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The Lie Algebra of Local Killing Fields
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Abstract: We present an algebraic procedure that finds the Lie algebra of the local Killing fields of a smooth metric. In
particular, we determine the number of independent local Killing fields about a given point on the manifold. As an
application, we provide a local classification of the types of surfaces that admit the various possible Lie algebras of local

Killing fields, in terms of the Gaussian curvature.
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1. INTRODUCTION

Killing fields describe the infinitesimal isometries of a
metric and as such play a significant role in differential
geometry and general relativity. In this paper we present an
algebraic method that finds the Lie algebra of the local
Killing fields of a smooth metric g. In particular, we

determine the number of independent local Killing fields of
g about any given point. In the section following, we

identify the local Killing fields of a metric with local parallel
sections of an associated vector bundle W , endowed with a
connection V. An examination of the form of the curvature
of V leads to a characterization of spaces of constant
curvature by means of a system of linear equations. In
Section 3 we investigate the Lie algebra structure of Killing
fields. Section 4 includes an overview of the procedure
developed in [1]. Therein the bundle generated by the local
parallel sections of W is found by calculating a derived flag
of subsets of W . The number of independent Killing fields
of g about a point x € M is then equal to the dimension of

the fibre WX over x of the terminal subset of the derived

flag. Associated to W. is a Lie algebra canonically
isomorphic to the Lie algebra K  of local Killing fields

about x. The method is illustrated by providing a short
proof of a classical theorem that gives a necessary condition
for a space to be locally symmetric, expressed by the vani-
shing of a set of quadratic homogeneous polynomials in the
curvature. Section 5 considers the derived flag for surfaces.
We obtain a complete classification of the local Riemannian
metrics corresponding to the various possible kinds of Lie
algebra K . Furthermore, we show that if a regular surface
with non-constant curvature possesses a Killing field then

the integral curves of the curvature vector field are geodesic
paths.
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2. KILLING FIELDS AND CONSTANT CURVATURE

We associate to Killing fields parallel sections of a
suitable vector bundle in the manner put forward by Kostant
[2]. The utility of such a framework is two-fold: first, it
permits us to apply algebraic techniques adapted to finding
the subbundle generated by local parallel sections. Second, it
enables a purely algebraic description of the Lie bracket of
two Killing fields, avoiding the explicit appearance of
derivatives.

Let g be a metric on a differentiable manifold M of
dimension n; g is assumed to be pseudo-Riemannian of
signature (p,q) unless otherwise stated. K is a Killing field

of g if and only if,
K, +K,,=0 (1)

where the semi-colon indicates covariant differentiation with
respect to the Levi-Civita connection of g. It is straight-
forward to verify that,

Ka;hz' = Rabcd Kd (2)

for Killing fields K , where R, is the Riemann curvature

c

tensor of g, defined according to,
Ac;ba - Ac;uh = Rabchd
The summation convention shall be used throughout.

Let W be the Whithey sum W: =T M ®A’T'M . A
local section of W has the form X=K+L, where

K =K, dx“ is a local section of T°M and L=L_dx" Andx"
is a local section of AT M . Define a connection V on W
by,

V.X =(K,,—L,)dx" +(L,, — R, K )dx" ndx" 3)

For an open subset Uc M, let K, denote the local

Killing fields K:U—T M and let P, denote the local

parallel sections X:U — W ; the subscript U shall be
omitted when U = M . Define the map ¢, : K,, = F, by,
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o, (K,)=K, +K,
v ’ @

It is clear that the image of ¢, does, in fact, lie in F,.

The inverse y, :P, — K, of ¢, is the projection of W

onto T'M: w,(K,+L,):=K,. This establishes a vector

space isomorphism,

K, < P, &)
Consider a vector space V with a non-degenerate, sym-

metric bilinear form h. Let B=B,, be a covariant 4-

tensor on V satisfying the following relations common to a

Riemann curvature tensor:

Babcd = BL'dab = _Bbacd = _Bubdc (6)

and let T=T,  be an n-tensor on V with n=2. The
derivation BxT is the (n+2) -tensor defined by,

B % Yllb('d"' = BJ'hL'dTSa"' +B

s K s
asch b--- + BabsdT -3 +B T d---

abcs

(7)
Indices are raised by /.
Lemma '1. If V is 2-dimensional then B+ L =0 for all
Le AV,
Proof:
It shall be convenient to work in an orthonormal basis of
V in which h=diag(n,,n,), where n, =+1. Then L=nL,;.

Owing to the symmetries (6), there are effectively two cases
to consider.

(1) a=b=1 case:
Bx Ly =M,(Byy 0+ Bppy)Ly =0
(i) a=c=1, b=d=2 case:

Bx L, =MBy,Ly + 0B, L, + 1,850, L, +1,B,,,L,, =0

q.e.d.

Applying the Bianchi identities, the curvature
F(i,j):=V,V, of V takes the form,
F(i, j)(X) = (R, K* + R Ly, )dx" A dx' (8)

where X =K dx"+ L,dx" ndx" [3]. In the sequel, it shall
be convenient to view the curvature F as a map
F:W S ANT'M®W given by wi> F(,)(w). F is com-
posed of two pieces: a K -part and an L -part. The K -part
provides a description of locally symmetric spaces: g is
locally symmetric if and only if 7'M cker F . The L -part,

on the other hand, provides a characterization of metrics of
constant sectional curvature by means of a system of
homogeneous linear equations.

Proposition 2. Let g be Riemannian and n=3. Then M is
a space of constant curvature if and only if,

RxL=0
forall Le A’T'M
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Expressed in terms of indices, M has constant curvature
(for n>3)if and only if forall Le A°T"M ,

R, L'+R, L, +R L' =0

ijsl

B
L k + Ri/'kx

)

It is evident from the lemma that the proposition does not
hold for n=2.

Proof:

= If g has  constant  curvature  then
Ry, =x,(6,6, —0,6,) with respect to an orthonormal
frame, where Kk, is a constant. Substitution of this

expression into the left hand side of (9) gives zero for all
skew-symmetric L=L, .

& Suppose that (9) holds for all L e A>T M . We shall
work in an orthonormal frame X,,...,X, for g; this will
allow us to deal with lowered indices throughout: L ; =L .
Let i =k,j and [ be three distinct indices in (9). This gives,

R

sjil

Put L, :=5,5,-5,5

K

L,+R

Ly + Ry L, +R, L, =0 (10)

ijsl ijis sl

, into (10) to obtain R, =R, . It
follows that for any two pairs of distinct indices i# j and
azb, R, =R, . Thus,

ijij
R, =k(x) fori#j (11)

where K is some functionon M .

Next, let i=k and j=1[ be two distinct indices in (9).
This gives:

R L +R._L. =0 (12)

ijis sj ijsj i
Let m be any index distinct from i and j and put
L :=6,0,—90.0, into(12). We obtain,

rm>=sj rj sm

R, =0 fori,jand m distinct (13)
Consider a pair Y,,Y, of orthonormal vectors in T .M . If
X,,X, span the same plane as Y,¥, at x then

RO.Y,.Y,.Y)=xk(x), by (11). If ¥.Y,
orthogonal to X,,X, then we may as well suppose X, =Y,
and X, =Y,, whence R(Y,,Y,,Y,Y,)=x(x), from (11)
again.

span a plane

The last possibility is that ¥,,Y, and X,X, span planes

that intersect through a line, which for the purpose of
calculating sectional curvature we may take to be generated
by X, =Y,, by means of appropriate rotations of the pairs

X,,X, and Y,,Y, within the respective planes they span. We
may suppose, furthermore, that X, is the normalized com-
ponent of ¥, orthogonal to X, ; thus,

Y, =aX, +bX,,

where a’ +b> =1. From (11) and (13) this gives,
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R(Y,.Y,.Y,.Y,) = R(X,,aX, +bX,,X,.aX, +bX,)
= a2R1212 +b2Rl3l3
=x(x)

Therefore g has constant curvature at each point xe M .
By Schur's Theorem, g has constant curvature.

q.e.d.

3. THE LIE ALGEBRA STRUCTURE OF K,

Let V' be an n-dimensional vector space equipped with a
non-degenerate, symmetric bilinear form 4, of signature
(p,q), and let B=B, , be a covariant 4-tensor on V satis-

fying the usual algebraic relations of a Riemann curvature:
Byed == Byua (14)

Babcd = _B abdc ( 1 5 )
B,., +B.,,*+B.,. =0, andafortiori (16)
By = By

By virtue of (14) and (15) we may define a skew-
symmetric, bilinear bracket operation on V" @ A’V" by,
[K,+L,, K +L)1:

= L(:be - LabK’b + Lz: CL('b - Lur L’cb + Bab(:dKCK,d (17)

where indices are raised and lowered with /. If a subspace
W of V'@A’V" is closed with respect to the bracket and
satisfies the Jacobi identity then we denote the associated Lie
algebra by A(W,B,h).

Lemma 3. Let W be a subspace of V' @ A’V , closed with
respect to the bracket operation. The Jacobi identity holds on
W if and only if for all X=K+L,X'=K’+L’ and

X’"=K"+L” in W, K,K’,K”eV" and
LL',L” e A*V",

where

BxL, ,K“K"+BxL., K" K'+BxL) KK?*=0 (18)

‘abcd ‘abed

Proof:

Let K,K',K” V" and L,L’,L” € A*V" . There are four
cases to consider.

(i) K-K’'—K"” case. We have,
[K,[K’,K”]]=IK,B,, K K"1=B, ,K'K"“K"!
Therefore,
[K,[K", K" 11+ [K",[K”,K]I+[K",[K,K']]
=(B,.,+ B, +B,, KK K"
=0 (19)
by equation (16).
(i) K—-K’-L case. First,
[K,[K’,L]]=[K,L,K"]=B, K L'K”
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Also,
[L.[K.,K'N|=[L,B, KK"]

=B KcKul

aschCK,dLyh - LaSB

sbed

Combining these with (15) and the fact that L=L, is
skew-symmetric, we obtain,

[K,[K',L])+[K’,[L,K]]+[L,[K,K']]=B* Labch"K”’ (20)
(iii) K—L-L’ case. Observe that,
[K,[L,L')|=[K,L'L- LL|=L'LK — LL'’K
and,
[L,[L",K]|=—[L,L’'K]=LL'K

Using these equations gives,

[K,[L, L1+ [L,[L, KN+ [L"[K,L]1=0 21)
(iv) L—L"—L" case. It is elementary to verify that,
[L,[L, L7114 L7, (L7, LTI+ [L”,[L,L"]] =0 (22)

After applying (19)-(22),
(XX X+ XX XTI+ X7 XX )
simplifies to,
Bx L, K K" +BxL}, ,K"K'+Bx L] KK"

q.e.d.

Proposition 4. (i) If V is 2-dimensional then any subspace

W of V'®A’V", closed with respect to the bracket, defines
a Lie algebra A(W,B,h).

(i) If V is arbitrary and B=0 then V' @ A’V" defines a
Lie algebra A(V" @ A’V',B=0,h).

Proof:
(1) Follows from Lemmas 1 and 3. (ii) is immediate.
q.e.d.

For local Killing fields K,K’e€K,, the Lie bracket
K" :=[K,K'] is,
K/'=L,K"—L,K" (23)
where we have written L,:=K, and L) =K/, .

Furthermore, L), := K/, is given by,

ab

Lc:b, = Lz:chb - Lac'Lc,'b + Rab(rdKCK,d (24)

Defining a bracket on P, by,
[K+L,K'+L']:

= Lo:th - LabK,b + LL:Cch - Lac L(’h + RahchCK'd (25)

gives an isomorphism ¢, : K,, = B, of Lie algebras:

¢U ([KvK/]) = [¢U (K)7¢U (K/)] (26)
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For xeU , define the subspace W, , of W, by,

W, ={weW,:w=X(x), forsome XecPF,} (27)

Since parallel sections of a vector bundle are determined
by their value at a single point, F, and W, are isomorphic

as vector spaces via the restriction map r, : B, - W, ., given
by r,(X):=X(x) . Comparing (17) and (25), we have, in fact,
a Lie algebra isomorphism r, :F, — AW, ,R ,g,). Com-

posing this with ¢, characterizes the Lie algebra of K, .

Lemma 5.
roo¢, Ky, > AW, .R..8,) (28)

is an isomorphism of Lie algebras.
In order to find the Lie algebra of the local Killing fields
of g about the point x it remains to calculate W, for a

sufficiently small neighbourhood U of x. This is

accomplished in the following section.

4. PARALLEL FIELDS AND LOCALLY SYMMETRIC
SPACES

We begin by briefly reviewing the method from [1]. This
describes an algebraic procedure for determining the number
of independent local parallel sections of a smooth vector
bundle 7:W — M with a connection V. Since the exist-
ence theory is based upon the Frobenius Theorem, smooth
data are required.

Let W’ be a subset of W satisfying the following two
properties:

P1: the fibre of W’ over each x € M is a linear subspace of
the fibre of W over x, and,

P2: W’ is level in the sense that each element we W’ is
contained in the image of a local smooth section of W’,
defined in some neighbourhood of 7w(w) in M .

Let X be alocal section of W’ . The covariant derivative
of X is a local section of W ® T"M . Define o by,
a(X)=¢oV(X)

where ¢:W®T M — (W /W’')®T M denotes the natural

projection taken fibrewise. If f 1is any differentiable

function with the same domain as X then,
o(fX) = fo(X)
This means that o defines a map,
Ay W >W/WH)RT M
which is linear on each fibre of W’ .

The kernel of o, is a subset of W', which satisfies

property P1 but not necessarily property P2. In order to carry
out the above constructions to kerc,,. , as we did to W’ the

non-level points in ker o, must be removed. To this end we
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define a leveling map S as follows. For any subset V of W
satisfying P1 let S(V) be the subset of V consisting of all

elements v for which there exists a smooth local section
s:UcM—->VcW such that v=s(m(v)). Then S(V)

satisfies both P1 and P2.

We may now describe the construction of the maximal
flat subset W, of W . Let,

VO = IweW | F()(w)=0}
we = S
Vel = kera

w

where, as before, F:TM ®TM @ W — W is the curvature
tensor of V . This gives a sequence,

w QW«)) 2vv(l) Q"‘;)W(k) o

of subsets of W . For some ke N, W =Ww® forall [>k.
Define W =W ® | with projection 7Z:W — M .

We say that the connection V is regular at xe M if
there exists a neighbourhood U of x such that 7' ) W

is a vector bundle over U. W, shall denote the fibre of W
over xe M .

Lemma 6. Let V be a connection on the smooth vector
bundle 7:W — M .

(i) If X:Uc M —W is a local parallel section then the
image of X lies in w.
(ii) Suppose that V is regular at xe M . Then for every

we W,\- there exists a local parallel section X :Uc M — W
with X(x)=w.

We may now describe the Lie algebra of local Killing
fields about a point x .

Theorem 7. Let g be a smooth metric on a manifold M
with associated connection V on W=T"M®AT'M ,
which is assumed to be regular at xeM . Then g has

dimW . independent local Killing fields in a sufficiently
small neighbourhood U of xeM . Moreover, the Lie
algebra of Killing fields on U is canonically isomorphic to

the Lie algebra A(W,V,Rx,gx) .

Proof:

By Lemma 6 there exists a sufficiently small open
neighbourhood U of x such that W, =W.. The theorem
now follows from Lemma 5.

q.e.d.

As an illustration, we provide a short algebraic proof of
the classical theorem that locally symmetric spaces satisfy,

R*R=0 (29)
[4].
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Lemma 8. If M is locally symmetric then T°M c W .

Proof:

Suppose M is locally symmetric and let x € M . Then
there is an open neighbourhood U of x such that the space
of Killing fields on U, whose covariant derivative vanishes
at x, has dimension n. By the isomorphism given in

Lemma 5, T.M cW, . From Lemma 6 (i) we have

W, , W, andso T'M cW..

q.e.d.

Let T =T, bean n-tensor with n=1. Define R-T to
be the (n+2)-tensor obtained by contracting the rightmost
index of R with the leftmost index of 7 :

R-T

abc---

=R, T, (30)

Let p:=T M, the cotangent space of M and let p be

defined as the set of all elements veT M satisfying,

RxR-v=0 31
Define ¢ to be the setof all L € A’T"M such that,
RxL=0 (32)

We shall assume that ¢ has constant rank.

Proof of (29):
Let us calculate the derived flag of W supposing M to
be locally symmetric. From (8), W® =V® :=ker F=p®1.

Let X =K +L be a local section of W, where K and L
are local sections of p and f, respectively. By definition,

X()c)e\/x(1> if and only if V,.X(x)eWX(O), for all i. This is

equivalent to,

(*) : Lab;(i) - Rab(i)c Kc €t at x.

Taking the covariant derivative of RxL=0 gives
R L; =0.Thus L, isalocal section of 7. This means

that (*) holds if and only if R-K lies in 7. This is the case
precisely when Kep® at x, and so V" =p" @r. By

Lemma 8, we must have V" =T "M @t , whence it follows

that pU=T'M and W"=V"=W®. Therefore
RxR=0.
q.e.d.

We have also shown that for M locally symmetric,
W=W(O)=p®t. W=p®t then
T"M ckerF, from which we conclude that M is locally

symmetric. The terminal subbundle of the derived flag
therefore characterizes locally symmetric spaces:

Conversely, if

M is a locally symmetric space if and only if W= POt
(33)

In particular, the derived flag computes the local
canonical decomposition.
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As observed above, a Riemannian manifold with
dimM =3 has constant curvature if and only if RxL =0
for all = (Proposition 2). Furthermore, all manifolds of
dimension n=1 or 2 satisfy RxL=0 for Le A’T'M (cf.
Lemma 1). Since spaces of constant curvature are locally
symmetric the curvature F vanishes for such manifolds. It is
not difficult to see that the converse holds (for the 2-
dimensional case use the canonical form of the Riemann
curvature: R, =c(g,8, —8x8;), where ¢ is the Gaussian

curvature). Consequently,

M is a space of constant curvature if and only if W=Ww.
(34)

Employing Theorem 7, we obtain as a corollary the
familiar result that a Riemannian manifold possesses the

. . 1 .
maximal possible number En(n+1) of independent local

Killing fields if and only if it is a space of constant
curvature.

5. CLASSIFICATION FOR RIEMANNIAN SURFACES

In this final section we shall determine which
Riemannian surfaces correspond to the various types of Lie
algebra K . In the process, a necessary condition for a

Riemannian surface to possess a Killing field is obtained.
First, we recall the situation involving the maximal number
of local Killing fields:

Let M be a Riemannian surface. The following are
equivalent:

(i) dimK =3 forall xeM .
(i) M has constant Gaussian curvature c.
(iii) M is locally symmetric.
In this case,
(a) if ¢=0 then K, is isomorphic to the Lie algebra of
R’ %, SOQ);
(b) if ¢>0 then K =s,,R;
(¢c) if ¢<O0 then K, =su,.

The equivalence of (i)-(iii) follows from Lemma 1, (34)
and the observation below (34). Assume that these
conditions hold. ¢=0 corresponds, locally, to flat Euclidean
space, for which K is isomorphic to the Lie algebra of the
semidirect product of translations and rotations. Suppose
c#0 and let X and Y be orthogonal vectors in 7, M with
norm,

X' =y? =L
lcl
Define H € A°’T_M by,
[X.Y]:=H
Then,

[H,X]=—-sg(c)Y and [H.,Y]=sg(c)X
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where sg(c) denotes the sign of c. Appealing to Lemma 5,
this identifies K _ with s,,® for ¢>0 and with su, for
c<0 [5]

Next, we calculate the derived flag for W assuming that

the surface is regular: W =V has constant rank for all i .
The elements K €T M satisfying RW” K, are those for

which ¢'K_=0. Therefore, by Lemma 1,
W =kerde® A’T'M (35)

where dc denotes the vector field ¢“. The case dc =0 has
been handled above. Suppose therefore that dimkerdc=1;
that is, dc is non-vanishing. Then W is a rank-two fibre

bundle over M . Let X =K+ L be a local section of W,
where K is a local section of kerdc and L is a local

section of ATM. Xx)ew! is
V.X(x)e WX(O) for all i, by the definition of the derived flag.
Since A’T"M c W, X(x)eW" if and only if,

equivalent to

K L

a(i

, €kerac (36)

ai)
At x . Taking the covariant derivative of ¢'K =0 gives
the equation ¢“K,, =-c,K". Substituting this into (36)
determines W as the subset of all K +L e W satisfying,
K+ L,c*=0 37)

By contracting (37) with K and dc, it is evident that
W consists of the zero elements in W along with the
solutions of,

c,KK"+L,c"K"=0 (38)
c,Kic" =0 (39)

where 0# K ekerdc and L e A’T M . Equation (39) has a
solution 0 # K e kerdc if and only if,

cac’ = fe, (40)
for some f. (40) may be written in terms of differential
forms as,

dc A D,.dc=0 (41)

where D denotes covariant differentiation. This leads to a
necessary condition for the existence of a Killing field on a
Riemannian surface.

Theorem 9. If a regular Riemannian surface possesses a
Killing field then,

dcAD,dc=0

Proof:

By Theorem 7, if a regular Riemannian surface has a
Killing field then W has rank at least one. Since W ¢ W,
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equation (39) must have a non-trivial solution K €kerdc at
each xe M . The theorem now follows from the fact that
(39) is equivalent to (41).

q.e.d.

Corollary 10. Let M be a regular Riemannian surface with
non-constant curvature. If M possesses a Killing field then
the integral curves of dc¢ are geodesic paths.

By a geodesic path we mean a curve that is a geodesic
when appropriately parameterized.

Proof:

Equation (41) is equivalent to D, dc= fdc, which
implies that integral curves of the non-vanishing vector field
dc may be parametrized so as to give geodesics of M .

q.e.d.

An example would be the punctured paraboloid
7=x"+ y2; (x,¥)#(0,0), with the induced metric from its
embedding into 3-dimensional Euclidean space. The integral
curves of dc are described by the geodesic paths
Yo (t) = (tcos@,tsinB,t) , up to reparametrization.

Now let us return to calculating W . If dc A D, .dc=0

on the surface then the non-zero elements of W are the
solutions to (38) for which 0# K € kerdc . For any choice of
non-trivial K e kerdc, (38) uniquely determines an element
L=L(K)e A’T"M . Therefore W, in this case, is a rank
one vector bundle over M . If, on the other hand,
dcAD,dc#0 on M then W is the zero bundle and there
do not exist any local Killing fields. As a consequence, K,
cannot be 2-dimensional; this may also be seen directly by
considering the Lie bracket operation. Henceforth we shall
assume that dc A D, dc=0.

To find W®, let X=K+L be a local section of W .
By definition, X(x)e Wx@) if and only if V X(x)e WX“) for
all i . Owing to (37), this is equivalent to

K5+ L, c"=0 (42)

(i) T Fab(i)
Where,
K/

o =K L

a(i)

aii)

¢
Rab(i) K('

L L

’ o _
ab(i) *— “abi(i)

(Note that from the description of W contained in (36) it
follows that K[, +L.,, €W?). Taking the covariant

a(i) a

derivative of (37) gives,

a a _ a a
CapKity F Ly = =Copy K* = Ly (43)

Substituting (43) into (42) defines W as the subset of
all K+LeW® such that,

Cop K+ Lyc e + L.+ Ryyc K =0 (44)
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If this has only the trivial solution then W=Ww®? is the
zero bundle. Otherwise, W =W® =W has rank one.

Theorem 11. Let M be a regular Riemannian surface. Then
dimK =1 forall xe M if and only if,

(1) dc#0,
(i) deaD,dc=0,and
(iii) equation (44) holds for all K+ LeW® .

Proof:

Conditions (i)-(iii) are equivalent to rank W =1. The
result now follows from Theorem 7.
q.e.d.

We summarize the discussion in this section with the
following corollary.

Corollary 12. For regular Riemannian surfaces, K, may be
one of five possible Lie algebras. It is isomorphic to either
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sLR, su, or the Lie algebra of R*x_,SO(2) when the

Gaussian curvature is constant and positive, negative or zero,
respectively. K is the 1-dimensional Lie algebra when the

conditions of Theorem 11 are met. Otherwise, there do not
exist any local Killing fields and K is trivial.
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