n

r+1 c∑
k=1

g(n, k)µ(k) +
r∑
a=3

bn
a c∑

k=b n
a+1 c+1

g(n, k)µ(k)

=
b n

r+1 c∑
k=1

g(n, k)µ(k) +
r∑
a=3

h(a)
bn

a c∑
k=b n

a+1 c+1

µ(k)
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=
b n

r+1 c∑
k=1

g(n, k)µ(k) +
r∑
a=3

h(a)
(
M
(n
a

)
−M

(
n

a+ 1

))
. �

Prior to continue, let us note which would be the two limit cases: of course, r = 2 is
Theorem 6; and, when r = n, the sum indexed by k in (9) disappears. Another particular
case appears by taking r = b

√
nc; thus (17) becomes

M(n) =
1
2

(
−3 +

b n
b
√

nc+1 c∑
k=1

g(n, k)µ(k) +M
(n

3

)

+
b
√
nc∑

a=4

(h(a)− h(a− 1))M
(n
a

)
− h(b

√
nc)M

(
n

b
√
nc+ 1

))
,

a formula that resembles (2) after isolating M(n), but starting in M(n3 ) instead of M(n2 ).
On the other hand, by splitting again the summand on the right in (17), we can introduce

a new parameter s:

Theorem 10. Let n, r and s be three integers such that s ≥ 0 and 6s+9 ≤ r ≤ n−1. Then

2M(n) + 3 =
b n

r+1 c∑
k=1

g(n, k)µ(k)

+
s∑
b=0

(
M

(
n

3 + 6b

)
− 2M

(
n

5 + 6b

)
+ 3M

(
n

6 + 6b

)
− 2M

(
n

7 + 6b

))

+
r∑

a=6s+9

h(a)
(
M
(n
a

)
−M

(
n

a+ 1

))
.

Proof. Let us expand the summand
∑r
a=3 in (17). In this way,

2M(n) + 3 =
b n

r+1 c∑
k=1

g(n, k)µ(k) + h(3)M
(n

3

)
− h(3)M

(n
4

)
+ h(4)M

(n
4

)
− h(4)M

(n
5

)
+ h(5)M

(n
5

)
− h(5)M

(n
6

)
+ h(6)M

(n
6

)
− h(6)M

(n
7

)
+ h(7)M

(n
7

)
− h(7)M

(n
8

)
+ h(8)M

(n
8

)
− h(8)M

(n
9

)
+ · · ·

+ h(6s+ 8)M
(

n

6s+ 8

)
− h(6s+ 8)M

(
n

6s+ 9

)
+

r∑
a=6s+9

h(a)
(
M
(n
a

)
−M

(
n

a+ 1

))
.

By applying the values of h according (16), the result follows. �

Thus, in Theorem 10 we have presented a two-parametric family of recurrence relation for
computing an isolated value of M(n). They provide mixed ways to calculate M(n) using,
in part, previously computed (and stored) values of M(m) for a certain values of m, and
another part that must be explicitly computed. Eventually, a suitable election of parameters
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r and s (that may depend on n) will allow to get efficient methods of running this algorithm
in a computer; at this point, it is clear that a careful implementation must be performed,
taking into account the machine to be used. The idea to use this expansion is as follows: The
terms in the first sum

∑b n
r+1 c
k=1 are directly evaluated. The second sum

∑s
b=0 is computed

by using previously computed and stored values of M . And the third sum
r∑

a=6s+9

h(a)
(
M
(n
a

)
−M

(
n

a+ 1

))
=

r∑
a=6s+9

h(a)
bn

a c∑
k=b n

a+1 c+1

µ(k)

can be computed by using both methods, according the size of n, r and s.
Finally, let us note which are the limit cases of the identity established by Theorem 10:

s = −1 (Theorem 9); s = −1 and r = 2 (Theorem 6); r = n (
∑
b disappears); and r = 6s+8

(
∑
k disappears).

5. The function H(n,m). Periodicity

In the previous sections (see Theorems 6, 9 and 10), we often obtain expressions with
the form

∑m
k=1 g(n, k)µ(k). Thus, in this section, we define a new function H(n,m) (for

non-negative integers n and positive integers m) by taking

H(n,m) :=
m∑
k=1

g(n, k)µ(k),

and we are going to study some of its properties. Also, we will use the following notation:

Cm := 6 · lcm{1, 2, . . . ,m}.
First, let us see that, when we fix m in the second variable of H, the function is periodic

with period Cm.

Proposition 11. For every non-negative integer t, we have

H(n+ tCm,m) = H(n,m).

Proof. By being g(n+ 6kt, k) = g(n, k) for k = 1, 2, . . . ,m, we have g(n+Cmt, k) = g(n, k).
Thus, the result follows. �

The following result gives the value of H(n,m) as a function of M(m).

Proposition 12. For every non-negative integer t, we have

H(0 + tCm,m) = 2M(m),

H(1 + tCm,m) = 2M(m)− 2,

H(2 + tCm,m) = 2M(m),

H(n+ tCm,m) = 2M(m) + 3, if 2 < n ≤ m.

Proof. By Proposition 11, without loss of generality, we can suposse t = 0. Then, it is
enough for computing H(n,m) for 0 ≤ n ≤ m. First, let us analyze the cases n = 0, 1, 2, 3.
By applying (12), we have

H(0,m) =
m∑
k=1

g(0, k)µ(k) = 2
m∑
k=1

µ(k) = 2M(m),

H(1,m) =
m∑
k=1

g(1, k)µ(k) = 0 · µ(1) + 2
m∑
k=2

µ(k) = 2M(m)− 2,
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H(2,m) =
m∑
k=1

g(2, k)µ(k) = 0 · µ(1) + 0 · µ(2) + 2
m∑
k=3

µ(k) = 2M(m).

For n verifying 2 < n ≤ m, let us decompose

(18) H(n,m) =
bn

3 c∑
k=1

g(n, k)µ(k) +
n∑

k=bn
3 c+1

g(n, k)µ(k) +
m∑

k=n+1

g(n, k)µ(k).

Now, in the first sum, let us apply (10); in the second sum, let us use that, for
⌊
n
3

⌋
< k ≤ n

(i.e., k ≤ n < 3k) we have g(n, k) = 0 (see (12)); and, finally, for the third sum, let us note
that g(n, k) = 2 for 0 ≤ n < n+ 1 ≤ k. In this way, (18) becomes

H(n,m) = (2M(n) + 3) + 0 + 2 (M(m)−M(n)) = 2M(m) + 3. �
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[12] Deléglise M, Rivat J. Computing the summation of the Möbius function. Experiment. Math. 1996; 5:
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