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Abstract:!We present an algebraic procedure that finds the Lie algebra of the local Killing fields of a smooth metric. In 
particular, we determine the number of independent local Killing fields about a given point on the manifold. As an 
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1. INTRODUCTION 

 Killing fields describe the infinitesimal isometries of a 
metric and as such play a significant role in differential 
geometry and general relativity. In this paper we present an 
algebraic method that finds the Lie algebra of the local 
Killing fields of a smooth metric g . In particular, we 
determine the number of independent local Killing fields of 
g  about any given point. In the section following, we 
identify the local Killing fields of a metric with local parallel 
sections of an associated vector bundle W , endowed with a 
connection ! . An examination of the form of the curvature 
of !  leads to a characterization of spaces of constant 
curvature by means of a system of linear equations. In 
Section 3 we investigate the Lie algebra structure of Killing 
fields. Section 4 includes an overview of the procedure 
developed in [1]. Therein the bundle generated by the local 
parallel sections of W  is found by calculating a derived flag 
of subsets of W . The number of independent Killing fields 
of g  about a point x !M  is then equal to the dimension of 

the fibre 
 W
!

x  over x  of the terminal subset of the derived 
flag. Associated to 

 W
!

x  is a Lie algebra canonically 
isomorphic to the Lie algebra K

x
 of local Killing fields 

about x . The method is illustrated by providing a short 
proof of a classical theorem that gives a necessary condition 
for a space to be locally symmetric, expressed by the vani-
shing of a set of quadratic homogeneous polynomials in the 
curvature. Section 5 considers the derived flag for surfaces. 
We obtain a complete classification of the local Riemannian 
metrics corresponding to the various possible kinds of Lie 
algebra K

x
. Furthermore, we show that if a regular surface 

with non-constant curvature possesses a Killing field then 
the integral curves of the curvature vector field are geodesic 
paths. 
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2. KILLING FIELDS AND CONSTANT CURVATURE 

 We associate to Killing fields parallel sections of a 
suitable vector bundle in the manner put forward by Kostant 
[2]. The utility of such a framework is two-fold: first, it 
permits us to apply algebraic techniques adapted to finding 
the subbundle generated by local parallel sections. Second, it 
enables a purely algebraic description of the Lie bracket of 
two Killing fields, avoiding the explicit appearance of 
derivatives. 

 Let g  be a metric on a differentiable manifold M  of 
dimension n ; g  is assumed to be pseudo-Riemannian of 
signature (p,q)  unless otherwise stated. K  is a Killing field 
of g  if and only if,  

K
a;b

+ K
b;a
= 0  (1) 

where the semi-colon indicates covariant differentiation with 
respect to the Levi-Civita connection of g . It is straight-
forward to verify that,  

K
a;bc
= R

abc

d
K

d  (2) 

for Killing fields K , where R
abc

d  is the Riemann curvature 
tensor of g , defined according to,  

A
c;ba

! A
c;ab
= R

abc

d
A
d  

 The summation convention shall be used throughout. 

 Let W  be the Whitney sum W := T
*
M !"

2
T
*
M . A 

local section of W  has the form X = K + L , where 
K = K

a
dx

a  is a local section of T *
M  and L = L

ab
dx

a
! dx

b  
is a local section of !2

T
*
M . Define a connection !  on W  

by,  

!
i
X = (K

a;i
" L

ai
)dx

a
+ (L

ab;i
" R

abi

c
K

c
)dx

a
# dx

b

 (3) 

 For an open subset U ! M , let K
U

 denote the local 
Killing fields K :U! T

*
M  and let P

U
 denote the local 

parallel sections X :U!W ; the subscript U  shall be 
omitted when U =M . Define the map !

U
:K

U
" P

U
 by,  
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!
U
(K

a
) := K

a
+ K

a;b  (4) 

 It is clear that the image of !
U

 does, in fact, lie in P
U

. 
The inverse !

U
:P

U
" K

U
 of !

U
 is the projection of W  

onto T *
M : !

U
(K

a
+ L

ab
) := K

a
. This establishes a vector 

space isomorphism,  

K
U

! P
U

 (5) 

 Consider a vector space V  with a non-degenerate, sym-
metric bilinear form h . Let B = B

abcd
 be a covariant 4 -

tensor on V  satisfying the following relations common to a 
Riemann curvature tensor:  

B
abcd

= B
cdab

= !B
bacd

= !B
abdc

 (6) 

and let 
 
T = T

ab!
 be an n -tensor on V  with n ! 2 . The 

derivation  B !T  is the (n + 2) -tensor defined by,  

  
B ! T

abcd!
:= B

sbcd
T

s

a!
+ B

ascd
T

s

b!
+ B

absd
T

s

c!
+ B

abcs
T

s

d!  (7) 

 Indices are raised by h . 
Lemma 1. If V  is 2-dimensional then  B ! L = 0  for all 
L !"

2
V
* .  

Proof: 

 It shall be convenient to work in an orthonormal basis of 
V in which h =diag(!

1
,!

2
) , where !

i
= ±1 . Then Li j =!i

L
ij . 

Owing to the symmetries (6), there are effectively two cases 
to consider.  
(i)  a = b =1  case:  

 
B ! L

abcd
=!

2
(B

21cd
+ B

12cd
)L

21
= 0  

(ii)  a = c =1 , b = d = 2  case:  

 
B ! L

abcd
=!

2
B
2212

L
21
+!

1
B
1112

L
12
+!

2
B
1222

L
21
+!

1
B
1211
L
12
= 0  

q.e.d. 

 Applying the Bianchi identities, the curvature 
F(i, j) :=!

[i
!

j ]  of !  takes the form,  

 
F(i, j)(X) = (Rijkl;sK

s
+ R ! Lijkl )dx

k
! dx

l  (8) 

where X = K
a
dx

a
+ L

ab
dx

a
! dx

b  [3]. In the sequel, it shall 
be convenient to view the curvature F  as a map 
F :W !"

2
T
*
M #W  given by 

 
w! F(, )(w) . F  is com-

posed of two pieces: a K -part and an L -part. The K -part 
provides a description of locally symmetric spaces: g  is 
locally symmetric if and only if T *

M ! kerF . The L -part, 
on the other hand, provides a characterization of metrics of 
constant sectional curvature by means of a system of 
homogeneous linear equations. 
Proposition 2. Let g  be Riemannian and n ! 3 . Then M  is 
a space of constant curvature if and only if,  

 R ! L = 0  
for all L !"

2
T
*
M  

 Expressed in terms of indices, M  has constant curvature 
(for n ! 3 ) if and only if for all L !"

2
T
*
M ,  

Rsjkl L
s

i + Riskl L
s

j + Rijsl L
s

k + Rijks L
s

l = 0  (9) 
 It is evident from the lemma that the proposition does not 
hold for n = 2 . 

Proof: 

 !  If g  has constant curvature then 
Rijkl =! 0

(" il" jk # " ik" jl )  with respect to an orthonormal 
frame, where !

0
 is a constant. Substitution of this 

expression into the left hand side of (9) gives zero for all 
skew-symmetric L = L

ab
.  

 !  Suppose that (9) holds for all L !"
2
T
*
M . We shall 

work in an orthonormal frame X
1
,...,X

n
 for g ; this will 

allow us to deal with lowered indices throughout: Li j = Lij . 
Let i = k, j  and l  be three distinct indices in (9). This gives,  

Rsjil Lsi + Risil Lsj + Rijsl Lsi + RijisLsl = 0  (10) 

 Put Lrs := ! rl! sj "! rj! sl  into (10) to obtain Rijij = Rilil . It 
follows that for any two pairs of distinct indices i ! j  and 
a ! b , Rijij = Rabab . Thus,  

Rijij =! (x) for i " j  (11) 

where !  is some function on M . 
 Next, let i = k  and j = l  be two distinct indices in (9). 
This gives:  
R
ijis
L
sj
+ R

ijsj
L
si
= 0  (12) 

 Let m  be any index distinct from i  and j  and put 
L
rs
:= !

rm
!
sj
"!

rj
!
sm  into (12). We obtain,  

Rijim = 0 for i, j and m distinct  (13) 

 Consider a pair Y
1
,Y

2
 of orthonormal vectors in T

x
M . If 

X
1
,X

2
 span the same plane as Y

1
,Y

2
 at x  then 

R(Y
1
,Y

2
,Y
1
,Y

2
) =! (x) , by (11). If Y

1
,Y

2
 span a plane 

orthogonal to X
1
,X

2
 then we may as well suppose X

3
=Y

1
 

and X
4
=Y

2
, whence R(Y

1
,Y

2
,Y
1
,Y

2
) =! (x) , from (11) 

again.  

 The last possibility is that Y
1
,Y

2
 and X

1
,X

2
 span planes 

that intersect through a line, which for the purpose of 
calculating sectional curvature we may take to be generated 
by X

1
=Y

1
, by means of appropriate rotations of the pairs 

X
1
,X

2
 and Y

1
,Y

2
 within the respective planes they span. We 

may suppose, furthermore, that X
3

 is the normalized com-
ponent of Y

2
 orthogonal to X

2
; thus,  

Y
2
= aX

2
+ bX

3
, 

where a2 + b2 =1 . From (11) and (13) this gives,  
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R(Y
1
,Y

2
,Y
1
,Y

2
) = R(X

1
,aX

2
+ bX

3
,X

1
,aX

2
+ bX

3
)  

= a
2
R
1212

+ b
2
R
1313

 

=! (x)  
 Therefore g  has constant curvature at each point x !M . 
By Schur's Theorem, g  has constant curvature.  
 q.e.d. 

3. THE LIE ALGEBRA STRUCTURE OF K
U

 

 Let V be an n-dimensional vector space equipped with a 
non-degenerate, symmetric bilinear form h, of signature 
(p,q) , and let B = B

abcd
 be a covariant 4-tensor on V satis-

fying the usual algebraic relations of a Riemann curvature:  
B
abcd

= !B
bacd

 (14) 
B
abcd

= !B
abdc

 (15) 
Babcd + Bacdb + Badbc = 0, and afortiori  (16) 
B
abcd

= B
cdab

 
 By virtue of (14) and (15) we may define a skew-
symmetric, bilinear bracket operation on V *

!"
2
V
*  by,  

[K
a
+ L

ab
, !K

a
+ !L

ab
] :

= !L
ab
K

b
" L

ab
!K
b
+ !L

a

c
L
cb
" L

a

c
!L
cb
+ B

abcd
K

c
!K
d

 (17) 
where indices are raised and lowered with h . If a subspace 
W  of V *

!"
2
V
*  is closed with respect to the bracket and 

satisfies the Jacobi identity then we denote the associated Lie 
algebra by A(W ,B,h) . 

Lemma 3. Let W  be a subspace of V *
!"

2
V
* , closed with 

respect to the bracket operation. The Jacobi identity holds on 
W  if and only if for all X = K + L, !X = !K + !L  and 
!!X = !!K + !!L  in W , where K , !K , !!K "V

*  and 
L, !L , !!L "#

2
V
* ,  

 
B ! L

abcd
!K
c

!!K
d
+ B ! !L

abcd
!!K
c
K

d
+ B ! !!L

abcd
K

c
!K
d
= 0  (18) 

Proof:  

 Let K , !K , !!K "V
*  and L, !L , !!L "#

2
V
* . There are four 

cases to consider.  
(i)  K ! "K ! ""K  case. We have,  

[K ,[ !K , !!K ]] = [K ,B
abcd

!K
c

!!K
d
] = B

abcd
K

b
!K
c

!!K
d  

 Therefore,  

[K ,[ !K , !!K ]]+ [ !K ,[ !!K ,K ]]+ [ !!K ,[K , !K ]]  

= (B
abcd

+ B
acdb

+ B
adbc
)K

b
!K
c

!!K
d  

= 0  (19) 
by equation (16).  
(ii)  K ! "K ! L  case. First,  

[K ,[ !K ,L]] = [K ,L
ab

!K
b
] = B

abcd
K

c
L
d

s
!K
s

 
 

 Also,  

[L,[K , !K ]] = [L,B
abcd

K
c

!K
d
]  

= B
ascd
K

c
!K
d
L
s

b
" L

a

s
B
sbcd
K

c
!K
d

 
 Combining these with (15) and the fact that L = L

ab
 is 

skew-symmetric, we obtain,  

 
[K ,[ !K ,L]]+ [ !K ,[L,K ]]+ [L,[K , !K ]] = B ! L

abcd
K

c
!K
d  (20) 

(iii)  K ! L ! "L  case. Observe that,  

[K ,[L, !L ]] = [K , !L L " L !L ] = !L LK " L !L K  

and,  

[L,[ !L ,K ]] = "[L, !L K ] = L !L K  

 Using these equations gives,  

[K ,[L, !L ]]+ [L,[ !L ,K ]]+ [ !L ,[K ,L]] = 0  (21) 

(iv)  L ! "L ! ""L  case. It is elementary to verify that,  

[L,[ !L , !!L ]]+ [ !L ,[ !!L ,L]]+ [ !!L ,[L, !L ]] = 0  (22) 

 After applying (19)-(22),  

[X,[ !X , !!X ]]+ [ !X ,[ !!X ,X]]+ [ !!X ,[X, !X ]]  

simplifies to,  

 
B ! L

abcd
!K
c

!!K
d
+ B ! !L

abcd
!!K
c
K

d
+ B ! !!L

abcd
K

c
!K
d  

q.e.d. 

Proposition 4. (i) If V  is 2-dimensional then any subspace 
W  of V *

!"
2
V
* , closed with respect to the bracket, defines 

a Lie algebra A(W ,B,h) .  

(ii)  If V  is arbitrary and B = 0  then V *
!"

2
V
*  defines a 

Lie algebra A(V *
!"

2
V
*
,B = 0,h) .  

Proof:  

(i) Follows from Lemmas 1 and 3. (ii) is immediate. 
 q.e.d. 

 For local Killing fields K , !K "K
U

, the Lie bracket 
!!K := [K , !K ]  is,  

!!K
a
= !L

ab
K

b
" L

ab
!K
b  (23) 

where we have written L
ab
:= K

a;b
 and !L

ab
:= !K

a;b
. 

Furthermore, !!L
ab
:= !!K

a;b
 is given by,  

!!L
ab
= !L

a

c
L
cb
" L

ac
!L
cb
+ R

abcd
K

c
!K
d

 (24) 
 Defining a bracket on P

U
 by,  

[K + L, !K + !L ] :

= !L
ab
K

b
" L

ab
!K
b
+ !L

a

c
L
cb
" L

ac
!L
cb
+ R

abcd
K

c
!K
d

 (25) 
gives an isomorphism !

U
:K

U
" P

U
 of Lie algebras:  

!
U
([K , "K ]) = [!

U
(K ),!

U
( "K )]  (26) 
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 For x !U , define the subspace W
U ,x

 of W
x

 by,  

WU ,x := {w!Wx :w = X(x), for some X !PU}  (27) 

 Since parallel sections of a vector bundle are determined 
by their value at a single point, P

U
 and W

U ,x
 are isomorphic 

as vector spaces via the restriction map r
x
:P

U
!W

U ,x
, given 

by r
x
(X) := X(x) . Comparing (17) and (25), we have, in fact, 

a Lie algebra isomorphism rx :PU ! A(WU ,x ,Rx ,gx ) . Com-
posing this with !

U
 characterizes the Lie algebra of K

U
. 

Lemma 5. 

 
rx !!U :KU " A(WU ,x ,Rx ,gx )  (28) 

is an isomorphism of Lie algebras.  

 In order to find the Lie algebra of the local Killing fields 
of g  about the point x  it remains to calculate W

U ,x
 for a 

sufficiently small neighbourhood U  of x . This is 
accomplished in the following section. 

4. PARALLEL FIELDS AND LOCALLY SYMMETRIC 
SPACES 

 We begin by briefly reviewing the method from [1]. This 
describes an algebraic procedure for determining the number 
of independent local parallel sections of a smooth vector 
bundle ! :W " M  with a connection ! . Since the exist-
ence theory is based upon the Frobenius Theorem, smooth 
data are required. 

 Let !W  be a subset of W  satisfying the following two 
properties:  

P1: the fibre of !W  over each x !M  is a linear subspace of 
the fibre of W  over x , and,  

P2: !W  is level in the sense that each element w! "W  is 
contained in the image of a local smooth section of !W , 
defined in some neighbourhood of ! (w)  in M . 

 Let X  be a local section of !W . The covariant derivative 
of X  is a local section of W !T

*
M . Define 

 !
!  by,  

 
!!(X) :=" "#(X)  

where ! :W "T
*
M # (W / $W )"T

*
M  denotes the natural 

projection taken fibrewise. If f  is any differentiable 
function with the same domain as X  then,  

 
!!( fX) = f!!(X)  

 This means that 
 !
!  defines a map,  

!
"W
: "W # (W / "W )$T

*
M  

which is linear on each fibre of !W . 

 The kernel of !
"W
 is a subset of !W , which satisfies 

property P1 but not necessarily property P2. In order to carry 
out the above constructions to ker!

"W
, as we did to !W , the 

non-level points in ker!
"W
 must be removed. To this end we 

define a leveling map S  as follows. For any subset V  of W  
satisfying P1 let S(V )  be  the  subset of V  consisting  of  all 
elements v  for which there exists a smooth local section 
s :U ! M "V !W  such that v = s(! (v)) . Then S(V )  
satisfies both P1 and P2. 

 We may now describe the construction of the maximal 
flat subset  W! , of W . Let,  

V
(0)

:= {w!W | F(, )(w) = 0}

W
(i )

:= S(V
(i )
)

V
(i+1)

:= ker"
W
(i )

 

where, as before, F :TM !TM !W "W  is the curvature 
tensor of ! . This gives a sequence,  

 
W !W

(0)
!W

(1)
!!!W

(k )
!!  

of subsets of W . For some k !N , W (l )
=W

(k )  for all l ! k . 
Define  W! =W (k ) , with projection 

 
!! :W"" M . 

 We say that the connection !  is regular at x !M  if 
there exists a neighbourhood U  of x  such that 

 
!!
"1
(U )#W"  

is a vector bundle over U . 
 W
!

x  shall denote the fibre of  W!  
over x !M . 

Lemma 6. Let !  be a connection on the smooth vector 
bundle ! :W " M .  

(i)  If X :U ! M "W  is a local parallel section then the 

image of X  lies in  W! .  

(ii)  Suppose that !  is regular at x !M . Then for every 

 w!W! x  there exists a local parallel section 
 
X :U ! M "W!  

with X(x) = w .  

 We may now describe the Lie algebra of local Killing 
fields about a point x . 

Theorem 7. Let g  be a smooth metric on a manifold M  
with associated connection !  on W = T

*
M !"

2
T
*
M , 

which is assumed to be regular at x !M . Then g  has 

 dimW
!

x  independent local Killing fields in a sufficiently 
small neighbourhood U  of x !M . Moreover, the Lie 
algebra of Killing fields on U  is canonically isomorphic to 
the Lie algebra 

 
A(W! x ,Rx ,gx ) .  

Proof:  

 By Lemma 6 there exists a sufficiently small open 
neighbourhood U  of x  such that 

 
W

U ,x
=W! x . The theorem 

now follows from Lemma 5.  

 q.e.d. 

 As an illustration, we provide a short algebraic proof of 
the classical theorem that locally symmetric spaces satisfy,  

 R ! R = 0  (29) 
[4]. 
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Lemma 8. If M  is locally symmetric then 
 
T
*
M !W! .  

Proof: 

 Suppose M  is locally symmetric and let x !M . Then 
there is an open neighbourhood U  of x  such that the space 
of Killing fields on U , whose covariant derivative vanishes 
at x , has dimension n . By the isomorphism given in 
Lemma 5, T

x

*
M !W

U ,x
. From Lemma 6 (i) we have 

 
W

U ,x
!W! x  and so 

 
T
x

*
M !W! x . 

q.e.d. 

 Let 
 
T = T

a!
 be an n -tensor with n !1 . Define R !T  to 

be the (n + 2) -tensor obtained by contracting the rightmost  
index of R  with the leftmost index of T :  

 
R !T

abc!
:= R

abc

s
T
s!  (30) 

 Let p := T *
M , the cotangent space of M  and let p(1)  be 

defined as the set of all elements v!T *
M  satisfying,  

 R ! R !v = 0  (31) 
  Define t  to be the set of all L !"

2
T
*
M  such that,  

 R ! L = 0  (32) 
  We shall assume that t  has constant rank.  

Proof of (29): 

 Let us calculate the derived flag of W  supposing M  to 
be locally symmetric. From (8), W (0)

=V
(0)
:= ker F = p! t . 

Let X = K + L  be a local section of W (0) , where K  and L  
are local sections of p  and t , respectively. By definition, 
X(x)!V

x

(1)  if and only if !
i
X(x)"W

x

(0) , for all i . This is 
equivalent to,  

(*) : Lab;(i ) ! Rab(i )
c
K

c
"t  at x . 

 Taking the covariant derivative of  R ! L = 0  gives 

 
R ! L

;(i )
= 0 . Thus L

ab;(i )  is a local section of t . This means 
that (*)  holds if and only if R !K

x
 lies in t . This is the case 

precisely when K !p
(1)  at x , and so V (1)

= p
(1)
! t . By 

Lemma 8, we must have V (1)
= T

*
M ! t , whence it follows 

that p
(1)
= T

*
M  and W

(1)
=V

(1)
=W

(0) . Therefore 
 R ! R = 0 .  
q.e.d. 

 We have also shown that for M  locally symmetric, 

 
W! =W

(0)
= p! t . Conversely, if 

 
W! = p! t  then 

T
*
M ! kerF , from which we conclude that M  is locally 

symmetric. The terminal subbundle of the derived flag 
therefore characterizes locally symmetric spaces:  

 
M is a locally symmetric space if and only if W! = p! t.

 (33) 
 In particular, the derived flag computes the local 
canonical decomposition. 

 As observed above, a Riemannian manifold with 
dimM ! 3  has constant curvature if and only if  R ! L = 0  
for all 

L !"
2
T
*
M

 (Proposition 2). Furthermore, all manifolds of 
dimension n =1  or 2  satisfy  R ! L = 0  for L !"

2
T
*
M  (cf. 

Lemma 1). Since spaces of constant curvature are locally 
symmetric the curvature F  vanishes for such manifolds. It is 
not difficult to see that the converse holds (for the 2-
dimensional case use the canonical form of the Riemann 
curvature: Rijkl = c(gilg jk ! gikgjl ) , where c  is the Gaussian 
curvature). Consequently,  

 
M is a space of constant curvature if and only if W! =W .

 (34) 

 Employing Theorem 7, we obtain as a corollary the 
familiar result that a Riemannian manifold possesses the 

maximal possible number 1
2
n(n +1)  of independent local 

Killing fields if and only if it is a space of constant 
curvature. 

5. CLASSIFICATION FOR RIEMANNIAN SURFACES 

 In this final section we shall determine which 
Riemannian surfaces correspond to the various types of Lie 
algebra K

x
. In the process, a necessary condition for a 

Riemannian surface to possess a Killing field is obtained. 
First, we recall the situation involving the maximal number 
of local Killing fields: 
 Let M  be a Riemannian surface. The following are 
equivalent:  
(i)  dimK

x
= 3  for all x !M .  

(ii)  M  has constant Gaussian curvature c .  
(iii)  M  is locally symmetric. 
 In this case,  

(a)  if c = 0  then K
x
 is isomorphic to the Lie algebra of 

!
2
"
sd
SO(2) ;  

(b)  if c > 0  then K
x
! sl

2
" ;  

(c)  if c < 0  then K
x
! su

2
.  

 The equivalence of (i)-(iii) follows from Lemma 1, (34) 
and the observation below (34). Assume that these 
conditions hold. c = 0  corresponds, locally, to flat Euclidean 
space, for which K

x
 is isomorphic to the Lie algebra of the 

semidirect product of translations and rotations. Suppose 
c ! 0  and let X  and Y  be orthogonal vectors in T

x

*
M  with 

norm,  

X
2
=Y

2
=
1

| c |
 

 Define H !"
2
T
x

*
M  by,  

[X,Y ] := H  

Then,  

[H ,X] = !sg(c)Y and [H ,Y ] = sg(c)X  
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where sg(c)  denotes the sign of c . Appealing to Lemma 5, 
this identifies K

x
 with sl

2
!  for c > 0  and with su

2
 for 

c < 0  [5]. 

 Next, we calculate the derived flag for W  assuming that 
the surface is regular: W (i )

=V
(i )  has constant rank for all i . 

The elements K !T
*
M  satisfying 

s

s

ijkl KR
;  are those for 

which c,sK
s
= 0 . Therefore, by Lemma 1,  

W
(0)
= ker !c"#

2
T
*
M  (35) 

where !c  denotes the vector field c,a . The case !c = 0  has 
been handled above. Suppose therefore that dimker !c =1 ; 
that is, !c  is non-vanishing. Then W (0)  is a rank-two fibre 
bundle over M . Let X = K + L  be a local section of W (0) , 
where K  is a local section of ker !c  and L  is a local 
section of !

2
T
*
M . X(x)!W

x

(1)  is equivalent to 
!

i
X(x)"W

x

(0)  for all i , by the definition of the derived flag. 
Since !2

T
*
M "W

(0) , X(x)!W
x

(1)  if and only if,  

K
a;(i )

! L
a(i )

"ker #c  (36) 

 At x . Taking the covariant derivative of c,sK
s
= 0  gives 

the equation c,aK
a;b
= !c

;ab
K

a . Substituting this into (36) 

determines W (1)  as the subset of all K + L !W
(0)  satisfying,  

c
;ab
K

a
+ L

ab
c
,a
= 0  (37) 

 By contracting (37) with K  and !c , it is evident that 
W

(1)  consists of the zero elements in W  along with the 
solutions of,  

c
;ab
K

a
K

b
+ L

ab
c
,a
K

b
= 0  (38) 

c
;ab
K

a
c
,b
= 0  (39) 

where 0 ! K "ker #c  and L !"
2
T
*
M . Equation (39) has a 

solution 0 ! K "ker #c  if and only if, 

c
;abc

,b
= fca  (40) 

for some f . (40) may be written in terms of differential 
forms as,  

dc! D
"c
dc = 0  (41) 

where D  denotes covariant differentiation. This leads to a 
necessary condition for the existence of a Killing field on a 
Riemannian surface.  

Theorem 9. If a regular Riemannian surface possesses a 
Killing field then,  

dc! D
"c
dc = 0  

Proof:  

 By Theorem 7, if a regular Riemannian surface has a 
Killing field  then  W!  has rank at least one. Since 

 
W! !W

(1) ,  
 

equation (39) must have a non-trivial solution K !ker "c  at 
each x !M . The theorem now follows from the fact that 
(39) is equivalent to (41).  

q.e.d. 

Corollary 10. Let M  be a regular Riemannian surface with 
non-constant curvature. If M  possesses a Killing field then 
the integral curves of !c  are geodesic paths.  
 By a geodesic path we mean a curve that is a geodesic 
when appropriately parameterized.  

Proof: 

 Equation (41) is equivalent to D
!c!c = f !c , which 

implies that integral curves of the non-vanishing vector field 
!c  may be parametrized so as to give geodesics of M .  

q.e.d. 

 An example would be the punctured paraboloid 
z = x

2
+ y

2 ; (x, y) ! (0,0) , with the induced metric from its 
embedding into 3-dimensional Euclidean space. The integral 
curves of !c  are described by the geodesic paths 
! " (t) = (tcos", tsin", t

2
) , up to reparametrization. 

 Now let us return to calculating W (1) . If dc! D
"c
dc = 0  

on the surface then the non-zero elements of W (1)  are the 
solutions to (38) for which 0 ! K "ker #c . For any choice of 
non-trivial K !ker "c , (38) uniquely determines an element 
L = L(K )!"

2
T
*
M . Therefore W (1) , in this case, is a rank 

one vector bundle over M . If, on the other hand, 
dc! D

"c
dc # 0  on M  then W (1)  is the zero bundle and there 

do not exist any local Killing fields. As a consequence, K
x
 

cannot be 2-dimensional; this may also be seen directly by 
considering the Lie bracket operation. Henceforth we shall 
assume that dc! D

"c
dc = 0 . 

 To find W (2) , let X = K + L  be a local section of W (1) . 
By definition, X(x)!W

x

(2)  if and only if !
i
X(x)"W

x

(1)  for 
all i . Owing to (37), this is equivalent to  

c
;ab !K

a

(i )
+ !L

ab(i )
c
,a
= 0  (42) 

Where,  

!K
a(i )
:= K

a;(i )
" L

a(i )  

!L
ab(i )

:= L
ab;(i )

" R
ab(i )

c
K

c  
(Note that from the description of W (1)  contained in (36) it 
follows that !K

a(i )
+ !L

ab(i )
"W

(0) ). Taking the covariant 
derivative of (37) gives,  

c
;ab
K

a

;(i )
+ L

ab;(i )
c
,a
= !c

;ab(i )
K

a
! L

ab
c
;a

(i )
 (43) 

 Substituting (43) into (42) defines W (2)  as the subset of 
all K + L !W

(1)  such that,  

0
,;;

;
=+++

da

abcdb
a

acc
a

ab

a

abc
KcRcLcLKc  (44) 
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 If this has only the trivial solution then  W! =W (2)  is the 
zero bundle. Otherwise,  W! =W (2)

=W
(1)  has rank one. 

Theorem 11. Let M  be a regular Riemannian surface. Then 
dimK

x
=1  for all x !M  if and only if,  

(i)  dc ! 0 ,  
(ii)  dc! D

"c
dc = 0 , and  

(iii)  equation (44) holds for all K + L !W
(1) .  

Proof: 

 Conditions (i)-(iii) are equivalent to 
 
rank W! =1 . The 

result now follows from Theorem 7.  
q.e.d. 
 We summarize the discussion in this section with the 
following corollary.  

Corollary 12. For regular Riemannian surfaces, K
x
 may be 

one of five possible Lie algebras. It is isomorphic to either 

sl
2
! , su

2
 or the Lie algebra of !2

"
sd
SO(2)  when the 

Gaussian curvature is constant and positive, negative or zero, 
respectively. K

x
 is the 1-dimensional Lie algebra when the 

conditions of Theorem 11 are met. Otherwise, there do not 
exist any local Killing fields and K

x
 is trivial.  
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