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Semi-classical approach for Anosov diffeomorphisms
and Ruelle resonances
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September 17, 2008

Résumé

In this paper, we show that some spectral properties of Anosov diffeomorphisms
can be obtained by semi-classical analysis. In particular the Ruelle resonances which
are eigenvalues of the Ruelle transfer operator acting in suitable anisotropic Sobolev
spaces and which govern the decay of dynamical correlations, can be treated as the
quantum resonances of open quantum systems in the Aguilar-Baslev-Combes theory
or the more recent Helffer-Sjostrand phase-space theory [1].

1 Introduction

An Anosov diffeomorphism f on a compact manifold M is characterized by the fact that
under iterations, every trajectory has hyperbolic instability, which means that two points
that are close to each other will be separated exponentially fast under the dynamics in
the future or in the past. As a consequence the behavior of individual trajectories looks
like unpredictable or “chaotic”. Instead of looking at individual trajectories, it is then
more natural to study a set of trajectories, or equivalently the transport of functions (or
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densities) under the map. One is led to study the so-called Ruelle transfer operator F
defined by Fo = ¢ o f with ¢ € C® (M). The spectral decomposition of this operator
provides objects invariant under the dynamics and therefore informs us on the long time
behavior of the dynamics, such as ergodicity, mixing, decay of correlations, central limit
theorem ...(see [2, chap. VII|,[3, 4, 5]).

The main subject of this paper is the spectral properties of the transfer operator F.
The approach we propose is based on an elementary but crucial observation which itself
relies on the hypothesis of hyperbolicity: high Fourier modes of F"gp go towards infinity
as n — oo or n — —oo. In other words, the variations of the function ¢ evolve towards
finer and finer scales as n — oo, and as a consequence the “information” about the ini-
tial function ¢ disappear from the macroscopic scale (the observation scale). This is the
mechanism responsible for chaotic behavior, and in particular for the decay of dynamical
correlation functions. In the 70’s, David Ruelle has initiated a fruitful theory called ther-
modynamic formalism [6, 7, 8] where he studied the transfer operator F and defined the
Ruelle resonances which govern the exponential decay of the dynamical correlation func-
tions. This approach has recently been improved considerably in the works of M. Blank,
S. Gouézel, G. Keller, C. Liverani [9, 10, 11] and V. Baladi and M. Tsujii [12, 13| (see [13]
for some historical remarks) where the authors demonstrate that the Ruelle resonances are
the discrete spectrum of the transfer operator in suitably defined functional spaces.

From a mathematical point of view, the escape of the function F"(p towards high
Fourier modes we are interested in, is similar to the escape of a quantum wave function
towards infinity in space occurring in open quantum systems. In such systems, studied
since a long time because of their relevance to spontaneous emission of light in atoms [14]
or radioactive decay in nuclei, physicists and mathematicians have elaborated concepts
and techniques. In the 70’s, J. Aguilar, E. Balslev, J.M. Combes, B. Simon and others
developed a mathematical theory for quantum resonances, which has been improved after
by many authors in the 80’s, in particular B. Helffer and J. Sjostrand [1, 15].

The aim of this paper is to show that some results of C. Liverani et al. [9, 10, 11, 16|,
V. Baladi et al. [12, 13| concerning the definition and properties of Ruelle resonances fit
perfectly well within the semi-classical approach of quantum resonances in phase space
developed in [1, 15, 17|. The results we present are not new, but we want to show the
relevance of the semi-classical analysis to the theory of hyperbolic dynamical systems.

Semi-classical analysis (or equivalently microlocal analysis) has been developed for the
study of partial differential equations in the regime of small wave-length or equivalently,
high Fourier mode regime [18, 19, 20]|. As we explained above, the very definition of hy-
perbolic dynamics involves high Fourier modes and this implies that semi-classical analysis
should be a “natural” approach for its understanding. The idea of relevance of semi-classical
analysis in the context of hyperbolic dynamics has been presented and used in [21] in a
simpler framework (i.e. real analytical maps on the torus). In this paper we present the
later approach in wider generality.

In semi-classical analysis we distinguish two kinds of operators, the pseudo-differential
operators (PDO) and the Fourier integral operators (FIO). To each PDO P is associated
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a function P = o <Z5) on the cotangent bundle T*M, called its symbol. To each FIO

F is associated a symplectic map F on T*M. In semi-classical analysis, we manipulate
the symbols instead of the operators, and powerful theorems transcribe properties of the
symbols in terms of properties of the operators (for example spectral properties).

In our context, the Ruelle transfer operator F is a FIO whose associated symplectic map
denoted F : T*M — T*M, is the lift of f~1 (the inverse of the Anosov diffeomorphism).
This is presented in Section 2.

In Section 3, we study the dynamics of F. It appears that in T*M, the trajectories of
F are non compact, except for the maximal compact invariant subspace, the section £ = 0,
and this is related in an essential way to the discreteness of the spectrum of the operator
F obtained after. We construct an “escape function” A,, on the cotangent space T*M,
which decreases strictly along the non-compact trajectories of F', in a controlled manner.
Since it decreases in the unstable direction and increases in the stable direction, the escape
function A,, belongs to a class of symbols with variable order, defined in Appendix A.
We defined an associated invertible PDO denoted by A,,. We also define the anisotropic

Sobolev space associated to Ay, in the standard manner: H™ % A1 (L2 (M)).

In Section 4, we show in Theorem 2 that the operator F acting on the anisotropic
Sobolev space H™ has a discrete spectrum outside an a disk of radius ¢,, (which can be
made arbitrary small). The discrete spectrum does not depend on the choice of A,, and
defines the Ruelle resonances. This is the main result of this paper. This theorem has
already been obtained by various authors with different degrees of generalities [10, 11,
12, 16|, but the proof we present here is different as it uses in a simple way three major
Theorems of semi-classical analysis: the “Composition Theorem for PDO”, the “Egorov’s
Theorem for transport” and the “L? continuity Theorem”.

As an application of this approach, we derive expressions for dynamical correlation
functions in Section 5. In Section 6, we propose a new proof for a theorem of D. Anosov
which states that an Anosov diffeomorphism preserving a smooth measure is mixing. In
Section 7, we show that a semi-classical truncation of the operator F gives the Ruelle
resonance spectrum. This latter result is useful for numerical computations.

In appendix A, we provide a self-contained presentation of semi-classical results adapted
for this article.

The case of uniformly expanding maps can be considered with a similar approach.
However it would be mostly simplified by the fact that the escape function A,, would
have constant order m, and the associated Sobolev space H™ are usual (non anisotropic)
Sobolev spaces.

Acknowledgment: We gratefully acknowledge Mady Smets and “Le foyer d’humanisme
de Peyresq” for their nice hospitality during a workshop where major part of this work
has been made. FF acknowledges support by “Agence Nationale de la Recherche” under
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Frédéric Naud, Stéphane Nonnenmacher and Dominique Spehner for discussions related to
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this work.

2 The model of hyperbolic map

Let M be a smooth compact connected manifold. Let f : M — M be a C* Anosov
diffeomorphism. We recall the definition:

Definition 1. (see [5] page 263) A diffeomorphism f : M — M is Anosov (or uniformly
hyperbolic) if there exists a Riemannian metric go, an f-invariant orthogonal decomposi-

tion of T M :
TM = E, ® E, (1)
and 0 < 0 < 1, such that for any x € M
[Daf (vs)ly, < Olvsly, .  Vus € Eg(2) (2)
}Dxf—l (,U“)}go < 0 |vu|go , Y, € E, ()

This means that Ey is the stable foliation and E, the unstable foliation for positive time.

Remarks:

1. Standard examples are hyperbolic automorphisms of the torus T" as well as their
C' small perturbations, thanks to the structural stability theorem (see [5] page 266).
The problem of classifying manifolds that admit Anosov diffeomorphisms turned out
to be very difficult. The only known examples are infranil manifolds (which contain
the torus case) and it is conjectured that they are the only ones [22, p. 16]. Here is
a simple example of Anosov diffeomorphism on (x,y) € T? = R*/Z*

)= G0 G) (e ) ®

with ¢ small enough?. The Ruelle resonances of this map are depicted on figure 6
page 29.

2. The metric go (x) (called the Lyapounov metric) and the distributions £, (z) , Es () C
T, M are in general only Holder continuous with respect to x € M (See [5] chap. 19).
For the purpose of semi-classical analysis, one needs a smooth metric in order to

2This example preserves area dx A dy.
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construct suitable symbols. In this paper, we will assume that M is endowed with a
smooth Riemannian metric g satisfying

1
290 <g<cgo (4)

uniformly on M, with .
1<e< b2, (5)

With 6, % %0, this implies that 0 < 6, < 1 and for any v, € E, (z) one has estimates

similar to Eq.(2), but with the metric g:
|Dl‘f (v8)|g S c |D$f (US)|90 S Ce |,U5|g0 S 620 |vs|g = 0* |vs|g (6)
Similarly for v, € E, (z), |[Dof~" (vu)], < 0. |vu|,. Unless specified, we will always

work with this metric g, which can be obtained from gy by smoothing®.

2.1 Transfer operators

We denote by dx = dupe, an arbjtrary4 smooth density normalized by e, (M) = 1. Let
us define the bounded operator F on L? (M) by®

~ def
Fo=ypof, pel*>(M) (7)

called the Ruelle transfer operator (or Koopman operator).

Let us emphasize that in general f does not preserve any smooth measure, but if f
preserves the Lebesgue measure fi, then F is unitary in L2 (M).

Let us remark that the L?—adjoint operator F* s given by

/\* _ 71
(F w) (W)= (2o /™) () |Ds-1» ]|
with ¢, ¢ € C*° (M). The adjoint operator F* also called the Perron-Frobenius oper-

ator is usually considered since it transports densities [11]. Our main result, Corollary 1
page 18, concerns the spectrum of both F' and F™.

3Tf however the metric g is already given, one can always fulfill Eq.(5) by taking some positive power
fm™, ng € N, of the Anosov map.

*We have chosen a density dz in order to define L2 (M). However this choice does not play any role
for the principal results of this paper.

Tt would have been more natural to consider F(p def v o f~! instead, but our choice here follows the
paper [21] where we considered expanding maps which are not invertible.
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Other types of transfer operators. In the context of thermodynamic formalism of
dynamical systems introduced by D. Ruelle et al. (see [23| chap. 4, [24] chap. 6), a more
general class of transfer operators than Eq.(7) is considered and defined as follow. Let
V € C* (M) be a smooth (real or complex) valued function called the potential and let
Fy : C™ (M) — C* (M) be defined by

(Fre) (@)= o (f (2)) @ (®)
Compared to the simplest case V = 0, given in Eq.(7), the new term e" is a pseu-
dodifferential operator of order 0 (as defined in the subsequent sections and in Appendix
A). Consequently the canonical map F : T*M — T*M associated to Fy, Eq.(11), is un-
changed. This implies that our main results, Theorem 1 page 16, Corollary 1 page 18 and
their proof, are the same® for this new operator Fy.

There is even a slightly more general class of transfer operators acting on sections of line
bundles”, for which our results work as well. Since these transfer operators have interesting
connections with quantum chaos and geometric quantization (see [25]) we mention them.
A general definition proceeds as follow.

Definition 2. Let L — M be a smooth complex line bundle over M. A transfer op-
erator F' associated to the smooth diffeomorphism f : M — M 1is a linear map acting
on smooth sections, I : C™ (M;L) — C*(M;L), such that for any smooth function
Y € C® (M) and any smooth section s € C* (M; L) one has

(Fws)) =@or.(Fs) 9)
One also requires that for any x € M and s € C* (M; L),

(s0.f) (x) #0= (Fs) (2) £ 0 (10)

This definition of transfer operator generalizes Eq.(8), since in the case where L is a
trivial line bundle, sections are identified with complex functions thanks to a global non
vanishing section r € C*° (M; L): any global section s € C*° (M; L) can be written s = @r
with ¢ € ¢ (M). Let ¢ € C™ (M) be defined by F (r) = e"r which is possible from
(10). Then (9) gives F (or) = (¢ o f)eVr which is equivalent to (8).

In this paper we will only consider the simpler expression Eq.(7).

R 60f course the spectrum of Fy depends on V and the value 1 is in general no more an eigenvalue of
Fy . Corollary 2 and 3 page 22 are specific to Fy—g.
"This works also for vector bundles.
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Figure 1: Dynamics of F defined in Eq.(11), on the cotangent space T*M.

2.2 Dynamics on the cotangent space

In order to study the spectrum of the operator F using semi-classical analysis later on, we
need to consider the dynamics induced by f in the cotangent bundle F : T*M — T*M,
namely the lift of f~!. See Figure 1. For any x € M, let 2/ = f~! (z), and define

F: T'M — T5M
¢ (D) (11)

In semi-classical analysis, the map [ is precisely the canonical map associated to the
operator F' defined in Eq.(7). This appears in Egorov’s Theorem 9. It is the lift of f~1
rather than f because the support of Fcp = o f is the support of ¢ transported by f~1.

Notice that the zero section £ = 0 is a compact set, invariant by the dynamics and its
complement contains only unbounded trajectories. This observation is at the origin of the
method which leads to the quasi-compacity result obtained in the main Theorem 1.

Let T*M = EX®E be the decomposition dual to Eq.(1),i.e. £ (E,) =0 and E} (E,) =
0.

Lemma 1. The decomposition T*M = E* ® L7 is invariant by ' and:

|F1 (&) < 0.6 Vi € E;. (12)

with 0, = ¢*0, 0 < 0* < 1, with ¢ from Eq. (4).
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Proof. The distribution E¥ is invariant by F because for any & € E* v, € E,, one has
F (&) (vy) = ((Df)t &) (vu) = & (Df (vy)) = 0 since E, is invariant by Df. The same holds
for E. On the other hand, one gets easily convinced that Eq. (4) implies the same inequalities
for the metric on the dual space. Eq.(2) implies that on the dual space, for any & € E¥ (z),
|F (&s)]y, < 01&s],,- Then for any & € EJ () one has

’F(gs)’g S C‘F(gs)’go S CH ‘gS’go S 020 ’68’9

and similarly for {F‘l (£u){g < c20|¢,|, V€, € B
]

3 The escape function and the anisotropic Sobolev spaces

3.1 Construction of the escape function A,, and the pseudodiffer-
ential operator A,,

In this section, we construct a function A,, on the cotangent space which decreases along
all the unbounded trajectories of F' pictured in Figure 1. It is called an escape function.
In order to apply semi-classical theorems later on, we make sure that A,, is a suitable
symbol. This will allow us to construct a pseudodifferential operator A,, from the symbol
A,,. Tt turns out that an escape function A, (z, &) suitable for our purposes must have an
order m in () which depends itself of the direction £/ [£|. This gives rise to general classes
of symbols 55" and PDO’s W)™ with variable order m (z,¢). Their definitions and
main properties are summarized in Appendix A.

Lemma 2. Let u < 0 < s. There exists a order function m (x,£) € S taking values in
[u, s], with the following properties. For any fivzed x and || > 1, m(x,€) depends only
on the direction & = £/ |€| of the cotangent vector. Moreover m (x,€) = s (resp. u) in a
vicinity of the stable direction E¥ (x) (resp. unstable direction EF (x)). See figure 2. The
function m (z,€) decreases with respect to the map F':

AR >0, V=R,  (moF)(z,&) —m(z,§) <0, (13)

Am (2,6) ()™ (e) =1+ ¢ (14)

which belongs to the class S;n(m’f), for any % < p < 1. The main property of the symbol
A, is:

Define

(Am o F) (z,)
A (2,8)

with a = min (—u, s) and ¢ > 0 independent of the choice of u, s.

IR >0, Y[¢| >R, <e<1 (15)
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Remarks:

e Eq.(15) means that the function A,, decreases strictly and uniformly along the tra-
jectories of F' in the cotangent space. We call A,, an escape function.

e The constancy of m in the vicinity of the stable/unstable direction allows us to have
a smooth order function m despite the foliations E¥ (z),E (z) have only Hi;celder
regularity.

e Inspection of the proof shows that ¢ can be chosen arbitrary close to log ((})

The real symbol A,, can be quantized into a pseudodifferential operator A,, of variable

order m (z, ), according to Eq.(57). Then Corollary 4 and Example 1 tell us that we can

modify the symbol A,, at a subleading order (i.e. Sy"™9~3"Y) quch that the operator

can be assumed to be formally self-adjoint and invertible on C* (M).
Proof of Lemma 2.

The function m. Since the lifted map F* defined in Eq.(11) is linear in &, it defines
a map F on the cosphere bundle S*M = (T*M\ {0}) /R*, namely the space of directions

£:=¢/ ¢,
which is a compact space. See Figure 2. The image of Ej, Y C T"M by the projection
T*M\ {0} — S*M are denoted respectively E¥ E* C S*M. Eq.(12) implies that E* is a
uniform attractor for F, and E;‘ is a uniform repeller, i.e. F™ <§> converges to ENZ (respect.

E*) when n — o0 (respect. n — —o0). .
~ Let u <0 < s. Let mg € C®(S*M; [u, s]) with mg = s > 0 in a neighborhood N; of
E? and mp = v < 0 in a neighborhood N, of E;. We also assume that

e N, = F! (g) e N,)and (€ N, = F (g) e N, (16)

See Figure 3.

) 1 N—-1 -
M= o n:ZNmo oF (17)
Then i 1 i i
MOF—m:W<mOOFN—mooF’N) (18)

We will show now that

VEesSTM @ (ﬁ (g)) W (5) <0. (19)
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Figure 2: The map F' on the cotangent space T*M and the induced map F on the cosphere

bundle S*M.

. F1 F
N, ) N Nu
—— | | | ———
= : Bl
Nsl | § : :Nu
: : F_N | |
FN

Figure 3: The horizontal axis is a schematic picture of S*M and this shows the construction

and properties of the sets N, and N,,.



Semi Classical Approach for Anosov Diffeomorphisms The Open Mathematics Journal, 2008, Volume 1

Let N, := S*M \ F-N (Nu) and N, 1= S*M \ FN (N) Then mq (ﬁN (5)) = u for
£ ¢ N,, and similarly my (F*N (g)) — sforé¢ N,.
For N large enough one has Ny ¢ N,, N, C N, and N, N N, = (. Therefore,
o if £ € N, then € ¢ N, and my (F—N (5)) — s > mg (ﬁN (5)) and (18) gives
W ((9)-n(9 =0
o Similarly if € € N, then € ¢ N, and mo (F’N (g)) — u < my (F—N (5)) thus
(F(9)-n (9 =0

e Finally if £ ¢ (N, UN,) then my <FN (é)) — mg (F*N <é>) = (u—s) < 0 and
therefore

VE ¢ (N, U N,) m(ﬁ(é))-m(é):i(u—sko (20)

We have shown Eq.(19).
We construct a smooth function m on 7" M satisfying
mie,) = m(€), g >1,
0 if €] < 1/2

Then (19) implies Eq.(13).
From Eq.(16) one deduces that the set
s(§)={nez / F(¢)¢UN)}
is connected. Moreover the cardinal of this set is uniformly bounded:
INeEN Ve SM jjé‘(é) <N
From this we deduce that
o if { € N, then FN (é) ¢ N, but also F" (5) ¢ N, forn < N and even F" (f) e N,
for n < N — N. Thus (17) gives
~ N +1 s
7 > (122" > Z
m<F(g>>—<1 ON )‘H ON =2 (21)

where the last inequality holds for N large enough.

e If £ € N, one shows similarly that

o= (- 20)er 23

where the last inequality holds for N large enough.
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The symbol A,,. Let
A (2,€) = (&

with (€) = y/1+ [€]% A,, belongs to the class S, for any 1 <p <1 from Lemma 6.
We will show now the uniform escape estimate Eq.(15).
For |£| large enough one has

log A (2,) = m () (), log (Ao F) (,€) = (F (£) ) n(F (©))

o If £ ¢ (N,UN,) then (20) gives 7 (ﬁ’ (E)) =m (é) + 55 (u— s). One also has
log (F(€)) = log (&) + O (1). Therefore

i (F (&) m(F () —m (&) m(e) = (m (€) + % (u— s>) (log (€) + O (1)) — 1

— m(g>0(1)+i(u—8)log<§>

2N
< —cmin (s, —u)
with ¢ > 0 and if |£] is large enough.

e If £ € N, (neighborhood of the stable direction) then |[F (&)| < % |¢], with C" > 1,
so0 0 <In(F (§)) <In(§) —InC, with C' > 1 (close to C’). And using (21),(19)

i (F(E))mF©) < m(F(E))miE-me)
< m(é)ln<§>—glnc

e If £ € N, (neighborhood of the unstable direction) then |F (£)| > C'|¢], with " > 1,
so In(F (£)) > In (&) + InC with C' > 1 (close to C’). And using (21),(19),

i (F(&))m(F©) < m(€)mE+me)
< m(é)m(gH%ulnC

In conclusion, for any z and |£| large enough, there exists ¢ > 0 independent of u, s such
that

log (A, 0 F) (x,€) <log A, (z,£) — cmin (s, —u)

We have obtained the uniform escape estimate Eq.(15) and finished the proof of Lemma
2.

(

§

) n(e)
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3.2 The anisotropic Sobolev spaces

A particular feature of the self-adjoint and invertible PDO A,, € "% introduced above
is that its symbol A,, has a non-isotropic behavior with respect to £ € TM. It is a
PDO with maximum order ¢ = min (|ul|, s), but with variable order m (x,&) € [u, s|, with
u < 0 < s. For large [¢|, the symbol A,, increases in the stable direction £ € E¥ (z) as
A (&) ~ [€]° and decreases in the unstable direction & € E? () as Ay, (€) ~ 1/]¢[™. In
this section we consider a slightly more general space of functions m and do not require
any relation with the dynamics of F: we just assume that m is in C*>° (T*M) and is a

£
> €]
We define the anisotropic Sobolev space to be the space of distributions (included

in D' (M)):

function of (x ) for || large enough. Therefore m € S? is an order function.

A

H™ % AT (L (M) (23)

Remarks:

e This definition is very similar to the standard definition of Sobolev spaces on R? (]26]
p.271):
s def S\ —
H* = 0p((¢)°) " (L* (R))
except for anisotropy with respect to £. Equivalent definitions of anisotropic Sobolev

spaces have been given in [27] and also by V. Baladi et M. Tsujii in [13] for the
specific purpose of hyperbolic dynamics.

e Notice that ¢ € H™ < A, o € L? (M), so roughly speaking, in the case of the
function m defined in Lemma 2, it means that the Fourier transform ¢ (§) performed
in a vicinity of z € M, increases less than |&,]*"%? for &, € E? (z) and less than
17472 for &, € E* (2), with d = dim (M). We can say that if u < 0 < s, then ¢
is regular in the stable direction and irregular in the unstable direction.

Some simple properties of the anisotropic Sobolev spaces H™:

1. H™ is a Hilbert space with the scalar product

~ A

def m
(@1;@2)Hm = (Am%,Am% w1, € H

)L?(M) ’

and the map

A

A (Hmv('7'>Hm> - (L2 (M)v('7'>L2) (24)

is unitary.

2. On L? (M), Dom (Am> — H™ N L? (M) and Dom (21,;1) — H-" L2 (M).

47
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3. There are embedding relations as for usual Sobolev spaces. First
Hmexm) o gm ¢ ginem) (25)
If m’ > m then /
H™ c H™ (26)
and H™ is dense in H™.
4. If p € H™ and g € C* (M) then
gpe H™ (27)
and moreover, the map ¢ — gy is continuous H™ — H™.

5. Let )
H ™ A, (L*(M)).

The spaces H™ and H~™ are dual in the following sense: if v € H™, o € H™™, we

note ot
— ef [ .~
U(9) = ¢ (7) = W pmern = (A Ale) | (28)
Then
(%2 0) grmscir-m]| < N1 g (1 g-m - (29)
6. fp e H"NL? (M) and ¢ € H-™ N L?* (M) then
(’17/), SD)H’”XH*m = (’17/), 90)L2(M) (30)

Since the dual bracket coincides with the L? scalar product, we will drop the indices
in the sequel of the paper, and write:

(¥, 0) = (¥, 9) g g1-m
7. Ity e H™, o € H™ and g € C*, then:
(9¢,¢) = (¥, gp) (31)

Proof. The proofs of properties 1 to 4 follow directly from those of A,
5.1, 0)| = | (Amw, A7) < [[Any] , | 4a
(1, ©)] ‘ v, Ante LQ(M)' < |[Awv|

_ (i i—1
6.(6,0) = (Am AZle)
7. Let M, denotes multiplication g € C°°. The operator Bg = An M, A 1 is bounded in

= 11l zrm [Pl zr-rm-

= (¢, go)Lg(M) by self adjointness of A,,.

L* (M) . Moreover one has B* = AT MGA,, since A, is self-adjoint. We deduce that
_ i i-1) A i-1 _ ~1
(90.9) = ((AnMeAZ) A, AZle) | = (Amw, (A Mgdin) A7le) |
= (¥,99).
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stable direction

1
Wa, 5 g-m

Wy, H°

Hm

a -
J unstable direction

V2,5

H? / V1

Figure 4: Schematic representation of the anisotropic Sobolev spaces H™ and their embed-
ding relations Eq.(25) with the usual Sobolev spaces H*, s € R. The eigen-distributions
v; ;, w; ; of the operator F' which appear in Corollary 1 are also represented.

4 Spectrum of resonances

We give now the main result of this paper. Its proof relies on semi-classical analysis and
is inspired by the study of resonances in open quantum systems [1, 28|. It is also inspired
from a previous work [21| performed within a simple and illuminating model, namely
analytical hyperbolic map on the torus. In some sense it shows a close analogy between
Ruelle resonances and quantum resonances. The essential point of this approach is to find
the discrete spectrum of resonances of the operator Fin the Sobolev space of distributions
H™ thanks to a conjugacy by the escape operator A,, defined in Section 3.1. First observe
that the operator F' defined in Eq.(7) extends by duality to the distribution space D' (M)
by

Fla)(p) = a (F ()
where a € D' (M), ¢ € C® (M) and F* is the L2—adjoint operator. One checks easily
that for ¢, € L2 (M), F* is given by <F*g0) () = (po )W) |Dyrf|”
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Theorem 1. Let m be a function which satisfies the hypothesis of Lemma 2. F leaves
the anisotropic Sobolev space H™ globally invariant. The operator

F:H™ - H™
18 a bounded operator and can be written
F =t + ki (32)

where ky, is a compact operator and ||y < e, = ||F L€ with constants ¢,a > 0

defined in Lemma 2. Consequently, the essential spectral radius is smaller than &,,, which
means that I has a discrete spectrum \; outside the circle of radius ,,.

Remarks :

)FH , depends on the choice of the density dx. We could have HFH , closer to 1 by
L L
another choice of dzx.

e Notice that 1 is an eigenvalue of F', with constant eigenfunction. We will see in

Corollary 2 that the spectral radius of F'is one, i.e. that there are no eigenvalues
outside the unit circle.

e For future purpose, let ¢ > 0 and O. denotes the set of order functions m which

satisfy the hypothesis of Lemma 2, and such that ¢, = HF‘ < e

e
L2

def

0. = {m /5m:HF

e < 5} (33)

L2

The set O, is non empty.

Proof. We use the unitary map between H™ and L? (M) given in Eq.(23), and consider Qm def

ApFA-Y . L2(M) — L2 (M), defined on a dense domain, and which is unitary equivalent to

F-H™ — g™ R
L2(M) % 12(M)
LAZY o LAG
g™ L pgm

Instead of working with Om directly, it is more convenient to consider

B € E1Q,, = <F—1Amﬁ> A

-1
m



Semi Classical Approach for Anosov Diffeomorphisms The Open Mathematics Journal, 2008, Volume 1

It follows from FEgorov’s Theorem 9, that the product F~1A,,F is a PDO in \I';nOF(x’g) whose

symbol is A,,oF modulo subleading terms in S;nOF(x’f)_(zp_l). On the other hand, the composition
Theorem 8 for PDO tells that P, is a PDO in \Ilrme(x’f)_m(x’f) whose symbol is P, = ‘L‘X—;F

modulo subleading corrections in SLHOF(JC’g)_m(w’f)_(ZP U From the construction of the escape

function A,,, Eq.(13) insures that P, € \Ifg. On the other hand Eq.(15) gives

a.c

limsup P, < e

This allows us to apply the Lemma 14 of L?-continuity and obtain that for any £ > 0, P,
decomposes as
P, m — ﬁa + ka
with k. € U~°° a smoothing operator and Ipe]| < e™%¢+ e. Finally, we multiply on the left by F
to obtain
Qm =F ﬁa + F ka-
The second term is smoothing, hence compact, while the first one has an operator norm bounded

by (e™% +¢) F‘ = Ce %, with any C' > HFH and the choice ¢ = e_“c< > We have

shown the claimed spectral results for Q,, : L? (M) — L? (M) and therefore for F': H™ — H™.
O
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Corollary 1. Let ¢ > 0 and let m € O, be an order function as defined in Eq.(33). If we

denote by w the spectral projector associated to F: H™ — H™ outside the disk of radius

e, and K o #F, R o (1—7) F', then we have a spectral decomposition

Fok+R  Ri=hK—0 (34)
and
1. The spectral radius of R is smaller than e.

2. K has finite rank. Its spectrum has generalized eigenvalues X; (counting multiplicity)
called the Ruelle resonances, with € < |A\i|. The general Jordan decomposition of
K can be written

d; di—1
K = Z <)\i Z Vi @ w;; + Z V5 ® wi,j+1> (35)
P =1

i>0,|\i|>e

with d; the dimension of the Jordan block associated to the eigenvalue \;, with v; ; €
H™, w;; € H™ (w;; is viewed as a linear form on H™ with the duality Eq.(28)).
They satisfy w; j (k1) = dirdji.

3. The distributions v; ;,w;; and the corresponding eigenvalues \; do not depend on
the choice of m, but are intrinsic to the operator F':

Vi, j € ﬂ H™ s Wy, € ﬂ H™]. (36)

meO)y| meO|y,|

In other words, v;; are smooth in every direction except in the unstable direction
which contains their wave front ([29] p.27):

WF (U@j) - E:;

Similarly w; ; are smooth except in the stable direction which contains their wave
front:

N\ -1
The resolvent (z — F) has a meromorphic extension from C*> (M) to D' (M),

whose poles are the \;.

Proof. Points 1 and 2 are immediate consequences of Theorem 1. The projector  can be obtained
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from an integral of the resolvent R (z) = (z — F) : : H™ — H'™ on a circular contour of radius
E.

We will prove now point 3 namely that the spectrum and eigen-distribution do not depend on
m. Let e > 0 and m, m’ € O, (defined in Eq.(33)), and suppose first that m’ > m. From Eq.(26),
one has H™ < H™. Let F,, (resp. F) denotes the restriction of F' to the distribution space
H™ (resp. H™). From Theorem 1, both F}, and E,, are bounded ~operators and have essential
spectrum radius less than e. For |z| large enough, the resolvents of F,, and F,, are equal on H m/
because one can write

Ry (2) = (z —Fm/>71 = % (1—1—% (F;n/)n> = R, (2)

n=1

since F,y = F,, on H™ and the sum is convergent. By meromorphic continuation, the resolvents
also coincide for |z| > . By explicit contour integral of the resolvent on a circle of radius ¢, one
deduces that the corresponding finite rank operators K,y and K,, are equal on H™ . But since
H™ is dense in H™, one deduces that there are no eigenspaces of K,, outside H™ . Therefore
the eigen-distributions v; ; belongs to H m’

Now let m,m” € O be any two order functions (with no mutual inclusion). From the explicit
construction given in the proof of Lemma 2, one can find m’ € O,, such that m’ > m and m’ > m”.

Then the above argument shows that v; ; € H™ <Hm N Hm”).
Similar (but dual) arguments for the operator F* : H~™ — H~" show that its eigenvectors
w; j are in <H‘m N H‘m">. We have obtained Eq.(36).
Since C*° C H™ for any € > 0, and any m € O, and H™ C D' (M), we deduce that
<z - }3’)71 : C° (M) — D' (M) admits a meromorphic extension on C\ {0}.
O

5 Asymptotic expansion for dynamical correlation func-
tions

One usually obtains much information on F and the dynamical system f through the study
of dynamical correlation functions.

Definition 3. For ¢, ¢, € L?* (M) and n € Z, define the Lebesgue dynamical corre-
lation function

i ()™ (w2 F0n) = [ @) (7" @) da (37)
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Definition 4. The diffeomorphism f is called Lebesgue-mixing if there exists an in-
variant measure® pgy called the Sinai-Ruelle-Bowen (SRB) measure such that for

any 1,y € C (M),
Clifzﬁl (n> r:o (/ E2dﬂLeb) (/ 77D1d,usrb) (38)

Definition 5. For vy, € L?> (M) and n € Z, define the SRB dynamical correlation
function

€, () [, )01 (7" (@) dir (3)

We show in Theorem 3 that Lebesgue-mixing implies SRB-mixing, i.e.

Cfﬂgzﬁl (n) 1%—0)0 </ Eleusrb> </ ¢1dﬂsrb) (40)

which is also the usual definition of mixing.
Let us mention the following conjecture ([5] p. 575, foot-note (2), or [30] p. 7.)

Conjecture 1. A smooth Anosov diffeomorphism f : M — M on a connected compact
manifold M is Lebesgue-mixing.

In the particular case where f preserves a smooth measure dz (so Fis unitary on
L?(M)), this has been proved by Anosov in his PhD-thesis [31] (see [32] Theorem 6.3.1).
In Section 6 we provide a different proof entirely based on the semi-classical approach
developed in this paper.

We will assume Lebesgue-mixing in Theorem 3.

Theorems 2 and 3 below have been obtained before with various degrees of generality.

5.1 The Lebesgue correlation function

The Ruelle resonances \; and associated distributions v; ;, w; ; have been defined in Corol-
lary 1.
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Theorem 2. For any 1,1y € C* (M), € > 0 such that € # |\;|,Vi, and n > 1, one has
min(n,d;—1) di—k
Cit )= Z CEXTEN "y (€) wigak (1) + 11| g 102l - Oc (7).
1>0,|A;|>e€ j=1
(41)
with any m € O (defined in Eq.(33)) and CF := (nfik'),k,
Remarks:

e More generally Eq.(41) still holds for ¢»; € H™ and ¢ € H™™, with m € O..

e The right hand side of Eq.(41) is complicated by the possible presence of “Jordan
blocks”. In the case where the spectrum J; is simple (\; # );) it reads more simply

Cii% (n) = Z Ajv; (%) w; (1) + O (gM).

1>0,|X;|>€

Proof. Theorem 2 is deduced from Corollary 1. For any € > 0, let m € O.. For any n > 0 we
have F" = K™ + R" and Hf%" = O (e™). If oy € H™, 1y € H™™ then we use Eq.(29) to

write

Clet, ) = (va, P "
(%,f("wl) + (wQ,}?ZL¢1>
— (wz,K"w) + |02l g 191]] gy O (€7)

Using the Jordan Block decomposition of K, Eq.(35), and Eq.(28), we have

min(n,d;—1)

<1/}27 Rnwl) - Z Z Ck}‘? F Z ¢27 Uz,] Wy, j+k (1/}1) 5 (43)
1>0,|\;|>e k=0 j=1
min(n,d;—1) d;—k -
— Z Z Chn=F vij (V2) Wik (1) (44)
i>0,|\;[>¢e j=1

We have obtained Eq.(41).




56 The Open Mathematics Journal, 2008, Volume 1 Faure et al.

Corollary 2. For any i > 0, |\i| < 1. Therefore the spectral radius of the operator
F:H™ — H™ is one. If an eigenvalue is on the unit circle, |\;| = 1, then d; =1, i.e. it
has no Jordan block.

Proof. Since Fp = po f, it is clear that Ao = 1 is an eigenvalue for the constant function. For
all n, and 11, ¢9 € C*° (M), one has <¢27F"1/11> = [y () 91 (f" (2)) dparer hence

[0t )] = [ (2, F"4n )| < ol co lin| oo Vol () (45)

is bounded uniformly with respect to n.

Suppose that A; > 1. Since C*° (M) is dense in H™ and H ™™, there exists ¢, 1y € C* (M)
such that v; 1 (%) # 0 and w; 1 (¢1) # 0. Then Al'v; 3 (%) w1 (¥1) would diverge for n — oo,
and Eq.(41) implies that Ci;ﬁpl (n) would diverge also, in contradiction with Eq.(45).

Similarly, suppose that |\;] = 1, but d; > 2. There exists ¥1,199 € C*® (M) such that
v;; (¥2) # 0 and w;j (1) # 0. Then the term k = d; — 1 in Eq.(41) which contains C¥ diverges
as n%~ ! for n — oo. Eq.(41) implies that Cﬁ;ﬁm (n) would diverge also, in contradiction with
Eq.(45).

O

Corollary 3. The following two propositions are equivalent:
1. f s Lebesque-mizing.

2. Ao =1 is simple, vog = Leb is the Lebesque measure and wy = pigp the SRB measure.
The other eigenvalues satisfy |N;| < 1, 1 > 1.

Therefore: -
Clet, () — un (i) wn (1)
Remarks:

e It turns out that the SRB correlation function C’;’;lfwl (n) admits an asymptotic ex-
pansion similar to Eq.(41), see Theorem 3 below.

e Without the Lebesgue-mixing assumption and if Conjecture 1 is wrong, there may
be a finite number of eigenvalues on the unit circle.



Semi Classical Approach for Anosov Diffeomorphisms The Open Mathematics Journal, 2008, Volume 1

Proof. The Lebesgue-mixing assumption implies that CLeb , (n) converges for n — oo. The
constant function vy = 1 is obviously an eigenfunction of F Wlth eigenvalue \g = 1. There are
no other eigenvalues on the unit circle otherwise from Eq.(41), Cﬁf% (n) would not converge for

n — oo. We obtain Cﬁf% (n) = (wg, F"’l/)l) — (1/12) wo (1) with wy = pgp from Definition
n—oo
4. But Eq.(45) also implies that |wg (11)| < C |¥1|c0. Therefore wy is distribution of order 0,

hence defines a measure.

O

5.2 The SRB correlation function

We have shown above that pg., = wy € H~™ for any m € O, and ¢ < 1. Notice that from
Eq.(27), we have woip, € H™™ for any 1), € C*° (M). Since v; ; € H™ then Eq.(28) implies
that v; ; (wotb2) = (vi;, worP2) makes sense.

Theorem 3. Assume that f is Lebesque-mizing. If 11,19 € C (M) then the asymptotic
behavior of the SRB correlation function Eq.(40) is given by:

Ciltun () = wo ($2) wo (v1) (46)

min(n,d;—1)

d;—k
+ > Z CINTE " iy (wotha) wi (1) + O- (7).
j=1

1>0,|X;|>€

In particular f is SRB-mizing :

Ciilgbth( )n—> Wo (¢2 Wo ¢1 (/ ¢2dﬂsrb> </ lpldﬂsrb)

and the convergence is exponentially fast.

Proof. Using Eq.(28) and Eq.(31), we start with an equivalent expression for the SRB correlation
function:

Clig?wl (n) = /EQ (1‘) 1/}1 (fn (.%')) dusrb = (w07E2Fn1/11) = (wmbg, F"’l/}l)

Then as in Eq.(42), we use the decomposition Eq.(35) and deduce Eq.(46), since vy (wot2) wo (1) =

wo (V2) wo (Y1).
Ol
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6 Mixing of Anosov maps preserving a smooth measure

In the particular case where f preserves a smooth measure dx, ergodicity of f and therefore
mixing, has been proved by Anosov in his PhD thesis [31] (see [32] Theorem 6.3.1). In this
section we provide a different proof entirely based on the semi-classical approach developed
in this paper.

Theorem 4. Suppose that [ preserves a smooth measure dx. Then on the unit circle,
there is no Ruelle resonance, except 1 with multiplicity one (equivalently f is Lebesque-
mizing from Corollary 3).

Proof. of Theorem 4. From Corollary 1 and Corollary 2 an eigenvalue A = ¢’ on the unit circle
would have no Jordan Block and would correspond to an eigen-vector v € H™, Fu = ¢*u. Lemma

4 and Lemma 3 below imply that « is a constant function and A = 1.
O

The following Lemma contains the global aspect of the problem.

Lemma 3. If? u € C* (M) and Fu = Au, with |\| = 1 then u is a constant function,
and A = 1.

Proof. Let us assume that u € C' (M), with Fu = A, |A\| = 1. Let u, := F"u = uo f*. One
has u, = A"u, therefore |du,|,, = |du|,, < oo is bounded uniformly with respect to n, since M
is compact. On the other hand (dun) j—n(,) = (Df”)'}_nx (du),. Suppose that there exists x € M

such that du, # 0. If du, ¢ E?% (z) (stable direction) then ‘(dun)f_n(x) diverge when n — +o0. If

du, € E¥ () then ‘(dun)f_n(x)‘ diverge when n — —oo. This contradicts |du,|,, < oo, therefore

du = 0. M is connected therefore wu is constant.
O

Lemma 4. Assume there exists a positive smooth density dx on M which is invariant
under the map f. Let u € H™, Fu = eu. Then u € C=(M).
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stable direction |/€u| (1+0)(1 + |&])
€s

. |§u|2 = a(l + |§s|2)

unstable direction

€u

Figure 5: A distribution v € H™ is regular in the stable direction. If Fu = ¢®u, the idea
of the proof of Lemma 48 is to propagate this regularity under the map F towards the
unstable direction. For that purpose, we propagate the symbol B and establish in (56)
that u is semi-classically negligible in a zone where D # 0.

Proof. We shall make use of some h-pseudodifferential calculus'®. Assume there exists a positive
smooth density dz on M which is invariant under the map f. Then F: L2(M,dz) — L2(M,dx)
is unitary. The idea of the proof is to use Corollary 1 which states that u is C'**° in every direction
except the unstable direction, and use the unitary of F , to deduce that u is C*° also in the
unstable direction (by propagation).

It is easy to see that there exist symbols

0 < B(z,€),C(x,€) € S°(T*M),

such that
1=B*+C? (47)
and B(z,£) =1 on the set
l€ull? < (1= 8)(1 + lI&]1%) (48)
with support in
€l < (1 +8) (1 + I, (49)

where we choose § > 0 sufficiently small. See Figure 5.
Then Bo F~! € S%is equal to 1 on a set

€ull? < a(L + [I&]1%) (50)

and has its support in a set
1€ull® < (1 +[I& (%), (51)

0T particular € is quantized into the operator hD, = —ihd/dz while for ordinary PDO, ¢ is quantized
into D, = —id/0x.
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where 1 < a < b are independent of § when 6 > 0 is small enough. Now we can construct
corresponding h-pseudodifferential operators B, C' such that

1=RB?+C%+K, (52)
where K is negligible in the sense that
K=0MW):H Y - HN VYN €N, (53)

and such that the symbol of B is equal to B modulo hS™!, and modulo S~ it is equal
to 1 on the set (48) and has its support in the set (49). It follows from Egorov Theorem that
FBF~! = FBF* has the corresponding properties with the sets (48), (49) replaced by (50), (51).
We can find a self-adjoint h-pseudodifferential operator D with symbol of class S°, such that
(FBF*)? - B>=D?+ 1L, (54)

where L is negligible as in (53). In fact, in the region (48) we can take D = 0 and when we further
approach the unstable directions we first have FBF* =1 micro-locally, so that the left hand side
in (54) is = 1 — B2 = (2, so that we can take D = C. Even closer to the unstable directions, we
get outside the support of B and we can take D = FBE*.

Now, let w € H™ be as in the proposition and write

Eu = eiaép_lu.

Thanks to the properties of B and m, this quantity belongs to L?, and using the unitarity of F ,
we get
|Bul® = || FBF~ ul]?.

Combining this with (54), we get
0= |FBE ul® — || Bul* = [|Dul]® + (Lulu), (55)

and since L is negligible, X
[Dul| = O(h). (56)

Since D is semi-classically elliptic in the region

(L4 01+ &) < [1€ull® < a(l + [1€]7),
we see that w is micro-locally O(h*°) in the region (replacing & — h¢)
1 2 2 1 2
(1 +08)(55 + 1167 = ll€ull” < alyg + &),
and letting h — 0, we see that v has no wave-front set in a conical neighborhood of E}. Since we

already know that WF(u) C E}, we conclude that v € C*°, and this ends the proof of Lemma 4.
]
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7 Truncation and numerical calculation of the resonance

spectrum
Let x : RT — R* be a C*™ function such that x(z) = 1, if z < 1, and x (z) =
x > 2. For r > 0, let the function y, on 7" M be defined by Xr (x,&) = x (|&] /7). Let the

truncation operator be:

~ def
Xr = Op (xr)

Notice that ¥, is a smoothing operator which truncates large components in . In [21]
section 2.1.4 and references therein, we interpret x, as a “noisy operator” with a noise of
amplitude 1/r.

Theorem 5. (ﬁ’x}) s a smoothing operator. For any € > 0 the spectrum of (ﬁ’x})

in L? (M) outside the disk of radius €, converges for r — oo, towards the spectrum of
Ruelle resonances (X;),, counting multiplicities. The eigenspaces converge towards the
eigen-distributions.

Remarks:

1. Theorem 5 gives a practical way to compute numerically the resonance spectrum:
one expresses the operator F' in a discrete basis of L? (M), truncates it smoothly
(according to the operator x,), and diagonalizes the resulting matrix numerically.
See Figure 6.

2. Theorem 5 gives also a simple way to establish a relation between Ruelle resonances
A; and the periodic points of the map f, via dynamical zeta functions, see e.g. [11, 33].
On one hand the Atiyah-Bott fixed point formula ([34] corollary 5.4 p.393), gives for

any n > 1, n 1
Tr((FX> ):;O Z 16t (1= De )]

el zz

and on the other hand, the zeros of the dynamlcal zeta function
2" A n A
d(z)=exp | — —Tr((FXA,) ) = det (1—2(F>{r>>

converge towards (1/);),.
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Proof. Let ¢ > 0, and m € (95/2 From Eq.(32), the operator F : H™ — H™ can be written
F =7+ k, with ||#|| < ¢/2, and k compact. In H™, the operator X, — Id converges strongly,

rT—00

and [|¥,|| < C, — 1, in particular ||x,|| < 2 for r large enough. For |z| > ¢ write
rT—00
Fez=t—z+4k=(—2) <1+(f—z)7ll;:>

. -1 . I .
<F—z) = (1—1—(7"—2) k:) (7 —2)
when the first factor on the right is well defined. Similarly
~1

~ —1 ~
<F>2T _ z> - (1 + (P — 2) ! /<:X> (P — 2) 7L

Let z € (C\ (F and ]z\ > e. Then (f{, —z) ' is well defined since ||#¥,|| < e. Moreover

> N—"

(PRr —2) " — (F—2)"" strongly and (7x, — 2) " kX, — (7 —2)" "k in norm since k is com-
T—00 r—00
. -1
pact. Therefore ( ) (F — z) converges strongly. Now the finite rank operator
T—00
K in the spectral decomposition Eq.(34) can be obtained by a contour integral of the resolvent:
1 A\ 1 . .
Ao — <Z—F) dz, K =#F
211 |Z|:5

Similarly the spectrum of <F)Zr> outside the disk of radius ¢ is the spectrum of the finite rank
operator K, given by:

1 N1 . )
he O = (z—FXT> dz, K, =%, <FX>

211 |z|=¢

The operator K, — K converges strongly and therefore in norm since it has finite rank (see

r—00
Th. 9.19 p.98 in [28]). We deduce Theorem 5.
O

8 Conclusion and perspectives

In this paper we have proposed a semi-classical approach for spectral properties of Anosov
dynamical systems. We discuss now some possible perspectives for this work.

First, we have treated the case of hyperbolic diffeomorphisms f. The case of expansive
maps which are not invertible is more simple, and the method we propose works equally
well, but need some adaptations. For example the transfer operator F has the same
definition Eq.(7), but the associated canonical map F on T*M is now multivalued (its
graph on T*M x T*M is well defined).

The case of partially hyperbolic systems (and in particular hyperbolic flows) where there
is a neutral direction is very interesting, and there are important recent results concerning
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Figure 6: Ruelle resonances \; obtained numerically for the model Eq.(3), with ¢ = 0.5.

their spectral properties [35, 36]. For the same reasons explained in the introduction, we
think that a semi-classical approach is natural and hopefully fruitful for these systems too.

Finally let us mention the open question mentioned in the conjecture 1. One can wonder
if a semi-classical approach similar to Section 6 could help towards the resolution of this.

A Pseudodifferential operators with variable order

A.1 Preliminary remarks
A.1.1 Semi-classical analysis

In this appendix, we provide a self-contained series of analytic tools for studying pseudod-
ifferential operators with slightly more general classes of symbols than usual ones, namely
symbols with variable order. All the results we give come from the standard semi-classical
analysis but for our special symbol classes, and are given mainly without proof. We refer
to [37, 38, 29] for the standard results in semi-classical analysis. Note that the idea of
using symbols with variable order is not new. See for example [39, 40, 27].

Semi-classical analysis is a rich theory which gives a sense to pseudodifferential opera-
tors P of the form

A

o= P = [ VP @6)p () dude (57)

where P (z,£) is a smooth function called the symbol of P and belonging to some appro-
priate class of functions satisfying certain regularity conditions at infinity. These classes
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yield to a powerful symbol calculus, i.e., a tool for extracting information in an asymp-
totic way about the operator P by means of its symbol. The main results are basically the
following :

e Composition of PDO’s. Given two PDO’s P and Q, the product A = PQ is also
a PDO and its symbol is given to leading order in ¢ by the product of the symbols
A= PQ.

e Sobolev continuity. First defined on C'* (R"), pseudodifferential operators are shown
to be continuous between certain Sobolev spaces. Moreover, the corresponding op-
erator norm is estimated by some norms of the derivatives of the symbol.

e Ellipticity, parametrix. A condition called ellipticity imposed on a symbol is enough
to insure that the corresponding operator is invertible up to a regularizing operator.
The “almost-inverse” is called a parametrix.

A.1.2 Symbols with constant order

The typical class of symbols one considers is the set S7"; C C™ (R*") of smooth functions
P (z,£) which satisfy the following estimates. For any compact subset K C R™ and any
multi-index «, 3 € N", there is a constant C , 3 such that

0208 P (2,6)| < Ciap (€)1 (58)

for any (z,£) € K x R™. Here (¢) means /1 + £ and we use the standard multi-indices

notation 9%f = ZL. 2L The number m € R is called the (constant) order of the

dx T dp™
symbol. These classes of symbols, introduced by Hormander [41], are quite general and
allow one nevertheless to develop a symbol calculus, provided the constants p,¢ fulfill
certain conditions. The corresponding class of PDO’s (Formula 57) is denoted by W7';.

The operator P, denoted sometimes also by P (x, D), is the (left) quantization of P.

Nevertheless, as explained in the introduction, we need to consider symbols with an
order m which is no longer constant but depends on the variables (z,¢). It turns out that
these classes are contained in some Hormander classes (with order equal to lim sup m) but
one needs to keep track of the fact that the order is variable in order to develop a more
general notion of ellipticity, for symbols which would not be elliptic in the usual sense. This
will be explained in the rest of this appendix which is devoted to the symbol calculus for
symbols with variable order. But before, we need one additional remark about the theory
of PDO’s on manifolds.

A.1.3 Pseudodifferential operators on manifold

The usual way of defining PDO’s on a para-compact Hausdorff manifold M is to make
a partition of the unity of M and use in each chart the semi-classical analysis on R".
Defined in this way, the symbol of an operator depends unfortunately on the charts. But
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it turns out that, provided % < p<1land p+ 9 > 1, there is an element of the quotient

space S7/ S5 (P=9) called the principal symbol which is well-defined independently of
the charts. Any member of this equivalence class is a function on the cotangent bundle
T*M, also called a principal symbol. For technical reasons it is common and convenient
to assume p =1—4 and p > %, and to denote S7" = ST, We will follow from now on this
convention.

It is well-known that many results of semi-classical analysis on a manifold are given in
terms of principal symbols. On the other hand, when we consider symbols with a non-
constant order function m (z,£) € T*M, we need to manipulate carefully the concept of
principal symbol, since there are two different notions depending on whether we consider
our symbol to have a variable order m (x, &) or a constant order equal to lim sup m.

To avoid possibly confusing considerations about principal symbols, we will use a very
convenient quantization scheme, developed in [42], which works on Riemannian manifolds
(X, g) and provides a notion of total symbol. It is defined as follows. First, we fix a
cut-off function xy € C*° (T'M, [0, 1]) which equals 1 on a neighborhood of the zero section
Orar and is supported in a neighborhood W C T'M of Or,; in which the exponential map
defines a diffeomorphism onto an open neighborhood of the diagonal in M x M. Then, for
any u € C (M) we define u, € C* (T'M) its semi-classical lift on 7'M by

o= { o) [ €

Finally, for any symbol p € C* (T*M) one defines the operator P by
o P ()= [ p@ )T () de (59
T X

where f denotes the Fourier transform of a function f (z,v) € C* (T'M) with respect to

the v variable, i.e.,
s 1 —i(&|v
f(z,§) = W/Txe €l (2,0) dv.

It is shown in [42]| that this construction gives rise to a notion of total symbol (called
there normal symbol) well-defined independently of the cut-off function y up to an
element of S7>°. The classes of symbols are defined in the usual way : Fix m € R and
p > 5. Then, a function p € C> (T*M) belongs to the class S if in any trivialization
(z,&) : T*M|, — R?", for any compact K C U and any multi-indices «, § € N", there is

a constant Ck o g such that

}8?051) (ZL‘, 5)’ < CK,a,ﬁ <§>mfpla\+(1*p)\6\

on T*M|,. Now the function (¢) = /1 + |¢|” is defined in term of the norm |¢]* = g, (&, €)
with the scalar product on T*M denoted by the same letter g.

65



66 The Open Mathematics Journal, 2008, Volume 1 Faure et al.

A.2 Symbols with variable orders

As usual, la constante positive C, qui est le fidéle compagnon de ’analyste, pourra varier
d’une formule & Uautre'.

A.2.1 Definition and main basic properties of S’,f“(x’g)

As explained before, we want to develop a symbolic calculus for PDO’s whose symbol has
an order m which depends on the point (z,£) € T*M. We first need to explain which
functions are acceptable as order functions.

Definition 6. An order function m(z,€) is an element of S°, for some % <r<l1

which 1s also bounded at infinity in &, i.e.,

sup |m(x,§&)| < oo.
x,£€T*M

We now define the class of symbols of variable order exactly in the same way as symbols
with constant order. We will use the slightly abusive notation S;n(m’g) to emphasize the
fact that m (z, &) is not constant.

Definition 7. Let m(z,§) € SY be an order function and & < p < 1. A function
p € C®(T*M) belongs to the class S;n(x’g) if in any trivialization (x,§) : T*M|, — R*",
for any compact K C U and any multi-indices o, 3 € N", there is a constant Ck o3 such
that

’a?afp (z, 5)’ < Croap <§>m($7§)—/}|a|+(1—ﬂ)|ﬁ\

for any (z,&) € T*M]|,.

As with the usual calculus, for any symbol p € S," @8 and any multi-indices «, 3 we

have
ag@fp c S;n(wvf)—plalﬂl—p)lﬁ\'

This means that 989 p has an order function given by m (x,£)—p|al+(1 — p) |3|. Similarly,

for any two symbols p € S;n(x’g) and ¢ € S:,Ll(x’g), the point-wise product p(z,€) q(x,§)

belongs to S;n”($,£)+m/(1',£) with p” = min (p, o).

Another simple but important property of variable order symbols, is that they belong
in fact to some Hormander class. This follows from the following fact.

LA Unterberger [40]
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Lemma 5. For any two non-constant order m (x,§) and m' (z,€) satisfying m (x,§) <
m' (z,&) on T*M and any p > p', the following holds

m(x,£) m' (2,€)
S, C S, :
In particular, one has

S:)n(x,f) - S;}lpm and S;n(xvf) C SZ,Jrlimsupm for any € > 0.

Proof. Let p € S;n(gﬁ’g) be a symbol. For any «, 3 € N", any compact K C M, the first inclusion
comes simply from

o20p (x, 5)‘ < € ()@ Ol O=)IBl < o gym &) lal+ (1018

On the other hand, for large enough (£), m is bounded by limsupm + ¢ for any ¢ > 0. This
provides the second estimate.
O

This property implies in particular that we can use the same class of residual symbols
as for Hormander symbols, namely

7= () Sy
m<0
which is independent of p. For convenience, we also introduce the class of symbols of any
order
Se={J s
m>0
A.2.2 Canonical examples

We show now that the natural candidate (£)™% is indeed a suitable symbol.

Lemma 6. Let m € S) be an order function. The smooth function p(x,§) = (£)ym @)
belongs to Sgi(f’g) for any € > 0.
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Proof. We will prove that for any a, 3, we have
020lp (2,€) = ¢ (2,€) (€™ with ¢ € §{+eleltmptal] (60)

for any e > 0. First of all, this is true for first order derivatives. Indeed, for |3| = 1 we compute
the derivative :

O2p (2,€) = (92 (n (&) m (2,€))) (O™ = g (. €) (")

The appearance of logarithmic terms is actually the worse that can happen when differentiating a
symbol with variable order, but it is easily controlled. First, In ({£)) is bounded by (£)© for € > 0
arbitrarily small. Moreover, the logarithm disappears as soon as we take at least one derivative

in z or in {. Namely, whenever («a, 3) # (0,0) one has 80‘36 (In ((§))) € S_Ia‘. This shows that
In ((¢)) € S5 for any € > 0. This means that In ((£)) m (a: §) € §5.59 = 55. Then the derivative
yields to ¢ (z,§) € S;H_p. Similarly, for || = 1 one shows that Jg'p (w, §) =q(z,8) <§>m(x’§) with

q € S, ” for any € > 0. Let us prove by iteration that Equation (60) holds in general. Suppose it
holds for all «, 8 satisfying |a + 8| < N for some N € N. Then, any (¢/, ') with |« + 3| = N +1
has the form (a+ a, 5+ b) with |a +b| = 1, i.e., either (|a|,|b]) = (1,0) or (|a|,|b]) = (0,1). In
the first case, we want to compute

LR DD (2,€) = (98a (2,)) ("9 + g (2,) 3¢ ((©"TF)) .

S[()fp+€)|a|+(1*p+€)|6\fp. <§>m(r£)

By assumption, the first term is in and the second one is in

S{(}*P+€)\a|+(lfp+€)\ﬁ|_S;erE_ <5>m(%§) )
Together, this provides
(@*m(l‘,&) agagaafp (2,€) € 5{(}*p+€)|a+a|+(1*p+€)lﬁ\.
Similarly, we would find
(g)m@8) 828?8?19 (2,€) € Slg—p+6)\a|+(1—p+a)\6+b\

for |b] = 1. This proves Formula (60) for any «, 3 satisfying | + 3| < N + 1 and the formula for
all «, 8 is proved by induction. Then, we deduce that

a p(x 5)‘ <£>m(x7§)_(p_€)‘Oj|+(1—p+g)‘6|

and thus p(z,¢) € S;ﬂ_(f’g) for any € > 0.

A.2.3 Action of diffeomorphisms

For any diffeomorphism ¢ : M — M, we denote by ¢, : T*M — T*M the lift on the
cotangent bundle defined by ¢, (z,&) = ((b (x), ((DI¢)_1)t>.
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Lemma 7. Let p € S;n(x’g) be a symbol with non-constant order m (x,&) and ¢ : M — M
a diffeomorphism. Then, the composition p o ¢, belongs to S;”°¢*.

Proof. Set a = p o ¢,. For simplicity, we will write £* o ¢, for the £&* component of ¢, (z,&). We
will prove by iteration that for any order function m (z,§), any symbol p € S;* and any «, 3 € N¢,
one has

8?(95 (po¢s) = qa,p © G Where o5 € S;nfp‘aH(l*p)lﬁl, (61)
where we write m = m (x, ) for shortness. First of all, this is trivially true for a = 3 = 0. Then,

we suppose it is true for all o, 3 € N¢, with |a + 3| < N. If we compute the derivative 8&”“85 of
p o ¢, with |a| = 1, we obtain simply

a?+aaaﬁz (p o ¢*) - 8? (QQ{,B o ¢*)
= D % (dap) 0 9:.0¢ (5“’ o ¢*) .

|a’|=1

—platal+(

The terms 82‘/ (qa,p) live in S L=e)Ifl by assumption whereas the second term in the

product belongs to SY. This means that (9?“%95 (p© ¢+) = Gata,p © ¢« Where the symbol

do+ta,3 = Z agl (QQ,ﬁ) ag <§al © ¢*> © ¢*_1

la’|=1
belongs to S;)n—p‘a—}—a|+(1—p)‘ﬁ‘- We consider now the derivative 3?8£+b with [b] = 1. The compu-
tation is slightly more complicated, since there is an z-dependence in the £ component of ¢, (z, &).

Namely,

07 (pod) = 3 O (gup) o6l (¢ (1)

b|=1

+ > 0 (qap) © bu-0 (5“' 0 ¢*) .

|a’|=1

In the first sum, the terms 8% (ga,3) belong to g plalti=elattl g ob (qﬁb/ (m)) isin SY. On the

) € S;n_plaJraH(l_p)lﬁl but the second one in the

other hand, in the second sum we have 82‘, (G,
product is in Si. This means that the second sum brings a power (1 — p) of £&. All together, we
obtain 8?65“’ (P o ds) = qaptb © O« With go g4p € SZL*’)'O‘JFGH(PPWHPP. This proves therefore
by induction Formula (61) for all o, 3 € N9,

Now, the lemma follows easily form this formula. Indeed, for any «, 3 € N¢ one has

9202 (po ¢u)| < C (€ 0 gy )PPl U=r)ll
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On the other hand, since both D,¢ and (ngb)*l are uniformly bounded on M, it follows that
there is a constant C' > 1 such that % (€) < (€0 @y) <C(€). This implies that

8?(95 (pody)| <C <§>m0¢>**p\a\+(1fﬂ)\ﬁ| )

A.3 PDO with variable order

Given an order function m (z,¢) and a symbol p (z,€) in the class 55", Formula (59)
provides an operator from Cg° (M) to C*° (M), which is actually continuous. By duality, it
is also continuous from &£’ to D’. The class \Ilzl(x’g) of PDO’s is then the set of operators of
the form (59) modulo a smoothing operator, i.e. an operator which sends £’ into C*° (M)
continuously. We denote by ¥~ = (7, _, W™ the class of smoothing operators and also

the class W7 = Un=0 W7 of all PDOs of type p which contains \IIZL(:B’@ for any variable
order m (r,§). Notice that given an operator p € W7°, its symbol is well-defined only up
to an element in 5.

We now review the most important properties of PDO’s. The proofs for non-constant
order symbols follow in most cases the line of the proofs for usual symbols (see for example
[38, 29]) and are omitted for shortness of this paper. In all the sequel, the parameter p is
always supposed to satisfy p > % As well, in order to avoid any discussion about properly
supported operators, we assume from now on M to be compact, since it will be the case
for the application of these tools to Ruelle-Pollicott resonances.

A.3.1 Asymptotic expansions

Semi-classical analysis is naturally an asymptotic theory. In order to prove the basic
theorems about composition, Egorov, ellipticity or functional calculus, one needs to give
a sense to formal series like ) p;, where {p; }jeN is a sequence of symbols with decreasing
orders. Such a series is most of the time divergent, but it is possible to find a symbol p
which is asymptotically equivalent to the series. This is an adaptation of an old result by
Borel.
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Theorem 6. Let p; € S;,nj(x’g) be a sequence of symbols with variable order m; € S}, with
p <r <1, satisfying m; | —oo, in the sense that, for all j € N

supm; (z,§) — —oo and mjy (2, &) < mj(x,§).
.8

Then, there exists a symbol p € S,T‘)(x’g) such that for all N >0

N-1

p— ij c S:)nN(xvf)'

J=0

The symbol p is unique modulo a residual symbol, i.e., an element of S™°°.

The proof of this theorem is a straightforward adaptation of the proof for usual symbols,
which can be found for example in [18, II, 3] or [38]. This fact implies automatically the

corresponding result for asymptotic sums of PDO’s. Namely, if p; € ¥,” @4) g sequence
of PDO with decreasing orders, then there exist an operator p € \IIZLO(Z’Q which satisfies

=

—1
h— ﬁj c \I,;nzv(ryﬁ)
J

I
o

for all N > 0.

A.3.2 Adjoint and composition

Theorem 7. Let p € \I’ZL(I’O be a PDO with non-constant order symbol p € S’,?“”*O. Then
the adjoint p* is itself a PDO in \IIZL(:B’O and its symbol p* € ng(z,g) satisfies

P (2,§) — m = Szn(ré)f@pq)’

where ~ denotes the complex conjugate.

Here, the adjoint means the formal L?-adjoint defined on the same domain C'* (M).
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Theorem 8. Let p € U2 and ¢ € U9 be two PDO’s with non-constant order
m(z,€) and m’ (z,€). Then the product a = pg is a PDO in W™ @O gng jts
symbol a (x, &) satisfies

a(x,6) —p(x,€)q(x,€) € Sm@tm @H=2-1),

A.3.3 Egorov’s theorem

Egorov’s Theorem describes how PDO’s transform under conjugation with a Fourier Inte-
gral Operator. We will nevertheless avoid talking about general FIO’s and restrict ourselves
to the simplest case, namely the composition by a diffeomorphism on M, which is sufficient
for our purposes. See [29, p.24]

Theorem 9. Let p € U™ be a PDO with non-constant order m (x,€) and f : M — M
a diffeomorphism. Denote by F' the pull-back operator F' (u) =wuo f and by F : T*M —
T*M the lift of f~1 to the cotangent bundle defined by F (x,£) = (ffl (x), (Dxf)t) Then,

the conjugation a = F*Iﬁﬁ’ belongs to \If:,nop(x’f) and its symbol a (x, &) satisfies

a (IL‘, 6) —po F (l‘, g) c S;nOF(xyf)—(Qp—l).

A.3.4 Sobolev continuity

It is a well-known fact that on a compact manifold, a PDO of constant order m extends
to a continuous operator H* — H*~™ for all s. Thanks to Lemma 5, a PDO with variable
order m (x, &) extends to a continuous operators H* — H*™" with m™ = limsup m (x, ).
On the other hand the embeddings H®* — H* for s’ < s are compact. In particular,
smoothing operators are compact in any Sobolev space.

A.4 Non-isotropic ellipticity
A.4.1 Variable order ellipticity

We know from the standard theory of PDO’s that an operator p € W/ is invertible modulo
W™ with an “inverse” in W™ as soon as its symbol p satisfies an ellipticity condition.
We now show that the classical definition of ellipticity extends in a natural way to symbols
with variable order m (z,£). This leads to a more general notion of ellipticity which is

proved to be equivalent to the existence of a parametrix \If;m(x’g).
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Definition 8. A symbol a non-constant order p € S;n(x’f) is called elliptic if there is a
C > 0 such that |p (z,&)| > & (&)™) whenever (€) > C. An operator p is elliptic if its
symbol s elliptic.

One can easily check that the following statement is equivalent to ellipticity.

Z‘,§ m(x7§)

Lemma 8. A symbolp € S:,n( ) is elliptic if and only if there exists a symbol g € S,

such that

Example 1. For any order function m (x,§) the symbol p (z,§) = (§)m(x’£) is elliptic and
one can choose ¢ = (€)™ on the whole of T*M.

For usual symbols, it is well-known that ellipticity is a phenomenon of the principal
symbol. This is also true for variable order symbols, in the following sense.

S;n(x’g) be an elliptic symbol. Then any other symbol q €

satisfying p — q € S’f(z’g)fs for some € > 0 is elliptic as-well.

Sm(x7£)

Lemma 9. Let p € o

Proof. Suppose p = ¢+ s with s € Sgb(x’g)fe. Ellipticity of p means that for large enough (£) one
has |p (z,&)| > % <§>m(x,§)_ On the other hand, for large (£) one has also |s (z,£)| < C <§>m(m,£)—a_
Therefore

g, €)= C (™ (1-C"(g)77) = " ()"

for large (£), hence ¢ is elliptic.
]

Notice that this notion of ellipticity is more general than the usual one. Indeed, the
symbol (€)™ with an order which takes its values, say between —1 and -1 is not elliptic
in the usual sense. Indeed, the symbol (§)m(x’£) with an order taking its values, say between
-1 and +1 is not elliptic in the usual sense, when we view it as a symbol with constant
order sup m.
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A.4.2 Parametrix and invertibility

The main point in considering this notion of non-isotropic ellipticity is of course that it is
equivalent to the existence of a parametrix, as explained in Theorem 10 below.

Definition 9. Let p € U2'“% be any PDO. A parametriz of p is a PDO ¢ € ¥, ™%
such that

Pi—T1€ T and gp—1 € T,

Theorem 10. An operator p € \Iern(ac,f) admits a parametriz if and only if its symbol p is
elliptic.

For this reason, we will say equally that the symbol p or the operator p is elliptic.

The construction is standard. We just check that it works as-well in the variable order
context. Assume p € S;n(m’g) is elliptic. Lemma 8 implies that there is a ¢y € S, ™8 such
that pgo = I — # where 7 € U, ®™V because of Theorem 8. This implies 7 € W, 7Y for
all j € N and it follows that Gy = o (I+ 7 + ... + #) satisfies

Pin-1 — 1€ ¥, N,
On the other hand, thanks to the re-summation Theorem 6 we can find a Gz € ¥, ™%
satisfying gr — Gy_1 € U, "9V for all N € N. Therefore we have

A —N(2p-1)
pgr — L e W 7

for all N € N, hence ¢g is a right parametrix for p. Similarly, we can construct a left
parametrix G;, ~ (I+ 5§+ 5%+ ...) g with § € \If;(zpfl) given by pgy = I — 5. Finally, the
fact that ¢r, —gr € ¥, comes from the observation that both ¢rpgr — ¢r and ¢rLpdr — qr.
are smoothing. Therefore, say ¢, is a (both sided) parametrix for p.

Proof. O

The existence of a parametrix has many interesting consequences, such as those listed
below. First of all, it is well-known that a standard elliptic PDO (with constant order m)
is Fredholm H® — H*™™ for any s. For PDO’s with variable order, a slightly weaker result
holds.

Lemma 10. Let p € \I’ZL(I’O be elliptic. Then the kernel of the operator p : H® — Hs™™"
with m™ = limsupm (z,§) is finite dimensional and contained in C°° (M).
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Proof. The key point in this proof is the fact that for any smoothing operator 7 € W~°° the
operator I+ 7 : H® — H? is Fredholm for any s and its kernel is contained in C'*° (M). See for
example [37, ch. 7] for a proof for s = 0 which extends straightforwardly to the case s # 0.

Now, the ellipticity p implies the existence of a left parametrix ¢ € \I';m(m’g), i.e. gp = [+7 with
# € U°°. This operator extends to § : H*™ — H"™ =™ where m~ = lim sup (—m (x,§)).
It follows that ker p is contained in the kernel of

I+ H® — H® ¢ H=™ =™

which is finite dimensional and itself contained in C'*° (M).
O

This lemma has the consequence that we can make p invertible by adding a smoothing
operator, as shown in Lemma 12. This is useful in practice, since one often needs to
construct PDO’s whose symbol satisfies certain properties which are not modified by adding
a residual term. One needs first a preliminary result.

Lemma 11. Let p € \I/;n(x’g) be an elliptic and formally self-adjoint operator. Then p
viewed as an unbounded operator on L* admits a self-adjoint extension.

Proof. The formal self-adjointness of p implies according to Theorem 7 that its symbol satisfies

hence |Re (p(z,§))| > c.|p(z,€)|, with ¢ > 0, for large enough |£|. We can thus suppose that
Re (p(z,€)) > 0 for large enough |¢| (if Re (p) has the opposite sign, then the following argument
applies to —p). We can therefore apply Lemma 13 of the next section to show that

p=bb— K

(,€)

. 1 . .
with b € \Ifgm and K € U=, Since K is bounded in L?, it follows that p is bounded from

below in L?: )
(Pu, u) > ‘bu‘ - (K( 2.

This allows us to construct the Friedrichs extension of p, which is self-adjoint on a domain in L?

(see e.g. [43, p. 317]).

O

Lemma 12. Let p € \IIZL(I’O be an elliptic and formally self-adjoint operator. Then there
exists a formally self-adjoint and smoothing operator © € W °° such that p+7 is invertible

C*® (M) — C* (M) with inverse in \Il;m(x’g).
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Proof. This is also a standard construction. First, Lemma 10 tells us that p : H™" — L2 with
m* = limsupm (z,€) has a finite dimensional kernel contained in C'*° (M). But this implies
that viewed as an unbounded operator on L? with domain H m+, the operator p has also a finite
dimensional kernel contained in C* (M). On the other hand, p has a self-adjoint extension on
L? thanks to Lemma 11. Denote by D the domain of this extension. This leads to the orthogonal

[ -
decomposition L? = im (p) @ ker (p) and the restriction p : im (p) N'D — im (p) is thus invertible.
Therefore, the operator P given in matrix form by

P = ﬁ’im(ﬁ)m} 0
0 I

is invertible. We first remark that P is related to p by

P=p(l—-m)+mr

with 7 : L? — kerp the orthogonal L2-projection. Since kerp is a finite dimensional subspace
of C* (M), the projection 7 is a smoothing operator. It follows that 7 := P—p= (1—p)m
is self-adjoint and smoothing. In particular P € \I/:,n(w’g) is a PDO and defines an injective
map C® (M) — C> (M). On the other hand, the existence of a parametrix Q € \Il;m(x’g) for
p, and thus for P, implies that P is also surjective C'® (M) — C*°(M). Finally, denote by
P~1:C® (M) — C® (M) the inverse of P which is continuous by the open mapping Theorem.
One has
Q= QPP =P 1P

with 7 smoothing. The last term is also smoothing since P~1is continuous and 7 smoothing. This
implies that P~! is itself a PDO in W, ™"

O

Collecting the results of this section, we obtain the following corollary.

Corollary 4. For any real elliptic symbol q € S;n(x’g), there is an operator p € \P;n(x,f)

satisfying p — q € \Ilzn(x’g)_(zp_l), which is formally self-adjoint and invertible C* (M) —

= (M).

Proof. Let q € \I';n(z’g) be the quantized of the symbol ¢ and take the real part a := % (g+4q"). Ttis
self-adjoint and according to Theorem 7, its symbol satisfies a (z,£) = ¢ (z,£) mod S,T(w’g)_@p_l).
Then, Lemma 9 implies that the ellipticity of ¢ is not destroyed by a modification of order
m (z,&) — (2p — 1). Therefore a € ng(x,g) is elliptic as-well. Finally, Theorem 10 shows that this
implies the existence of a parametrix for a. Consequently, one can find a self-adjoint PDO p = a
mod U~ which is invertible C*> (M) — C*° (M) and with inverse in \If;m(z’g) (see Lemma 12).

]
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A.4.3 [2-continuity and quasi-compacity

The next result, due originally to Hormander, is very useful. It tells us that one can take
the “square root” of a positive elliptic operator.

Lemma 13. Let p € S5 be an elliptic symbol satisfying p — Re(p) € Sy~ for

some e > 0 and Re(p (x,£)) > 0 for (£) > ¢. Then, there exists b € \Ilgm(z’o such that

p—bbhe U™,

Proof. Thanks to Lemma 9, the real part Re(p) is elliptic and satisfies therefore Re(p) >
C (&)™) for large (€). This implies that we can certainly find a smooth by (x,&) which co-
incides with y/Re (p) for large (£), i.e., outside from a compact set. Straightforward computations
show that by € Sp%m(m’o. On the other hand we have |by|* = Re (p) mod S~°. Then, the symbolic
calculus gives

b0 — Fo () mod O~ _ 5 inod gmied—,

where we have assumed without loss of generality that ¢ < 2p — 1. The rest of the procedure is a
standard iterative construction which shows that for any N, there are l;j € \Ifgb(m’g)fj “ j:1.N,
satisfying

<l§;§ + ot 67\,) (BO + o+ ?)N) — p mod WO (N+)e

Then, a Borel resummation (Theorem 6) yields the result.
]

The last but not the least result of this appendix is standard, since it concerns symbols
of (constant) order 0. It is usually a way to prove L?-continuity of PDO’s, but it yields
also a way to show that a PDO’s with a “small” symbol is quasi-compact, which is the
property we use in the context of Ruelle-Pollicott resonances.

Lemma 14. Let p € Sg be a symbol and denote

L= limsup [p(z,€)].
(z,£)€T*M

Then, for any € > 0 there is a decomposition
p=p.+ K.

with K. € U= and ||p.|| < L +e.
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Proof. The first remark is that for any € > 0 the operator (L2 + s) I[—p*p =: q is self-adjoint and
in the class Sg, which means ¢ —R (¢q) € S;(prl). On the other hand, ¢ = (L2 + 6) — |p|2 modulo

\I/;(Zp _1), which is positive for large £&. Therefore we can apply Lemma 13 and obtain be \Ilg such

that ¢ = b*b — K with K € U=, Then, for any u € L2 (M) one has

Ip* = P (u),u)
= (L2 +5) HuH2 - (3*3 (u) ,u) + <K (u) ,u)

(22 )l = b )| + (& () u)

From this follows the upper bound
1B @) < (12 +¢) ull + (K (u),u). (62)

The next step is to introduce the spectral projector 7y of the Laplacian —A on (—oo, A] for large
enough A, which will be chosen later depending on ¢ in a suitable way. Notice that this projection
is smoothing. Then, we decompose

D =Pe+7T: ::ﬁ(l_ﬂ')\)‘i’ﬁﬂ')\-

It follows first that 7 is smoothing. On the other hand, the upper bound (62) yields

1= ()|

IN

(12 +2) (1= m) ull® + (K (1 =m) (W), (1= m) ()

(L2 + &) ull* + || & (1 = ) | el

IN

where we have used |1 — my|| <1 and the Cauchy-Schwarz inequality. Finally, we show that we
can make || K (1 — 7y )|| arbitrarily small. Since K is smoothing, it is continuous H* — L? for any
N > 0. In particular, we can decompose

Kl-m)=K0-AY1-A)""1-m)

and HK (1-— A)NHL2 < Cp. On the other hand, the spectral theorem yields H(l -A)Na- 7r)\)H <

A~N. Therefore we have showed that HK (1- 77,\)H < g\j—f\\,’ which can be made arbitrarily small,
by taking A = 1 for example. This proves ||, (w)* < (L? + 2¢) [

O
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