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1. INTRODUCTION

In this paper we will study integral inequalities of the
type

J.RHQJ(Mf )P u(x)dx < clj.Rn‘P(cz [£(x) [P)v(x)dx, @)

where Mf(x)=supXEQﬁI [f(t)|dt is the Hardy-Littlewood
Q

maximal operator, and we ask for condtions on
®,¥:R, —»R, such that (1) holds if and only if (u,v)eA .

p-1
We say that (u,v)eAp if ﬁjQu[ﬁj'Qvlp'J <c<wl<p<ow,

and Mu(x)<cw(x), if p=1. These weight classes were
introduced by Muckenhoupt [4] and Muckenhoupt and
Wheeden [5] to study (1) when o(t)=w¥(t)=t.If 1<p<w and
u=veAy, (1) holds for a(t)=w(t)=t, but not if p=1. Also
for each 1<p<oo there exists a pair (u,v)eA, so that (1) fails
in the special case @ot)=w(t)=t [3, p. 395]. In these
exceptional cases we have a weak type inequality. An
excellent reference is the book by J.Garcia-Cuerva and
J.L.Rubio de Francia [3]. We refer the reader interested in

the current state of the two-weight theory to the recent book
[1] by Cruz-Uribe, Martell, and Pérez.

t t
The restrictions on ®,¥ are: ®(t) = I a(s)ds, W(t) =Jb(s)ds
o 0

with a,b:R, >R, satisfying
S

J. @dt <c'b(c"s),0<s< oo ™
0

Note that this excludes the classical case o(t)=¥(t)=t. If
(® holds, we say that ®,¥ are (c',c") -related.
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We are now ready to state our main result whose proof
will be given in section 3.

Theorem 1 The following statements are equivalent for
1<p<oo.

(2) For each @ and w which are (¢',c") -related, we have
J ncI)(pr)u sclJ. JYe|f Pyv,
R R

for all f:R" >R, where the constamts c;,c, depend only on

roArr

c,c” and p.
(3) We have (u,v)eA,.

Remark: In the Lebesgue measure case - u=v=1 -
integral inequalities related to (2) can be found in [6]. It
should be noted that p=1 is not excluded.

In section 4 we will examine in what sense the condition

t
J.@dsgc’b(c”t) is also necessary for Theorem 1, and in
0o S

section 5 we will examine the extrapolation problem: when
is it possible to replace p by p—e¢ in (2). In sections 6 and 7
we will study the iterated maximal operator and its relation
to extrapolation. In section 8§ we will collect some unusual
and surprising integral inequalities for Mmf obtained by
choosing @,¥ and applying Theoren 1.

A final comment is in order. I have dedicated this paper
to the memory of Richard A. Hunt who made significant
contributions to the theory of A, -weights and to whom I am
indebted for introducing me to this subject some 40 years
ago.

2. ATWO-WEIGHT DISTRIBUTIONAL INEQUALITY

For convenience all our functions will be non-negative:
f:R" SR, .

The distributional inequality below for u=v=1 - the
Lebesgue measure case - and a sublinear operator T instead
of M is equivalent with saying that T is both weak-type
(p,p) and of type (w,0) [11, p. 103].
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Theorem 2 The following statements are equivalent for
1<p<ow.

(4) There exists 0<cy<oo such that for every f:R, >R,
we have for 0<t<o

X MI0> B2 [ wxir(> 957 s
tP Jurc,

(5) We have (u,v)eA,.

Proof. Apart from a minor detail, the proof follows the
standard covering argument and we include it for the benefit
of the reader.

(5) > (4). We may assume that m is the centered
maximal operator

Mf (x) = sup—J- f(t)dr,

where the sup is extended over all cubes Q centered at x.
We consider the case 1<p<w first. Fix f:R, >R, , and for
O0<t<o let f=f'+f,, where

o = { f(x)<t/2
f(x), fx)>t2.
Then M (x) < MFf £(x) + Mf; (x) ) that

{Mf > tc{Mft>t23=E;. Let Eyp=E;n{xiIx|<N}. We can
now apply the Besicovitch covering Theorem and obtain
cubes {Qj} satisfying
2 [ ¢
E HQilk—=1 f, _<C<oo,
N ©VQj.1 Qj t-[Qj ZXQJ B

Then

p
WEW= D UQ)=SY |u<;Q|JP U iy 1’Pvlfp}
p-1
C U(Qj) t\p 1-p’
<=y =& #HPv || v
tpleﬂp IQ,— IQ]-

< ij fPv.
=12}

If A ={x:f(x)=t/2}, then

00
uEn) <5 [ (ea)Pv= [ a9 s
tP IR P Jo t

:tip[jﬂ W{f > s)sPlds + V(A )I sP 1ds}

It is clear that for some constant ¢
2 /2
c J. W > s)sPTds > v(At)J- sP~1ds,
4 0

and hence for some constant cq

C.J. Neugebauer
00
u(EtN)sc—Oj v{f > s)sPLds.
tP Jue,

Let now N—wo. We use the same notation for the case
p=1 as above. Since now u(Q;)/|Q; IéianjV we get

UEN)<— Zl:g?.')
J

c t CJ‘
<— flv<s—=| fya, Vv
thQJ t Rn t

Proceed now as in the case 1<p<w.

(4) - (5). For the case p=1 we fix a cube Q, and let
f=yq, where Q is an arbitrary subcube of Qq. Then

QOC{ |Q0|I o }

Thus u(Qo)<co(IQo I/1QIV(Q) » and thus
u(Qo)/ Qo) = Coinfq, Vv -

If 1<p<e we take the usual test function f = XQvl’p' with
t=—| f . Then

IQI

u(Q)<cg QP pj Vf > s}sPds

0

1-p
=colQP [ ij“"]

and the Ap -condition follows.

3. PROOF OF THEOREM 1. (3) - (2).

I n(D[Mf(x)p]u(x)dx = .[ wW{MFfP > tla(t)dt =
R 0
* 1/p e p-1, —
u{Mf >t la(t)dt<cg| = / W >s)s" dsa(t)dt =
0 o tdthre,
0 e(C, s)p
Coj .[ 07 30 tt 5 eP s <
0 Jo t
coc'.[ b(c"(Cos)P){F > s}sPds =
0

COTC'J':b(c*t)v{f P>tdt< cljR | leof (X)PIV(x)dx.
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It is clear that the constants c¢; and c, have the desired
properties.
(2) - (3). We assume that
00 00
L EI W{MfP > tJa(t)dt <o j V{cofP > tb(t)dt =R.
0 0
Fix 0<2g<w and let

a(t) =1y 2.y +h1 (-

Set

b(t) = Ita(s)sds= 0,0<t < Aylhlog(t/A), Ao <t < Ao +hih
0
logdg +hAg,t > A5 +h.

With this choice o and ¥ are (1,1)-related independent
of h and %, and hence c¢; and c, do not depend on h or ;.
Then

X0+h

L=1h WMFP > fdt — u{MfP > 03,
A
0

as h—0. The right side R is

ﬂo+h 2
R= clhj V{c2 P > thlog(t/4e)dt + ¢;hlog A + g
%

I Ve, P > tdt= 1y (h) + 1, (h).
ﬂo+h
We see that 1y(h) >0 as h—0 and

0 0
|2(h) ind C]_?on. V{C2f P> t}dt = C].CZ;“OJ. V{fp > t}dt.
Lo Aolcy

Since 1, was arbitrary we get for some constant ¢y >1

00

WMFP >3 < cox.[ VP > t}dt.

Mco

We now make the substitution a2=s? and then t—tP to
get

00

W{Mf >s}< cospJ. w{f > 3Pt

sicy
By Theorem 2 this is the same as saying (u,v)eA,.

Remark. Theorem 1 is not true with M replaced by a
singular integral operator T. If it were true, then the
argument as on the previous page shows that

00
u{| TF [>s}< cospJ. v > Pt
s/c0

and hence for s>cgff|l. v, u{| Tf[>s}=0 and [Tf|,,, <. But T
is not of type (w,) [10].
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4. A CONVERSE

t t
For a given a,b:R, -R, and &(t) :Ia(s)ds ,P(1) :J.b(s)ds
0 0

we wish to examine when (2) of Theorem 1 implies that
S

I a(t)tdt <c'b(c’s),0<s < 0.
0

Since this condition is independent of (uv)eAp, we are
allowed to take any (uv)eA,, in particular u=v=1, the

Lebesgue measure case, or u=v in RH,. We prefer the
second alternative since it is based on an extension of the
reverse weak type inequality. We say that ueRH,, if for

every cube Q, supu(x)scllQII u. The inf of all such ¢'s is
Q Q
called the RH, -constant of u. This class was studied in [2]

and plays roughly the same role among the reverse Holder
classes RH,r—wo, as A; does among Aj, p\1. Typical

examples of RH,, -weights in R, are u(x)=x*, a>0.

Theorem 3 Let ueRH, . Then there are constants

0<¢, ¢ <o such that for all f:R" >R, and 0<t<w

1tJ. f(X)u(x)dx < cu{Mf >c't},
{f>t}

where 1/¢'=c« is the RH,, -constant of .

Proof. Since u(x)dx is a doubling measure [3], we have
available the Calderon-Zygmund decomposition at height t
and this gives us disjoint cubes {Qy} such that

t<1u(Qg)| fu<ct
Qk

f(x)<t,on R"\LQy.

Then

ltJ.{f)t}fu sltZIQkfu < CZU(Q") = cu(UQy) < C{Mf > 13,

where M f(x)=sup1u(Q)| fu. Since ueRH,,
xeQ Q

1u(Q)iju <supuu(Q)/|Q|1| Q| J.Qf < c«MF(x),
Q

if xeQ. Hence myf(x)<c«Mf(x) and the proof is
complete.

Defintion. (1) b:R, —R_ is quasi-increasing (qi) if there
is a constant 0<cp <o such that t'<t” implies b(t’) <cgb(cot”)

(2) A measure p on R, is weakly doubling if there is a
constant 0<c<oo such that p([0,2d]) <cu([d,2d]),0<d <o .

If a measure is doubling, it is also weakly doubling. The
converse is not true as the measure du=e*dx shows. In fact if
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f:R, >R, is nondecreasing, then du=f(x)dx is weakly
doubling. The measure du=dx/(1+x) is not weakly doubling.

Theorem 4 Assume that b(t) is qi and assume that for
some n and upeRH,(R") we have

J. O(MFf p)UO < Cl.[ Y(cof p)Uo.
R" R"
Then
S
J. a(t)tdt <c'b(c"’s),0<s <
0

holds if p=1, and if 1<p<o it holds under the additional
assumption that the measure du=a(t)tdt is weakly doubling.

Proof. In distributional form the integral inequality is

00 00
L= j uo{MfP > tla(t)dt < clj uofcofP > tb(t)dt =R.
0 0

The constants ¢,c,,... appearing below only depend upon
the constants in the overall hypothesis. By Lemma 3

L>cg I a(t)tl/pj Lo FOUQ ()bt
0 {f>c, P}

We apply this to the test functions f(x)=ryq(x), 0<r<w,
Q=[01]" and get

Csrp 1
L> c3J. a(t)t-Prugdt, uy = I ug(x)dx.
0 Q

crp

The right side R =I 6 usb(t)dt . Hence
0

C rp C rp
Cgrj.s a(t)tllpdt£c1.[ " p(tydt.
0 0

With s=cgrP this becomes

S CoS
cystP I a(t)tl/pdtsclj. Eh(t)dt < cosb(cy ),
0 0
since b is quasi-increasing. The left side is
S , S
> costP J. tYP'a(t)tdt > ¢; lsj a(t)tt,
s/2 0
by the weak type doubling condition, which clearly is not

needed when p=1.

Remark: 1. The special case p=1 and up~1 - the Lebesgue
measure case - is Theorem 7 in [6].

2. The weak doubling hypothesis of the measure
du=a(t)tdt cannot be omitted if 1<p <o . The classical norm

inequality for ueA, is

I MmfPu SCI fPu.
R" R"

This is the @o(t)=w(t)=t case, and a(t)=1.
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5. EXTRAPOLATION

As before a,b:R, —-R, and (D(s):J.sa(t)dt, ‘{‘(s):rb(t)dt.
0 0

We wish to examine the relationship between the following
statements.

I. There exists 0<z<p,1<p<oo, such that for (u,v)eA,

we have
j OMFP 8y < clj W(cofPE)v.
RN R"
Il. There exists n>0 such that
S gl
I a(t)t""dt <c'b(c”s)s", 0 < s < 0.
0

The constants ¢n, and p are related by e=np/(1+n) or
n=¢lp-¢).

Theorem 5 ll=1, and, if b is quasi-increasing and
u=v=1, the converse I=1l holds if p=1, and if 1<p<w it

holds if the measure du=a(t)t*"dt is weakly doubling.

Proof. ll=1. Fix 1<p<w and let e=np/(1+n). If q=p-¢,
then p/q=1+n. By Theorem 2

00

0 1 1 o0 (COS)q
J' @(qu)ugcoj at *’7_"1, V> s)sP- dsdtzcoj I
R" 0 t1c, o Jo
a7 ded f > s}sPlds < cj bl(chs)?1(cos) ¥ Vi > s)sPLds = cj
0 0
b(o)oV{f > ot} (PG5 = cj W > i(o)do = ¢;
0

J' RICIAN
R

I=1l. First let p=1 and u=v=1. If q=1-¢, then the
statement | in distributional form is

00 00
L= J. [{Mf > Y93 actydt < J. I{f > et} b(t)dt = R.
0 0

By Lemma 3,

00
L>cy I a(tyt/a I Lo FOxat
0 {f>cgt q}

We apply this to the test functions f(x)=ryp1(X),
0<r<o. Then

L>e c6rq 1/C| _ C7I’q q q
> 4-[0 ra(t)t~dt,R _L b(t)dt <cgr-b(cgr™),
because b is quasi-increasing. Hence
I:Grqa(t)tl’th <109 I(cqrd).

Let s=cgr¥% and 1/q=1+n. Then n=e/(1-¢) and

S
I a(t)yt" dt < ¢q 5@ M (e, 55),
0
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and (q-1)/lg=-n

The case 1<p<w with q=p-¢, and u=v=1 follows the
same steps as above and we get

S
ﬂdt < clls(q’l)/qb(clzs).
o ¢/a

We use now the weak doubling condition and get

Ay
J' ) J' a1 > ¢y n-1ia J'
0 s/,

a(t) 30 G5 ¢ st 1/qJ' al 4
t1/q t1+n

2 t1+n t1+n

Hence
Sa(t
J.O tl(Tz]dt <c15b(cy 28)/5“.

The result that we discuss now essentially says that, in
the presence of condition II, extrapolation for (u,v) is the
same as (u,v)eA, .

Theorem 6 Let 1<p<oo,n>0,e =np/(1+1) , and

J‘ a(t) dt<<:b(<: s) D<s<o.
o tHM N

Then the following statements are equivalent.
IRn®(Mf Py < cljRnW(czfp_g)v, (2)
where cj,¢c, depend only upon c,c” and p.

(2) We have (uv)eA,.

Remark: Theorem 1 is the special case n=0.

Proof. (2)=(1). This is =1 of Theorem 5. (1)=(2).
We proceed as in the proof of Theorem 1 and let

1
a(t) = Fx[lJﬁh](t)'}‘ >0,h>0.

We let b(s)=s" J- a(t) 222 gt . We may assume that n>0 since
0t
the case n=0 is Theorem 1. Then

(/)" = (s/(h+h)"

b(s)=0,0<s<A
hm

LA<s<A+h ,s=>A+h.

(sh)n-1
h
Our hypothesis in distributional form is

00 00
L EI W{MFP~E > tJa(t)dt < clj V{cof P78 > thh(t)dt =Ry,.
0 A
First

1 A+h
Ly = = I W{MFP~ > t3dt > W{MFP~ >},
A

as h—0. The right side R}, splits into two integrals

A+h 00
Rh :C]_J. +J. =|l+|2.
N A+h
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I, is easily disposed of
A+h n_
I = C]_J. MV{sz p-e > t}dt — 0,
/s fm
as h—0. Next

AN—(+h)y™

— c [ _
Iy=¢ I V{cof P8 > "t aﬁj‘ V{cof P8 > (3t dt,
fm +h AT

as h—0. The substitution «=t" gives
I »C—3J'OO e, fPe > /0y
KTH]‘ }Ln+l
and since (p-g)(n+1)=pm+1)-p=p,
V{cyfP > dr.

C3 ©
lg > ——
2 )J“l LnJrl

Hence for some constant cy >1

00
WMEFP—E > 33<-C J. VP > thdt.
{! } x””/ { }d

kn+1
With »=cP~* we get

00
WMF > o} < C—gj ) vif > ttPLdt.
(e}

(o

D _ CO' 00
WF > tidt = —-
oP c/CO,

Iegy
This shows that (u,v)eA, by Theorem 2.
Remark: The following observation may be of interest in

S
connection with condition II: if I @dtscoa(s) , then there
0

exists n>0 such that

J‘ a(t) 20 4 < a(s)

t1+n sh

and hence Theorem 5 about extrapolation applies.

Proof. By hypothesis

S. S S.
zj.lij. ﬂdtdsscoj.lsc%a(sl).
0 SJo t 0

Also

S, (S S.
L=Ilj.lﬂdsdt=j1ﬂlogs—ldt§cga(sl).

o Jt s o t t

We repeat this argument and finally get

J am 1 IogJ S dt < c“la(s)
o t ]

Let ¢; >cq. Then

[

and the sum = (s/t)" with n=21/c;.

Iogl dt <ca(s),
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6. ITERATED MAXIMAL OPERATOR. LET

Mif(x) =MoMo---o Mf(X).

j—times
The purpose of this section is to present some weighted
integral inequalities involving Mjf .

Theorem 7 Let ueApl<p<wo, and assume that

a,b:R, ->R, satisfy

I A0 1o i (sft)dt < cb(cs).
0
t t
Then, if o(t)= I a(s)ds, W (t) = I b(s)ds ,
0 0

Iana(Mij)u gcerRnW(cj,,fp)u.

Proof. By Theorem 2,

p-1

2 00 S 00
WM f>t}<—j WM o f > sdsPldsy <0 I e I
tP Juc, Slp 51/,

~ CoS2 ds
WMo f >s,}s) 'ds,ds; = J j 02 U{MJ o >s8,3807ds,
t/c tic

2 2
C

_ |Og O
tp tlc

p-1 cJ 00
U{MJ 9 > 52}52 dSz <WJ‘UC]
) 0

icds
Iog"l% u{f >s}sPlds.

The left side of the conclusion is

chs

o0 c! a(t)
IO WM f > tPJa(t)dt < i J J' 1y 19055 uff >

log' (¢} (o/t)P)u{f > o' PIdodt =

cch
(1—1)!'[0

i
p-1 = 070 w@ *
sysPdsdt (_71)|J. © e jp

= 1)|I Jclpc a(t) log L (cPoltydtuff > 6Pdo =

b(c"cPo)u{f > *P}do < Cj',[ (P (cpfP)u.
R

Remark: (1) The log term in the hypothesis of Theorem
7 can be omitted if u~1, the Lebesgue measure case and
1<p<o. The operator Mjf is weak (p,p) and (e,0) and

hence by [11, p. 103]
I{Mjf > t}|sﬂj |{f > s}/ sPds.
tP t/cj
>From this we get
O(M ; f(x)P - M f >t 710@@@
.[R"( i F () P)dx J.o {Mjf >t }Ia(t)dt<cJJ'0 n .[1’P/cj
0 @(C: )p o0
[€f > spsPasat=c; [ [0 20 1 > g 57 tatds= [ biess?)
0 JO 0

1{f > s}|sp"lds:c3me(c2t)|{f P >t}|dt=cj/I W(ep £ (0P)dx
0 R

C.J. Neugebauer

(2) There is a converse to the above. If b is qi, the
integral inequality

Ian(M ffooPyax<c er‘Rn\y(c 0P )dx
implies

J 30 4 < ¢b(e’s) 0 <s < oo,

0

a(t)

if p=1, and if p>1 this holds if the measure dp=>"2dt is

weakly doubling. This follows from
IRH¢(Mf(x)p)dx < Ian(Mjf(x)p)dx < cj/J.Rn\F(cjuf(x)p)dx,
and Theorem 4 applies.

7. THE ITERATED MAX OPERATOR AND
EXTRAPOLATION

There is a connection between the behavior of M if and

extrapolation [7-9]. The next two Theorems will explore this
connection in our setting. Again let ab:R, >R, and let

S S
@(s) :I a(t)dt,\P(s) = I b(t)dt with b quasi-increasing..
0 0

Theorem 8 Let 1<p <o and assume that for jeN
j D(M;f (x)P)dx < Al I W(c,f (x)P)dx,
R R

with c, independent of j. Let A<cx<owo and let n=1(csp) . If
(t)

in the case 1<p the measure du= dt is weakly doubling,

then for (u,v)eA,(R")
j O(MFPEyy Scl’j W(cyfP )y,
RN RN

where &= np/(1+mn) .
Proof. Our goal is to prove

J‘ a(t) 2 4o cb(c”s)
| <

t1+n sh
and then Theorem 5 gives us our conclusion.

In distributional form our hypothesis is

L= Iw I{Mjf > P} a(t)dt < Ajr I{f > (t/c2) P} b(t)dt =R.
0 0

By Lemma 3
00
LZClJ. %/t) 1 Mj_lf(X)dth
o t/P My >cqt Py

with c¢;,c3 independent of j. We apply this to the test

functions f(x) = ryjp 13(x),0<r <o . Then

Iog x

Mif (x) = Hxjo,11() +— ¢|—1(X)X[1 o) (X} K (X) = Z
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Therefore the inner integral is

M;j _qf(x)dx >

I{M jaf>e Py J-{(r/x)cp J._2(x)>c3tl’p},

For o<t<(icg)?, the set {(Mx)pj2(x)>catPIs[Lo(t),
where o(t) is defined by
(Ho(®)bja(c(®) = cat™P.

Since ¢jp(x)=1, we get o(t) > ri(cat*P) . Hence

gty p

M., f(x)dx > log/ 2 xdx = logit—' =
j{M] oogttPy 07t 09 L X(j—2)! 9 (j-1) g ctt?
r gt
—
plt(G-1) cht
Thus

(rlc )
l(:1r J‘ 3 al(/t) log} -1 rP LA
pJ (ji-n1do tHP cpt

Also
. C4rp .
R< AJJ. b(t)dt < Alc'rPb(c"rP),
0

since b is quasi-increasing. Let s=(r/ic3)P. Then
Cs a(t)

p"‘l(j—l)' o ¢
Then

S5 b rﬂ 1
e Jo P L= (jogyipilcht

Iog‘ (sit)dt < Alcgsh(css).

logdL(s/t)dt < cgsh(cys),
since c«>A. Since the sum inside the integral =(s/t)", we
get
Ly =cgstP I a(t) 222 (s/t)dt < cgsb(c7s).
If 1=p we stop, and if p>1 we note that
S a(t) n
Li>cio8] —=(s/t)"dt.
si2 t

Finally, the weak doubling condition gives us

J' ) 4 Cab(C7s)
ot N

There is a converse to Theorem 8 which reads as follows.

Theorem 9 Let 1<p < and assume that for some >0

J.Rnd)(Mf P=2(x))dx < ¢; .[Rn‘{'(czf P=€ (x))dx.

If in case p>1 the measure du= () dt, n=elp-g), is

weakly doubling, then for jeN and u eAp

.[Rncb(Mjfp)u Scjr.[Rn‘P(cjnfp)u.
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Proof. By Theorem 5, rﬂdt <SPCS) Then
ot s

a(t) —. U ",
J. Z(, 1)|IogJ L(sit)dt < cb(c”s).

Thus for each jeN
S .
I an logi ™ (s/t)dt <cjb(c”s).
o t
Theorem 7 completes the proof.

8. APPLICATIONS

We give some examples of ® and ¥ which are (¢,c¢”) -

related and investigate the inplications of Theorem 1. We
will get some unusual and surprising integral inequalities.

I If (u,v)eA, for some 1<p<w, then

J Mfu scj v,
R"N R"

for p<r<oo.

Proof. This is well-known [4]. It also follows from
Theorem 1 by taking o(t)=t*a>1. An easy calculation

shows that we can take w(t)=t*.

I If (uv)eA, for some 1<p <, then for a>1
I log® (1+ pr)ugj‘ P log® L (1+FP)v.
Rn Rn

a-1
log¥ " (1+1) and
1+t

S S a-1 S a-2
J.ﬂdtmxj log ““MMI log™ "+ = 2 _jog
o t o t(1+t) o 1+t

Proof. Let o(t) =log®(1+t) . Then a(t)=a

91(145) = b(s).

Also

t
J.b(s)dss % tlog®L(1+t) = W(t).
0 oa—1

The desired integral inequality follows from Theorem 1,
since log(1+cx) <clog(1+x) if ¢>1.

Remark: We cannot replace the right side by the more

symmetric I N log®(1+fP)v. As an example let u=v=1 and
R
n=1. If f(x)= rX[O,l](X)vo <r<w, then

I log® (1+fP) =log® (1+rP) . Since MF(x)=>rix,x>1, we get
R

J.Iog“(1+pr)dx2J. log® (1+ (r/x)P)dx.
R 1

The integrand

log® (1+ (/%)) = (log(xP + rP) — log xP)* >[ prp

o
>1/2%,
X" +r

if x<r. Hence
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Tdx _r-1

log® (1+ MfPydx >
J.R h 2% 2%

log® (1+rP)

Our assertion follows since —0 as r»w.

HILIf (uv)eA, for some 1<p<w, then

I Mf Pu < 01_[
{Mf>1} { f>c

Proof. Let a(t)=(t-1)x*(t), where »(t)=x10)(t). Then

fPlog(1+ f P )v.
!

a(t) = ¢1(t) . We let

S
b(s) = L @dt = (logs)yX(s).

t
Then w(t) =I b(s)ds < (tlog t)x(t) . By Theorem 1 we get
0

I (MFP —1)u 301_[ P log(cofP)v,
v >13 i1/}

where ¢’ = c12/p . By Theorem 2

W{Mf >1}< coj

vif >s)sPlgs = 0 I VP > tyat< &0 Py,
Llcg p

{f>c"}
where ¢ = 1/(08 )<1. Thus we get

I prusclj fp(1+log(c2fp))v§clrj. P log(1+fP)v,
{(MF>1} F>c.} F>c.}

since 1+log(cx) <eclog(l+x) if ec>1.

Remark: As a special case, if (u,v)e”A; and K<=R" is

compact, then J. Flog(1+f)v<w implies Mfy <L}(u) . This
R

is a two-weight version of the well-known fact that Mfyy Lt
,if felLlogL [10].

IV. Let (uv)eA, for some 1<p<o, and let O<a<l.
Then

I (MFP —u<—L- I (cof P =t %P)v.
(Mf >1} 1-aJie,iP>1y

Proof. Let @(t) = (t* —1)y(t) . Then a(t) = at® M (t) . We set

b(t)=onj1 s 2y () = (- Dk,

Hence

‘{’(t)——j(l s Dydsyl(t) = ( (t— ta/(x)+1jx ).

>From Theorem 1, using v{c,fP >1}< J. cofPv, we
e, fP>13

get the desired inequality.
V. Let (uv)eA, for some 1l<p<w, and let 0<k<oo.
Then

C.J. Neugebauer

j ‘[1,_} u<e £P(1-1/(cofP))< v, = 3P
(Mf >1 MmfP F>1/c

Proof. Let (1) = (1-10)% () . Then
a(t) = k(1-105 /(124 (t) . We set

t
b(t) = kj (1—1/s)k*1i3dsx1(t) <(@1-10% .
1 S
>From this we see that
t
70 :I (1-1s)Kdsy (1) < (-1 %t -1) (1) = ta- 10Ky (v,
1

and the inequality follows.

VI. Let (u,v)eA, for some 1<p<o. Then
_ p
jne—1/(pr)uSC1J P e, f),,
R R

Proof. Let
a(t)=eM1t2 and

t .15
e
b(t) = I
o s

>From this

oty=e M t>0 and @©)=0. Then

ds = e’ll[(%+1).

t
w(t) = I e 151 1)ds = e 11,
0 S

Theorem 1 gives the desired integral inequality.

Remark: The factor fP in the above inequality cannot be
omitted as examples of the type fy = Ny 1] show.

VII. Suppose a(t)=a'(t) is convex with a(0)=0. If
(u,v)eA, for some 1<p<owo, then

.[ D(MFPYu SC]_I D(c,fPyv.
RN R"
Proof. This follows from

J.t@ds < J.ta’(s)ds =a(t).
o S 0

Remark:
a(t) =t%' et - t—1,z 2ant”,an >0. As an application we will
n>

Examples illustrating (VID) are

. L. . p
present an inequality involving eMf

VI If (uv)eA, for some 1<p<w, then there exist
constants 0<cy,cp <o such that for every f:R" >R,
P

p c,f
'[ eMTu<g j e2 v
(MF>1} o, fP>13

Proof. Let @(t)=(e'—te)x}(t) . Then a(t)=(e'—e)y*(t) and

thus from VII
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\

p ne P e P
I €M _MfPe)u < c’j €T —c'fPe)v < c’j ey,
MF>1} ctP>13 P >13

We only need to verify now that

p
I prusclj. 2"y,
(Mf>1} e, fP>13
This is easy by letting @(t)=(t-1)*(t) . Then a(t)=y'(t)
and thus b(t) = log ty'(t) <ely'(t) .

IX.If (u,v)eA, forsome 1<p<wo, then

I \/pr—luscl‘[ 1 (cof P tanTycof P —1—ycofP —1)v.
( iPro)

Mf >1}

Proof. Let () = 1) () , and take @(t) =Vt—1}t). Then
a(t) =1(2Jt-1)}(t) and

t
b(t) = j s = an W),
1 23(5—1)1/2

Also
t
Y= -[1 tanLs —1dsy (1) = (ttan V-1 — vVt - 1) (0).

Theorem 1 gives us the desired integral inequality.

Remark: It is tempting to replace the right side of IX by
the more symmetric

clj‘ VeofP—1v.

o tP>13

Examples of the form fy =Ny; as N—>o show that this is
not possible.

X If (u,v)eA, for some 1<p<co, then

p
j Iog[eM—f] usd Py,
>y LY yP Hf>cov

with ¢1,c, independent of f .

Proof. Fix y>0 and let ePt=yP . If a(t) = (1t)x"(t) and
ta(s) tds . c
bty=| 2as=| Syt < ,
= | s LSZX (< W W

then ®(t) =log(t/t)x*(t) and ‘P(t) < (t/t)x*(t) . >From Theorem 1
we get

I MiP | ¢ J' P
log us— fFv.
vEP >3 T T P >crgy

Finally

p p
I log e M usI log M US&J‘ fPv.
{Mf >y} yP MEP >3 T yP Jtf>c y)
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Remark: The above inequality is a generalization of the

weak-type inequality u{Mf >y}<-S J. Py,
yP JRT
XI.If (u,v)eA, and p<s<r<oo, then

j (MFT —MfS)u <-4 (" —cBf%)y,
(MF >1} B-1Jrc,fP>13

where o =r/p,p=s/p.

Proof. Let o) = 1t —tPy (). Then

a(t) = (@t* T -ptP 1)l and

b() =(ﬁt“‘1—%tﬁ‘l+caijl(t>,

where c,p=p/(B-1)-a/(a-1) . Consequently

lP(t):[a—l B-1 p-1

a (B

¢ _t_+caﬂt];51(t)s[(ﬁ+caﬁ)t“—itﬂJ
1= L g _thy, L

F0= 55070

Theorem 1 gives the desired inequality.

Remark: If s=p above, then using the same type of
argument with o(t) = (t* ~ t) (1) , etc, we get for (u,v)eA,

_[ (Mff—MfP)us%j o (51 —cofP)v.
{Mf>1} a {c,f">1}

XII. The fact that Mf ¢l*(R") unless f=0 gives rise to
the question for which ®:R, >R, is ®Mf)el}R"). Let

t
a:R, >R, bein L3 (0) and let d)(t):J.oa(s)ds.

Theorem 10 The following statements are equivalent for
fel®LERM :

O(MF (X)) e LIR™), (3)
Isﬂdt<w10<s<w, (4)
o t

Proof. (2) > (1). Since |{Mf>t}<cot||fly and MFf is
(o0,0) , We get

f f
IRn<I>(Mf(x>)dx: J’: " g > gt <ol Ihﬂ "”@dt.

(1) (2). We may assume that a(t)=0 on any interval

(0,e)) and f=0. By Lemma 3, %J. f(x)dx <c|{Mf >t}|, and
>t}

thus for fel®ALYR")

o> [ OMF()dx = ﬂf"“’ 1{MF > | a(t)dt > ¢ ﬂ”'“’@

_ f(x) a(t) _
J'{ o Odat = c Joof, 2T 0odtdx = cf W)t eod
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where T(r):J.r@dt . Therefore, w(f(x))f(x)<x, a.e x, and
0

hence W(f(x))<wo,a.e. x.

Incidentally, we have established the

inequality:

following

Clj.Rn‘V(f (GO (x)dx < IRnCD(Mf Cax <co (I ko) 1F 1 -

t
X111, Let a:R+aR+,b(S)=r¥dt and o) = [ as. If
0 0

1<p,q<o and (u,v)eA,, then

J.RnCD(Mf Pyu< ClJ.Rn\Pp’q (cof Nyv,

Pl
¥y q(0) = J. b(s)ds
where 0 :

Proof. This
W q(t) = F(EPY) .

follows from Theorem 1 since

Remark: Theorem 1 deals with functions @,% non-
decreasing. It is sometimes convenient to have a version of
Theorem 1 with @,¥ non-increasing.

Let a:R, >R, and let c1>(t)=j a(s)ds . The function
t

b:R, »R, isrelated to a by
00

J- ta(t)dt <c'b(c"s),0<s < oo
S

Finally, let
w(t) = j wizs)ds.
t s

Theorem 11 The following statements are equivalent for
1<p<ow.

(6) Whenever @ and w are related as above, then for
every f:R" >R,

I (I)Lusclj- ‘Pc—zv,
rRM L MFP RN (P

where the constants 2 depend only on ¢ and P.

(7

Proof. The change of variables s—1/s shows that
condition (2) of Theorem 1 is equivalent with condition (6):
M. ¥M satisfy (6) if and only if PV L), W) =¥ ()
satisfy (2) of Theorem 1.

(uv)eA,

C.J. Neugebauer

As an example let cp(t):J.we’Sds. An easy calculation
t

shows that we get VI. Another interesting example is
() = (1-t")(), xu®=%p,1)® . Then

at) = at® Yy (1) and s

O<a<ow, where

b(t) = —— (1-t* Yy (1).
o+l
Thus
_ [*bs) [ «
w(t) = J; s—zdsxl(t)—{m(lltﬂ /a)fl}xl(t).

If (u,v)eA, for some 1<p<w, Theorem 7 gives

p o
I ‘[1— ! ]u sclj y r, % v —cyv{f >c12/p}.
(MF >1 Mf “P o P <ty €2 af P
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