The Solubility of the Group of the Form ABA^{\dagger}

Abdullah Al-roqi*

Department of Mathematics, College of Science, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia

Abstract: In this paper, we show that if A and B are abelian subgroups of coprime orders and A is self normalizing then G = ABA possesses a normal complement to A. The proof presented here is direct and elementary.

1. INTRODUCTION

In [1] Gorenstein and Herstein have shown that if G = ABA where A and B are both cyclic subgroups of relatively prime orders, then G is soluble, moreover the Sylow p-subgroups of G, for odd p, are abelian and the Sylow 2-subgroups of G are either abelian or isomorphic to the Quaternion group. Furthermore if $N_G(A) = A$ then G contains a normal complement to A. In general, Gorenstein [2] has proved that if G = ABA where A and B are both cyclic subgroups and $N_G(A) = A$, then G is soluble. In this paper, we show that if A and B are abelian subgroups of coprime orders and A is self normalizing then G = ABA possesses a normal complement to A. The proof presented here is direct and elementary.

2. PRELIMINARIES

Theorem 2.1 (H.Wielandt). Let H be an abelian Hall subgroup of a group G. Then there is a normal complement to H in G if and only if no two distinct elements of H are conjugate in G.

Proof. See [4, Corollary 10.18].

Theorem 2.2. Let G be a group which possesses a nilpotent Hall π -subgroup H. Then every π -subgroup of G is contained in a conjugate of H. In particular, all Hall π -subgroups of G are conjugate.

Proof. See [3, 9.1.10]

By using the Wieldant's Theorem, we can generalize the Frattini Argument and Burnside normal *p*-complement Theorem.

Proposition 2.3. Let K be a normal subgroup of G and suppose that H is a nilpotent Hall π -subgroup of K then

$$G = N_G(H)K$$
.

Proof. let $g \in G$. Then H^g is a nilpotent Hall π -subgroup of K. By Theorem 2.2 H^g , H are conjugate in K so there exists $k \in K$ such that $H^{gk} = H$, thus $gk \in N_G(H)$. Hence $g \in N_G(H)K$.

Proposition 2.4. Let H be a nilpotent Hall π -subgroup of G then the following hold

- Any two elements of Z(H) which are conjugate in G are conjugate in N_G(H).
- (2) If $H \leq Z(N_G(H))$ then H has a normal complement.

Proof. (1) Choose x, x^g in Z(H) where $g \in G$. Now H, $H^{g^{-1}} \le C_G(x)$, so by Theorem 2.2 there exists $y \in C_G(x)$ such that $H^y = H^g$. Therefore $H^{yg} = H$, thus $yg \in N_G(H)$ and $x^{yg} = x^g$.

(2) Choose x, x^g in H = Z(H). By (1) there exists $y \in N_G(H)$ such that x = x. But $x \in Z(N_G(H))$, so $x^g = x$. Since no distinct elements of H are conjugate then by Theorem 2.1 H has normal complement.

3. ABA-GROUPS

Theorem 3.1. Let G be a group that contains abelian subgroups A and B with the following properties

- (1) G = ABA.
- (2) A and B have coprime orders.
- (3) A is its own normalizer.

Then A is a Hall subgroup and G possesses a normal complement to A.

Proof. Assume the theorem is false. Suppose G is a counter example of minimal order.

Set

 $\pi = \{ p \in \pi(A) : O_p(A) \text{ is not normal in } G \}$

 $\sigma = \{ p \in \pi(A) : O_p(A) \text{ is normal in } G \}.$

It is obvious that $A = O_{\pi}(A) \times O_{\sigma}(A)$. For the sake of clarity, we break up the proof into a sequence of steps.

Step 1. If $A_0 \le A$, then $N_G(A_0) = A(N_G(A_0) \cap B)A$.

Proof. It is clear.

Step 2. $O_{\pi}(A)$ is a Hall Subgroup of G and G has a normal π -complement.

Proof. Choose a Sylow *p*-subgroup *P* of *G* such that $O_p(A) \le P$. By Step 1, we have $N_G(O_p(A)) = A(N_G(O_p(A)) \cap B)A$.

^{*}Address correspondence to this author at the Department of Mathematics, College of Science, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia; E-mail: aalroqi@kau.edu.sa

[†]This work is supported by King Abdulaziz University, Saudi Arabia.

Since $N_G(O_p(A)) < G$ and by the minimality of G, there exists $K \triangleleft N_G(O_p(A))$ such that $N_G(O_p(A)) = AK$ and $A \cap$ K=1.

Now A is a Hall subgroup of $N_G(O_p(A))$, so $O_p(A) \in$ $Syl_p(N_G(O_p(A)))$. We have

$$N_P(O_p(A)) \leq O_p(A)$$
.

Therefore $N_P(O_p(A)) = O_p(A)$, thus $O_p(A) = P$. In Particular, $O_p(A) \in Syl_p(G)$. Now $O_{\pi}(A)$ is a Hall subgroup of G.

By Step 1,

$$N_G(O_{\pi}(A)) = AN_B(O_{\pi}(A))A.$$

Let $g \in N_B(O_{\pi}(A))$. Now $O_{\sigma}(A)$ is a normal subgroup of G, so we have

$$g \in N_G(A) = A$$
.

Therefore

$$N_G(O_{\pi}(A)) = A$$
.

Since $O_{\pi}(A) \leq Z(N_G(O_{\pi}(A))) = A$ and $O_{\pi}(A)$ is a Hall subgroup of G then by Proposition 2.4 (2) G has a normal complement to $O_{\pi}(A)$.

Step 3. $O_{\sigma}(A)$ is contained in Z(G).

Proof. We have $O_{\pi}(A) \leq C_G(O_{\sigma}(A))$. Since $C_G(O_{\sigma}(A))$ is a normal subgroup of G and $O_{\pi}(A)$ is a nilpotent Hall subgroup of G then by Proposition 2.3, we have that

$$G = N_G(O_{\pi}(A))C_G(O_{\sigma}(A)).$$

$$= AC_G(O_{\sigma}(A)).$$

$$= C_G(O_{\sigma}(A)).$$

Hence $O_{\sigma}(A) \leq Z(G)$.

Step 4. Every σ -element of G is contained in $O_{\sigma}(A)$.

Proof. Let g be a σ -element of G. Then

$$g = a_{\pi} a_{\sigma} a_{\pi} a_{\sigma}^{\prime}$$

for some $a_{\pi}, a_{\pi}', a_{\sigma}' \in A$ and $b \in B$. Since $O_{\sigma}(A) \leq Z(G)$ then $g = a_{\pi} a_{\sigma} a_{\sigma}^{'} b a_{\pi}^{'}$. By Step 3, we have

$$G = O_{\pi}(A)O_{\pi'}(G).$$

So $a_{\sigma}a_{\sigma}^{'}b \in O_{\pi}(G)$. Set

$$\overline{G} = G/O_{\pi'}(G).$$

Therefore

$$\overline{g} = \overline{a_{\pi}a_{\pi}}$$
.

But \overline{g} is σ -element, so

$$a_{\pi}a_{\pi}^{'} \in O_{\pi'}(G) \cap O_{\pi}(A) = 1.$$

Thus $a_{\pi} = a_{\pi}^{'-1}$. Hence $g = \left(a_{\sigma}ba_{\sigma}^{'}\right)^{a_{\pi}^{-1}}$ Since the orders of A and B are relatively prime and by Step 3 we deduce that b = 1. Hence

$$g = a_{\pi} a_{\sigma} a_{\pi}^{-1} = a_{\sigma} a_{\sigma}'$$

Step 5. $O_{\sigma}(A)$ is a Hall subgroup and G has a normal σ complement.

Proof. By Steps 4 and 5, $O_{\sigma}(A)$ is a Hall normal abelian subgroup of G. By Proposition 2.4, $O_{\sigma}(A)$ has a normal σ complement in G.

Finally, $O_{\pi}(A)$ and $O_{\sigma}(A)$ are Hall subgroups and have normal complements in G. By taking the intersection of the two complements, we get a normal complement to A in G.

REFERENCES

- Gorenstein D. On finite groups of the form ABA. Can J Math 1962;
- Gorenstein D, Herstein IN. A class of solvable groups. Can J Math [2] 1959; 11: 311-20.
- [3] Robinson DJ. A course in the theory of groups. New York: Springer, 1991.
- [4] Rose J. A course on group theory. New York: Dover 1978.

Received: October 31, 2008 Revised: May 14, 2009 Accepted: May 20, 2009

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[©] Abdullah Al-roqi; Licensee Bentham Open.