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Abstract: In this paper we investigate the T-stability of one-step methods for initial-value problems. The main result is
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1. INTRODUCTION

Many phenomena in nature can be described by
mathematical models. Typically, the solution of such models
cannot be given in a closed (analytical) form, therefore we
construct numerical models in order to approximate the exact
solution. The investigation of the numerical solution of
nonlinear operator equations in an abstract (Banach space)
setting has been done in several works, e.g., in Keller [4],
Stetter [7] and many others.

Roughly speaking, the consistency is the characterization
of the local (truncation) error of the method, which is the
error committed by one step of the method. (It is the
difference between the result given by the method, assuming
that no error was made in earlier steps, and the exact
solution.) On the other hand, the stability guarantees that the
numerical method produces a bounded solution whenever
the solution of the exact differential equation is bounded, in
other words, the local truncation errors are damped out.
Convergence means that the numerical solution
approximates the solution of the original problem, i.e., a
numerical method is said to be convergent if the numerical
solution approaches the exact solution as the discretization
parameter (usually the step size of the mesh) goes to zero.

The basic problem is the following. The definition of
convergence assumes the knowledge of the solution of the
original (continuous) problem, therefore it cannot be verified
directly. Our aim is its replacement with simpler conditions.
The main result is that the convergence can be guaranteed by
two, directly verifiable conditions, which are consistency
and stability.

In this context the suitable choice of the stability plays a
crucial role: it should be chosen to guarantee the
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convergence (together with the consistency), moreover, that
the condition can be verified in the applications. The
relationship between stability and convergence for linear
problems, hinted by Courant, Friedrichs and Lewy in the
1920’s ([2]), identified more clearly by von Neumann [1] in
the 1940’s and brought into organized form by Lax and
Richtmyer in the 1950’s as the Lax (alternatively, Lax-
Richtmyer-Kantorovich)  equivalence  theorem  (Lax,
Richtmyer [6]), which states that for consistent numerical
approximations, stability and convergence are equivalent.
However, the stability notion for nonlinear problems are less
investigated.

Unfortunately, von Neumann’s stability is necessary and
sufficient for stability in the sense of the Lax equivalence
theorem only in certain cases: the models must be linear, the
considered partial differential equation must be constant-
coefficient with periodic boundary conditions, etc. However,
due to its relative simplicity it is often used in place of a
more detailed stability analysis as a good guess at the
restrictions (if any) on the step sizes used in the scheme.

Stability, in general, can be difficult to investigate,
especially when the equation under consideration is
nonlinear.

The various nonlinear stability notions (Keller [4], Stetter
[7]1, Trenogin [8]) are useful for theoretical results, but it is
not straightforward to verify them. As for the application of
these stability notions, they are applied to the well-known
initial-value problem where the right-hand side function f
is globally Lipschitzian. In [3] we analyzed the explicit Euler
method (EE method) on uniform grid and also its S-stability
(and thus K-stability, too) for this problem. It has been
shown that this method is T-stable, too (see [8]). In this work
we have also considered the nonlinear abstract setting, and
we showed that for different nonlinear stability notions the
conditions of consistency and stability together are a
sufficient, but not a necessary condition for the convergence.
For the applied discretization we have considered the same
model: explicit Euler method on uniform mesh.
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In this paper we generalize our results. We will show that
for the above described initial-value problem a much wider
class of numerical methods is T-stable. Namely, we prove
that the explicit and implicit one-step methods, including
both the explicit and implicit Runge-Kutta methods (ERK,
IRK methods) are T-stable on both uniform and non-uniform
grids.

The paper is organized as follows. In Section 2 we give
the mathematical formulation and a general description of
the mathematical and numerical models. Moreover, we
define the basic numerical notions (convergence,
consistency). In Section 3 we introduce the notion of T-
stability based on the work of Trenogin, we formulate the
classical results and add further properties. In Section 4 we
verify the T-stability for initial-value problems for the above
mentioned cases. In Section 5 we make remarks and draw
conclusions.

2. MATHEMATICAL BACKGROUND
We consider a given problem of the form
F(u) =0, )

where F:D — Y is a (nonlinear) operator, DC X, X and
Y are normed spaces. In the theory of numerical analysis it
is usually assumed that there exists a unique solution, which
will be denoted by U .

Definition 1

Problem (1) can be given as a triplet P = (X,Y,F). We
will refer to it as problem P .

Definition 2 We say that the sequence N=(X_,Y,,F,) ., IS
a numerical method if it generates a sequence of problems
F(u)=0 n=12,.., )
where
* X,,v, are normed spaces,
g FiDa =Y,

. DnCXn an

If there exists a unique solution of the (approximating)
problems (2), it will be denoted by U, .

Definition 3 We say that the
D= (g, ¥, ®,). isadiscretization if

sequence

. the #n-s (respectively w”-s) are restriction operators

from X into %o (respectively from Y into Y"), where
X X0 Ys Yo are normed spaces,

* o {F:D—YDPCX}—{F,:D,—>Y,D,CX}"

In the sense of this definition we can imagine the general
scheme in the following way, as shown in (Fig. 1):

Assumption 4 The discretization D possesses the
property 1 .(0) = 0.

Assumption 5 The discretization D generates a

numerical method N which possesses the property
dimX, =dimY, <
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Fig. (1). The general scheme of numerical methods.

Assumption 6 Let us apply the discretization D to
problem P . We assume that Fo i continuous on some ball
B (¢, (@)

Definition 7 The element e = ¢ (01)-U,€X, is called
global discretization error.

Definition 8 The discretization D applied to problem P
is called convergent if

lim||e, |l =0 )
holds.
Definition 9 The element

I (v)=F, (g, () =y, (FW)EY, is called local

discretization error at the element V. The local discretization
error on the solution, i.e.,

I.({@) =F (¢,@) -y, (F@)=F, (p, (@), is called local
discretization error.

Definition 10 The discretization D applied to problem
P is called consistent on the element veD if

* ¢, (v)ED, holds from some index,
* the relation

lim[l,(v)], =0 4)
holds.

3. T-STABILITY AND ITS APPLICATIONS

In the 1980’s V. A. Trenogin laid down the foundations
of this topic. Namely, by giving the definition of T-stability,
the EE method is considered on a uniform grid, and its T-
stablility for the initial-value problem is proven. First we
consider Trenogin’s stability definition [8].

Definition 11 The discretization D is called stable in
Trenogin’s sense (T-stable) if there exists a continuous,
strictly monotonically increasing function w(S) , defined for
S=0,such that w(0) =0 and w() = oo, and

w(vﬁ—vnzX )s

1 2
holds for all Vn+Va €Dn

F.(v) - F.(v2) )

Yn
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Several theoretical results derived from Definition 11
(convergence of the numerical method, uniqueness of the
discrete solution) can be found in [8].

In our consideration we suppose that ¢ €Lin(X, X, ).

Definition 12 The sequence of |||| norms is called
consistent to the norm || X when for an &rbitrary ve X the
relation

lim [, (V) lix, =l vlIx (6)

holds.

Remark 13 In most cases this condition is automatically
satisfied.

For consistent norms the following property is valid.
Lemma 14 When the norms ""X are consistent to the
n

norm H‘

lim|e, (), =0-

o then the relation v=0 is valid if and only if

Proof. We consider two cases.
«If v=0, then lim|l@, (V) [lx =llVIlx=0;

-Olf lim|| @, (v)|l, =0, then [[V][x=0 and hence,
V=0U. "

Remark 15 Generally, when in the spaces X

n

lim|g,(v)], =0 if and only if v=0, we say that the spaces

n Xn

X, are regularly normed. Hence, when ””x is consistent to
n

the norm ””x , then X are regularly normed spaces.

Theorem 16 Suppose that
» the sequence of norms ””x is consistent to the norm
n

I

» there exists a solution to the problem (1)-(2),

« the discretization D is consistent and T-stable at the
element U .

Then

e U s unique,

« for any neN the discrete solution U, is unique,
« the numerical method is convergent.

Proof.

* Let V},V, be solutions of (1) and assume that for these
elements the relations

lim|[F, (g, (), = Oitim [, (@, (v, =0
hold. Then

|a (v, ‘Vz)Hxn =0 (|F.@, (W) - R @, (), =
n—oo,

<o (R @ W), +F@.o)),)—0
Hence, we get
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limle, (v, -v.)], =0.
The solution is unique, due to the fact that the finite
dimensional spaces X, are regularly normed.
« Let v and V, be two solutions of (2). Substituting
into (5), we get

0=|F.00)-Fp), =y -v;

>(n)zo,

=
Yn

o(v -v; |, )=0

ie., *n . From the norm property it
follows that vV, =V, .

* Let V, and Vln be solutions of (1) and (2), respectively.
From the Definition 11 we gain

Fo () - Fy ()

M -gw)], o )y, = o (Fu @)y

where we have used the consistency and also the
continuity of the function o™ at the point t =0, ie, it
approaches zero when N tends to o .

3.1. How to Verify T-Stability for an Initial-Value Prob-
lem?

In this part we revise Definition 11 from the application
point of view. Consider the well-known autonomous initial-
value problem:

u'(t) = f(u(t) (7)
u(0) = u, (8)

where te[0,1],u,€R and f:R—R is a Lipschitz

continuous function. In the usual way a non-autonomous
initial-value problem can be written in an autonomous form,
where right-hand side function of the original problem is

denoted by F(tu(®) .

In the sense of Definition (1), (2) and (3) the operators
F.F, ¢, v, ®, and the spaces x,v,x,,Y, are defined as
follows:

. X= Cl[O,l],

UHX = maXep | U) |,

u
(u ) = masegon (U D+ Us |
0 /lly

u't) - f(u()
u@)-u, |

Y =C[0,1]xR,

F) :(
Applying the given one-step method to problem (7)-(8),
for NEN we define the following sequence of triplets:

° Xn = Rn+1’ Vn = (VO'VIY""Vn)EXn :HVonn = maXi:O,“.,ani |l

o Yo IR Y= 0o Yo Y E Yo Vall, =Y I+ maxiaal il

 The definition of the operator F, :R™ —R"* depends
on the chosen one-step method.

We define the pair of the restriction operators as follows:
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« Forany xeX weput [¢, (x)], = x(t), i=0,1,...,n,

* Forany yeY we put

yt.,) i=1...n,
[, ()] =
y(t,), i=0.
* The definition of the operator ®_(F)(¢,):C'0,1] =R
depends on the chosen one-step method.

Remark 17 In the following section we will define
precisely the operators F  and @  for the explicit and
implicit one-step methods.

To verify the T-stability of a given method applied to
problem (7)-(8), we consider the equation

F.(% +2,) - F.(X) =Y., ©)

where X is some parameter, and Z, is unknown. If we
can give an estimation in the form

2], =&(¥all, ) (10

where the properties of & (S) correspond Wlth the
properties of @(S) , then by the choice w(s):=E& ™(s) we
prove the T-stability.
X, +2, =X,

Let X2 =X, while in (9). Then

Fn(Xg)_ Fn(X:F) = yn and X; _X{] = Zn.
estimation (10), we get

Based on

v

exists and it is strictly

1

Because the inverse of (
monotonically increasing, we have

(4

This matches the stability estimation in Definition 11.

(11)

To verify stability, we have to prove that the estimation
[zl = cl¥all, =clmax 1+ 1u D (12)
holds.
4. T-STABILITY OF ONE-STEP METHODS FOR THE
INITIAL-VALUE PROBLEM

In this section we generalize Trenogin’s result. Namely,
we show that, under a natural assumption, any explicit or
implicit one-step method is T-stable for the initial-value
problem on a non-uniform mesh, too.

Consider the non-uniform grid:
G, ={h=t-t_,i=1,., t =1}, (13)

The general form of the one-step method can be written

n0=t, <t <...<

as

Yi = Vi T AR Vi Vi ), (14)
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where A:R*—» R defines the given numerical method

N. (We note that the function A is called the increment
function and can be interpreted as an estimate of the slope of

Y,) We will say that the methods are explicit if
A=A(t,_,¥_,,h). In the other case the methods are
implicit.

4.1. Explicit One-Step Methods

In this part we consider the case where the numerical
method is explicit. To this aim, we define the operators F
and @ as follows:

* F,:R™ —R™ and for any v =(v,v,,...,v,) ER™ it
acts as
Ly -va) - Al vah), P=1on
h (15)
(Fn(vn))i =

V, — Uy, i=0.

* In order to give ®,, we define the mapping
@ (F)(¢,):C'0,1] = R™" in the following way:

u(ti)_nﬁA(twu(tH),rn. i=1..n

[(®.F)@W)] =
u(to)_uor i=0.

Next we verify the T-stability property of the operator of
the explicit one-step methods, given in (16).

In the sequel we assume that A is a Lipschitz continuous
function with respect to its second variable, by the constant
L, . It means there exists a constant L, =0 such that for

arbitrary s, s, €R the estimation

At s, ) -Alt s h) L, |s -S| 17)
holdsfor t,_ , &G, and O<h.

Remark 18 The Lipschitz assumption (17) is obviously
necessary in proving the convergence. For the explicit
Runge-Kutta methods this condition can be guarantied
directly: when the Lipschitz assumption for the function f
in (7) is valid, then the increment function A of the eligible
explicit Runge-Kutta method satisfies the condition (17).
(For non-autonomous problems the same Lipschitz condition
is w.r.t. the second variable.)

Substituting F_ into (9) and (15), we gain

n

;_Z‘l—./\.,. DA X 1=<i=n,
h y|+( (tl—l X|—1+ -1 h)_ (tl— xl— h)) I n (18)

Zy = U, i=0.

From (18), we get the estimation
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|z ls(A+Lh) [z, [+h [y |, i=1,...,n. (19)

4.1.1. Thecaseof h =h

For each index |1 writing out (19) and applying it
recursively, we get

|z, | (1+ Lyh) [ g [+h]y,

|2, = (1+ L, 0)° [ug [+h]ly, [, (1+(1+ L, h)

n-1
12, | (L+ Lh)" [Ug [+, [,h Y (2+ L by (20)
I. k=0

In the next step we estimate the terms on the right-hand
side of (20).

l.<e"™ =g"
1+Lh)-1 heLA“” -1_er-1
1+L,h-1 ~ L,h L,

n-1
ll.s hYy(@+L,h) = h!
k=0

Then we get for the norm of Z, the following estimation:
L

-1
2.l se™ Tug 1 +]ya. =c|yal,
with the choice
L
_ L, €°-1
c = max(e ,—LA ).

This implies the validity of the estimation (12).
Hence, we have proved the following statement.

Theorem 19 Under the condition (17), on a uniform grid
the explicit one-step numerical method (14) is T-stable.

Therefore, on the basis of Remark 18, the following
statement is true.

Corollary 20 For the Lipschitz continuous function f
on a uniform grid the explicit Runge-Kutta methods are T-
stable.

Remark 21 For A(t,_,,x_,,h)= f(t_;,x_,) we obtain the
EE method on a uniform grid. Thus, Theorem 19 implies
Trenogin’s basic result. (The constant C is the same which
is given in [8].)

4.1.2. The Case of a Non-Uniform Mesh

When the grid is non-uniform, i.e., the step size is not
constant, we can use the previous formula. Namely, for each
index 1 writing out (19) and applying it recursively, we get

1z ks 1+ Lh) [ug [ +hyly,
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@+Lh) [y |+

|2, ] (L+L,h) ...
| (21)

||yn||oc Ehk(l+ LAhk+1) Teedt (l+ LAhn)'
k=1

In the next step we estimate the terms on the right-hand
side of (21).

Ly (B +eothy) eLA

Zhe(llk)L,\_e Zh (e A)k<e Zf éLA)dt_
- f@ )dt- [-— ]°:8L7A1

we get the following

l.<e™. .g=g

Then for the norm of Zn
estimation:

L

-1
[, =™ 1o 1 4lyal. = —=clval,

with the choice

L
L, €4 -1
c=max(e ™",

).

A
Therefore, we obtain the estimation in the form (12).

Hence, like for uniform meshes, we have proved the
following statements.

Theorem 22 Under the condition (17), on a non-uniform
grid the explicit one-step numerical method (14) is T-stable.

Corollary 23 For a Lipschitz continuous function f on
a non-uniform grid the explicit Runge-Kutta methods are T-
stable.

4.2. Implicit One-Steps Methods

In this part we move on to the consideration of implicit
one-step methods, particularly, to the investigation of
implicit Runge-Kutta methods.

As we have already mentioned in Remark 17, we have to
define the operators F, and @ . In the sequel the operators

n
are given as follows:
* F,:R™—=R™ and for any v, =(v,,V,...,v,) ER™ it

acts as

(Vi-via) - At Vi vioh), i=1..n, (22)

(R), =
Vo = U, i=0.
* In order to give P, , we define the mapping
@ (F)(g,):C'0,1] = R™* in the following way:
DA u0n, En (23)

[(@oF)e)] =
u(t,) - U, i=0.
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Hence, we have to verify the T-stability of the operator,
given in (23). In the following we suppose that A is a
Lipschitz continuous function with respect to its second and
third variable, by the constants Ly, and Ly, It means there

constants, such that for arbitrary

exist L,,.Ly, =0
s,S,, Py, P, ER the estimation
IAGS P ) - At S PR Ly 18-S 4Ly, IR- R | (24)

holds for t, , €G, and 0<h.

Remark 24 For the implicit Runge-Kutta methods the
Lipschitz assumption (24) can be also guaranteed directly:
when the Lipschitz assumption for the function f in (7) is
valid, then the increment function A of the eligible implicit
Runge-Kutta method, for a sufficiently small h, satisfies the
condition (24).

Substituting F, into (9), (22) and using the Lipschitz

condition (24), we get the estimation
1z [z [+h Ty [+ (L [z 1 +L 2D, =1,

Hence, we get

1+hL, _
. i =1,...,n. 25
1z | IhL. IzllthAthy.I (25)
We give an estimation for 1 | If hL, €0,0.5] for
i, ’
all i, then we can write this expression as
1 2
1< =1+hL, HhL, ) ———.
1-hL A, 2 2" 1-hL A,

Obviously, for the values h|, 5[005] the following
estimation holds:

(hLy,)?

Therefore, we have the upper bound

=1+2h, LA2 = exp(2h, LA2 ).

Thus, we can write equation (25) in the form:

|7 KL, )(®2hL, )|z, HE2RL, K|y Li=1,...n. (26)

4.2.1. The Caseof h =h

For each index i writing out (26) and applying it
recursively, we get

|2, k(L )(E42hL, ) ug pE20L, )y, |,

12,1 (L, D200, )y LS i, )L, ) (27)
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In the next step we estimate the terms on the right-hand
side of (27).

hnLAl 2hnLA
l.<e e

L, 2L L, +2L
2 =g Mg M zg™ M

[(+hL, (L, )™ -1
(hL, )(I#hL, ) -1

Il.< hZ[(l+hLA1)(l+hLAz)]k <h
h _1 j eLA1+2LA2 _1
hL, +2h’L, L, +2hL, = L, +2L,

L, +2L
eM M

Then for the norm of Z, we get the following

estimation:
Lol L +2L
2] se™ " HVnHwW yall,
with the choice
. . eL 1+2|_A2 1
c=max(e " "2, ).
L, +2L,

Hence, we obtain the estimation (12), which shows the
validity of the following statements.

Theorem 25 Under the condition (24) on a uniform grid,
the implicit one-step numerical method (23) is T-stable.

Corollary 26 For a Lipschitz continuous function f on
a uniform grid the implicit Runge-Kutta methods are T-
stable.

4.2.2. The Case of Non-Uniform Meshes

In the sequel we consider the implicit one-step methods
on non-uniform meshes. Similarly to the previous case, for
each index I writing out (26) and applying it recursively, we
get

|2, (T L, (20 L, ) U, (E+20L, DRy,

|2, |s (BL, R L, (B2 L, Y AB2RL, )+
5 (28)

ﬂ\ynuxkzlhk(1+hk+1LA1>...-(1+hnLAl>(1+2hkLA2 yAB2hL, ),

In the next step we estimate the terms on the right-hand

side of (28).
| - eLAl(thrmHh)eZLAZ (hn+"'+hl) LAl +2LA2

L

n n
(-t )Ly (-t _;)2L +2L -L -2L
Il.< Ehke K Mg k-12h, e ™M™, Ehk(e Ay )(k (e Ay )lkil <
k=1

=1

t
< LA Lt Ef‘k ( [LA1 2LA2 ) dt:eL/\1+2LA2 f1(ef[LA1+2LA2]) dt=
4 0

L, +2L
eM M

et =2-1
L, +2L,,

Then for the norm of Z we get the estimation
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Ly, *2La, eLAl 2, -1
|zl =e [Uo I +[all. [T = cflvall,
with the choice
c= maX(eLA1+2LA2 e—LAl+2LA2 _1).
L, 2L,

Hence, we can write an estimation in the form (12) again.
Hence, we can formulate our main result in the form of the
following statements.

Theorem 27 Under the condition (24) on a non-uniform
grid, the implicit one-step numerical method (23) is T-stable.

Corollary 28 For a Lipschitz continuous function f on
a non-uniform grid, the implicit Runge-Kutta methods are T-
stable.

5. SUMMARY

In this paper we have considered initial-value problems
in an abstract (Banach space) setting. As we have seen in [8]
and also in our previous work [3], the explicit Euler method
on a uniform grid is S- and T-stable for the initial-value
problem with a Lipschitz continuous function f. In the
present work we have shown that under the same condition
for the function f, the T-stability is preserved for more
general Runge-Kutta methods, namely, for any explicit and
implicit methods. We have also shown that the stability
results are valid for both uniform and non-uniform meshes,
too. We have also shown that under some natural condition
for the numerical method N , which is automatically
satisfied for Runge-Kutta methods, the results remain valid
for arbitrary one-step methods.

As we can see in (Table 1), we get that the same stability
constant C can be achieved for the different meshes, i.e.,
from this aspect there is no distinction between the cases of
uniform and non-uniform grids.

The obtained T-stability together with the consistency
ensures the convergence. The consistency of the one-step
methods can be given by the following two properties (see,
e.g., [5]): the Lipschitz condition and the increment function
A for the function =0 should be identically zero, i.e.,
A(tviavih) =0,

Recently we have introduced the local version of T-
stability (called locT-stability) and we have proved a similar
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theorem to Theorem 16. This motivates that in the upcoming
works it is worth dealing with the case where the right-hand
side function f is a locally Lipschitz function. The other
direction of the future work is to extend our results to multi-
step methods.

Table1l. T-Stability Constants of the Different Cases
Explicit one-step method Implicit one-step method
L Ly, +2Ly
e A1 Ly +2L 1 2 _
h max(e ,Li) max(e "t "2 ,e|_+72|_1)
A /\1 A2
L Ly +2L,
ehM -] Ly *2L, g1 2 1
h, max(eLA,i) max(e "t 2,79
L, L, +2L,
1 2
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