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Abstract: We consider the reduced Wada's representation of the pure braid group, namely . We 

then specialize the parameters  to nonzero complex numbers . Our main theorem asserts that the 

reduced Wada's representation,  is reducible if and only if .  
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1. INTRODUCTION 

 Let B  be the braid group on  strings. We consider a 
normal subgroup, namely the pure braid group, denoted by 

. In section 2, we define Wada's representation of pure 
braid group on four strings. Under that representation, the 
automorphism corresponding to 

n n

Pn

 i

P

 , takes , 
; and fixes all other free generators. We then spe-

cialize the indeterminates used in defining the representation 
 to nonzero complex numbers  

and . In [1], it was shown that the reduced Wada's 
representation  is irreducible if and only if  
is an odd integer. In section 3, we consider the question of 
the irreducibility after we restrict the representation to the 
normal subgroup of  namely the pure braid group P . In 
other words, we determine necessary and sufficent con-
ditions under which 
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2. DEFINITIONS 

Definition 1  

 The braid group on  strings, , is the abstract group 
with presentation  
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 The generators 1, 2 , ..., n1 are called the standard 
generators of  (See [3]). nB
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Definition 2 

 The pure braid group, denoted by  is defined as the 
kernel of the homomorphism  defined by 

Pn ,

nBn  S  i  (i,  
i 1),  1 i n 1   (See [2]). It is finitely generated by the 
elements 
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1 ,1  i < j  n.  

 Let F  be the free group of rank , with free basis 
 According to Wada's representation, the action of 
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 By applying the Magnus representation to the image of 
the pure braid group under Wada' s representation, we 
determine the linear representation  
Now we specialize the indeterminantes  in Wada's 
representation to nonzero complex numbers , ,  and  
respectively. We then conjugate this representation by a 
matrix T defined by 
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 Having done this, we observe that entries ,  
and  of the images of all the generators of P  under 
Wada's representation are zeros. Therefore, we may delete 
the first row and the first column to obtain a representation 
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of degree , and we denote the representation by 3 4 . For 
simplicity, we still call T  by  for 1AijT Aij 1  i < j  4.  

Definition 3 
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3. IRREDUCIBILITY OF   4

 We determine necessary and sufficient conditions under 
which the complex specialization  is irreducible.  )d,c,b

Lemma 4 

 For ( , the reduced Wada's represntation 
 is irreducible if or 
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 Now we conjugate the reduced Wada's representation, 
4 , by M  to get an equivalent representation of degree . 
For simplicity, we still denote  by  for 
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where  

m = ac2  b2d,  

n = c2  bd,  

p = abc4  b2c4  ac5  bc5  ab3cd  ab3d2 ,  

q = abc3  ac4  bc4  ab2cd  abc2d  ab2d2 .  

 Suppose to get contradiction that 4  is reducible. Then 
there exists a proper nonzero invariant subspace S , where 
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the dimension of S  is either 1  or . We will show that a 
contradiction is obtained in each of the following cases. 

2

 1. Assume that the dimension of S  is one. From the 
diagonal matrix, , we see that the subspace A12 S  has to be 
generated by e   or  where u is a complex 
number. 
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Lemma 5. 

 For (  , the reduced Wada's represntation a,b, c, d)
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 Combining Lemma 4 and Lemma 5, we get our main 
theorem:  
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