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Abstract: We report here on a non-linear poroelastic model for the mechanical response of collagenous soft tissues such 

as articular cartilage. The tissue consists of a porous, fibril-reinforced, hyperelastic solid, saturated with an incompressible 

fluid, and Darcy's law governs solid-fluid interaction. The solid matrix is characterized by the isotropic hyperfoam strain 

energy function and its permeability is made to depend on local strain. The fibrils are non-linear, provide tensile stiffness 

only, exhibit viscoelasticity and have arbitrary, three-dimensional, statistical distributions. The stress tensor in the fibril 

network is calculated from the constitutive law for a single fibril with the aid of the fibril distribution functions. With a 

specific viscoelastic fibril constitutive relationship and a three-layered cartilage construction, the model is shown to pre-

dict well strain-dependent and time-dependent behavior in unconfined compression and tension and in unconfined com-

pression and indentation, using identical sets of material parameters. 
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1. INTRODUCTION 

 Articular cartilage is a smooth, thin tissue that covers the 
ends of articulating bones of diarthrodial joints. The unique 
mechanical properties of healthy cartilage enable the joints 
to bear large, varying loads while maintaining almost fric-
tion-free movement [1]. The mechanical modeling of articu-
lar cartilage is a prerequisite for our understanding the bio-
physical functions of synovial joints [2, 3]. 

 Due to the complexity of mechanical response of articu-
lar cartilage, numerous constitutive models have been devel-
oped over the past several decades [4-10], with varying de-
grees of success. Two different approaches, namely macro-
scopic and microstructural, have been used to describe the 
material behavior of the tissue. Macroscopic models view 
the solid phase as a single material whose mechanical prop-
erties are based on bulk behavior [5, 7, 9, 11-13]. In contrast, 
microstructural models consider the solid phase to be a com-
posite whose properties depend on the structure and the 
properties of its components [10, 14-17]. There also exist 
micromechanical models for fiber composites [18-21], and 
microstructural models for the drained elastic properties of 
soft tissues [22-25]. 

 Two of the salient features of the cartilage’s mechanical 
response are poroelasticity, i.e., flow-dependent viscoelastic 
behavior, and tension-compression nonlinearity. All biphasic 
and consolidation models account for the first of these, and 
the phenomena of small compressive modulus and large ten-
sile modulus are predictable by the bimodular biphasic 
model [12] and the fibril-reinforced biphasic model [10]. 
There are, however, other, less prominent, characteristics of 
cartilage response that should also be accounted for. Some 
researchers hold, for example, that inherent viscoelasticity of 
the drained tissue plays an important role [6, 15, 16, 26, 27]. 
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Strain-hardening has been observed in both compression [28, 
29] and tension [30, 31], while the tensile Poisson’s ratio has 
been shown to remain approximately constant [31, 32]. The 
combination of bimodular model and quasi-linear viscoelas-
ticity will describe stress-relaxation in both compression and 
tension [27]; the stress relaxation may also be explained 
through incorporating fibril viscoelasticity into the fibril-
reinforced biphasic model [16]. Wilson and coworkers fur-
ther developed fibril-reinforced poroelastic models by in-
cluding a more realistic network of fibrils [15, 33]. 

 In a previous paper [17], we have reported on a general 
microstructural poroelastic model that could incorporate ar-
bitrary fibril distribution and thus explain the anomaly that 
small modulus and Poisson’s ratio are observed in uncon-
fined compression, while large modulus and lateral Poisson’s 
ratio govern tension. This model has its limitations, however: 
fibril viscoelasticity and nonlinearity are not included, and 
fibril distribution does not change with deformation. In con-
sequence, strain-dependent properties of cartilage cannot be 
explained by that model. 

 The present study removes some of the limitations of our 
earlier model, thus permitting clarification of various addi-
tional cartilage properties. We hypothesize that the inclusion 
of hyperelasticity for the solid matrix, and nonlinearity and 
viscoelasticity for the fibrils into our microstructural poroe-
lastic model [17] will result in a comprehensive approach 
that may be able to explain the most essential mechanical 
properties of articular cartilage. To demonstrate the predic-
tive capability of this new model, we employ it to analyze 
strain-dependent equilibrium properties and curve-fit ex-
perimental stress-relaxation data of cartilage samples in un-
confined compression, tension and indentation tests. 

2. METHODS 

2.1. Model Formulations 

 We envisage the cartilage tissue as a saturated mixture of 
a porous solid matrix (identifier s ), a fluid (identifier w ), and 
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a fibril network (identifier f ) embedded in the solid matrix. 
The volume fractions of solid matrix, fibril network and in-
terstitial fluid are denoted by s , f  and w  respectively. 
The governing equations are identical to those of biphasic 
theories [5, 34], except for the constitutive equation for the 
solid phase. In our composite view of the cartilage, the three-
dimensional fibril network reinforces the hyperelastic solid 
matrix and the Cauchy stress tensor of the tissue is given by 

T = pI +
2

J
F

W

C
FT

+ T f        (1) 

Here F  is the deformation gradient tensor and J  is its Jaco-
bian determinant, W  is the strain energy function, C = FT F  
is the right Cauchy-Green tensor, p  is the interstitial fluid 
pressure and T f  is the stress tensor in the fibril network. 

 To calculate the elastic stress arising from the deforma-
tion of the fibril network, we make the following assump-
tions: the fibrils are locally straight and support tensile load 
only; bonding between solid matrix and fibril is perfect and 
constrains perfectly against slippage; interaction between 
fibrils is neglected. 

 We characterize fibril configuration, at any stage of the 
(large) deformation by the fibril distribution function f ,( ) , 
which has reference value f0 ,( ) . Here ( , ) and ( , )  
are Eulerian angles and their initial values, respectively [17, 
35]. The relationship between initial and current configura-
tions is determined by the deformation gradient F , which 
also rotates the initial fibril orientation 

n0 = (sin cos , sin sin , cos )      (2) 

into the new fibril direction n  

n =
F n0

F n0

= (sin cos , sin sin , cos )     (3) 

 Assuming that in the single fibril with orientation n  the 
stress is f  (the fibril stress averaged by fibril volume frac-
tion), we calculate the global fibril stress

 
T , i.e. the ho-

mogenized single fibril stress relative to the global reference 
frame, through 

 
T = f  n n           (4) 

 The effective elastic stress tensor of the fibril network is 
given by 

 

T f  =   T f ,( )sin  d
 G1( )

 H1( )

d
  0

 2
     (5) 

 In order to calculate T f , we need to change the current 
variables ( , )  to the initial variables ( , ) . Two effects 
influence the redistribution of fibrils [25]: the fibril initially 
oriented along n0 ,( )  rotates into n ,( )  and the differen-
tial area on a unit sphere, dA0 = sin d d , changes into the 
new area dA = sin d d . Since the fibrils are considered to 
be material lines, fibril density over dA0  will equal that over 
dA , so the mapping of the fibril distribution function under 
the deformation is given by 

f ,( )sin  d d = f0 ,( )sin d d     (6) 

 Thus the effective fibril network stress can be calculated 
in terms of the initial fibril distribution function and the de-
formation gradient tensor, through equation (4), 

 

T f  =   T f0 ,( )sin  d
 G( )

 H ( )

d
  0

 2
    (7) 

 The lower and upper limits, G ( )  and H ( ) , of the 
integral are obtained from the constraint inequality of tensile 
direction at a material point 

f = ln F n0 > 0          (8) 

where we use the logarithmic strain measure to be compati-
ble with the commercial finite element software ABAQUS, 
and the fibril stress has the form 

 

T(R, , ) =
f

F n0

2 F n0 F n0       (9) 

 The fibril network stress is added to the stress generated 
by the solid matrix and the stress in the fluid, to obtain the 
mixture Cauchy stress 

 

T = p I +
2

J
F

W

C
FT

+   T f0 ,( )sin  d
 G( )

 H ( )

d
  0

 2
 (10) 

 The hyperfoam strain energy function, which was pro-
posed by Hill [36] and was subsequently employed to study 
the behavior of porous rubber [37], is used here to describe 
the behavior of the hyperelastic solid matrix 

W =
2μ

i
2 1

i + 2
i + 3

i 3+
1

J i i 1( )
i=1

N

   (11) 

 For simplicity, we chose N = 1 , thus the hyperfoam po-
tential of our model is given by 

W =
2μ

2 1 + 2 + 3 3+
1

J 1( )     (12) 

 Here 1 , 2 , 3  are the principal stretches and μ , ,  
are material constants, where  and  specify non-linearity 
of the matrix. The initial aggregate modulus HA0  and Pois-
son’s ratio  are related to the three constants by 

HA0 = 2 +1( )μ          (13) 

=
1+ 2

          (14) 

 The requirement for a stable material is μ > 0  and 
>

1
3  and the upper limit of Poisson’s ratio is 0.5, which is 

the maximum Poisson's ratio of the non-fibrillar solid matrix. 
Other hyperelastic models can also be used to describe the 
behavior of non-fibrillar solid matrix. For example, the com-
pressible neo-Hookean model was chosen by Wilson et al. 
[33]. The hyperfoam potential has advantages of using com-
binations of non-integer powers of stretches and separating 
distortion and dilatation in an attractive manner [37]. 
Moreover, it has been demonstrated to predict hyperelastic 
behavior of porous materials, consistent with the porous 
structure of cartilage, thus it might be a selectable constitu-
tive model for articular cartilage. 

 The linear viscoelasticity of fibrils has been described by 
the ‘standard solid model’ [38], which is characterized by a 
spring in parallel with a Maxwell element. This model repre-
sents viscoelastic behavior in terms of three parameters: an 
effective elastic constant Ef , a viscosity f , and a relaxation 
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time f . The stress-strain relation of the standard solid 
model is 

 
f + f f = Ef f + f E f + f( ) f      (15) 

where f  and f  represent one-dimensional stress and 
strain, respectively. 

 We wish to extend this linear viscoelastic model to in-
clude fibril nonlinearity. From the tensile stress-relaxation 
experiments [16, 31], it is observed that the characteristic 
relaxation time does not change significantly with strain, 
thus we may assume that the relaxation time f  of a fibril is 
constant. We also assume that the viscosity f  (a parameter 
of the dashpot in the viscoelastic model) of a fibril is inde-
pendent of strain. However, the tangent Young’s modulus of 
a fibril is assumed to be linearly related to the fibril strain 
inside the fibrils [14], 

Ef = Ef0
+ Ef1 f          (16) 

The corresponding secant modulus is given by 

Ef = Ef0
+

1

2
Ef1 f          (17) 

where Ef0
 and Ef1

 are curve-fitting parameters. 

 We construct the constitutive relationship for fibrils by 
substituting equation (17) into (15), 

 
f + f f = Ef ( f ) f + f ( f ) f      (18) 

where f ( f ) = f E f ( f ) + f . The constitutive model, as seen 
in (18), is characterized by four material constants 
Ef0

,Ef1
, f , f . 

 Darcy’s law governs solid-fluid interaction, and the 
strain-dependent permeability proposed by Holmes and Mow 
[7] is employed. In terms of void ratio, permeability is given 
by 

 

k = k0
0

exp
M

2

1+

1+ 0

2

1      (19) 

where =
w / ( s

+
f )  represents void ratio, k  is the perme-

ability, M  is a constant, and the subscript zero indicates 
initial values. We assume constant  = 0.0848  [7] and specify 

0 = 4.0  [39, 40]. 

 At equilibrium, the fibril-network stress tensor is given 
by 

T f  = n nEf ( f ) f f0 ,( )sin  d
 G( )

 H ( )

d
  0

 2
  (20) 

and the three principal stresses of the composite under 
uniaxial mode are 

t1 = T11
f +

2

J

μ
1 J( )        (21) 

t2 = T22
f +

2

J

μ
2 J( )        (22) 

t3 = T33
f +

2

J

μ
3 J( )        (23) 

 To show the capability of our microstructural model, we 
consider the articular cartilage as consisting of three zones, 

with fibril orientation changing from zone to zone. Relative 
zonal thicknesses are assumed as 15% for the surface, 55% 
for the middle and 30% for the deep zone [1]. Fibril orienta-
tions in the different zones are suggested by microscopic 
examinations [41-43], with distribution functions as given by 
Lei and Szeri [17]. 

 The middle zone contains initially random fibrils 

fR ( , ) =
1

4
         (24) 

 In the deep zone, initial fibril distribution is characterized 
by 

fV ( , ) =
e

2

0.5 + e
( )2

0.5

2 [e

2

0.5 + e
( )2

0.5 ]sin d
 0

 

    (25) 

 In the surface zone, the fibrils are initially distributed 
according to 

fH ( , ) =
e

/2( )
2

0.5

 2 e
/2( )

2

0.5 sin  d
 0

 

     (26) 

 For simplicity, we assume that both the properties of the 
fibril and the properties of the solid matrix are identical in 
the three zones, though this assumption is not crucial. Note 
that the fibril distribution functions used here are only a trial 
geometric configuration that is intended to mimic fibril or-
ganization in the three zones but may not be a true represen-
tation of any actual structure [17]. 

2.2. Finite Element Implementation 

 We implement the nonlinear microstructural poroelastic 
model in the commercial finite element software ABAQUS, 
employing the SOIL consolidation procedure. The 4-node 
axisymmetric porous element (CAX4P) is employed for the 
solid matrix, and its mechanical behavior is specified by the 
HYPERFOAM option. The 4-node axisymmetric solid con-
tinuum element (CAX4), which shares the identical nodes 
with the porous element, is adopted for the fibril network. 
Material behavior of the fibril element is specified by a user-
defined subroutine UMAT. In this subroutine, we update the 
stresses according to the deformation gradient at each incre-
ment. 

 Applying central difference operator to equation (18), we 
obtain the stress increment of a fibril in the time inter-
val (t,t + t) , 

f =
Ef ( f ) t / 2 + f ( f )

t / 2 + f
f +

Ef ( f ) t

t / 2 + f
f

t

t / 2 + f
f
 (27) 

where f = f (t)  and f = f (t)  are (one dimensional) fibril 
strain and stress, respectively, at time t . 

 In order to calculate the fibril network stress, we need to 
calculate and sum individual fibril stress at current time. The 
present study approximates global fibril network stresses as 
follows. Assuming to have available both fibril strain and 
fibril stress at time t, we begin computing the increments to 
these quantities during the time step t . The strain incre-
ments e  are obtained from the virtual work principle in 
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ABAQUS where the virtual field satisfies the boundary con-
ditions of the problem. 

 Rotating the individual fibril stress increment, equation 
(27), into the global reference frame we have 

  

T = f  n n +
2 f n

n0 Cn0

Fn0 + (n0 Cn0 )n[ ]  (28a) 

 However, the finite element implementation of Eq. (28a) 
is too complex and we approximate it by neglecting the sec-
ond term due to change of fiber orientation because of al-
tered strain. Thus, in place of Eq. (28a) we employ 

 

T
Ef ( f ) t / 2 + f ( f )

t / 2 + f
f +

Ef ( f ) t

t / 2 + f
f

t

t / 2 + f
f n n  (28b) 

in the finite element representation. The stiffness matrix may 
be affected by the approximation. However, the error intro-
duced by the approximation (28b) is not significant when the 
loading strain is small; this can be shown by comparison of 
equilibrium stress calculated from finite element simulation 
and from FORTRAN code. 

 Integrating, yields the stress increment of the fibril net-
work 

 

T f (t) =   T f0 ,( )sin  d
 G( )

 H ( )

d
  0

 2

B e + D e(t)
t

t / 2 + f

T f (t)
   (29) 

Here 

Bijkl =
  0

 2
  

E f ( f ) t / 2 + f ( f )

t / 2 + f

ninjnknl  f0 ,( )sin  d
 G( )

 H ( )

d  (30) 

Dijkl =   
Ef ( f ) t

t / 2 + f

ninjnknl f0 ,( )sin  d
 G( )

 H ( )

d
  0

 2
 (31) 

 Equation (29) shows that the increment in fibril stress 
T f  depends on the current strain e(t) , the current 

stress T f (t) , and the strain increment e , as well as the step 
size t . Had we used the integral representation of stress, we 
could show that its increment depends on the history of 
strain, not only its current value. Having computed the stress 
increment T f , we calculate the fibril-network stress tensor 
at time t + t  as 

T f (t + t) =  T f (t) + T f        (32) 

2.3. Computational Cases 

Equilibrium Strain-Dependent Behavior: Single Tissue 

Layer 

 We investigate the equilibrium stress-strain behavior of 
this model in uniaxial tension, on a cubic sample from differ-
ent zones with the loading direction (1-direction) parallel to 
cartilage surface. The fibril orientations for the three different 
zones are described by equations (24-26). The boundary con-
ditions are that the stretch 1  is known, and t2 = t3 = 0 ; there-
fore, we need to solve equations (22-23) to get the other two 
stretches 2 , 3 , and to calculate stress t1  using equation 
(21). These equations are solved using computational methods 
via FORTRAN codes. From the calculated stretch 2 , we can 
compute the apparent Poisson’s ratio 12 = (1 2 ) / ( 1 1)  as a 
function of nominal tensile strain. 

Time-Dependent Behavior: Composite (Three-Layered) 

Tissue 

 The sensitivity of the constitutive model to time-
dependent behavior is investigated before the model is fitted 
to the experimental data. Then two groups of experimental 
data are chosen to validate the proposed model. Firstly, the 
model is fitted to published experimental stress-relaxation 
data in both tension and unconfined compression [16]. Sec-
ondly, we fit to time-dependent load and lateral displacement 
data in unconfined compression [26], and predict stress-
relaxation behavior in indentation test. Consequently, we 
demonstrate that the model, using a unique set of parameters 
per cartilage sample, can predict the outcome of three differ-
ent tests. We employ the relative error as a criterion for as-
sessing goodness of fit. An optimization procedure [44] that 
combines ABAQUS and optimization tools in MATLAB is 
employed to curve-fit experimental data. 

 The cartilage sample consists of three zones, with 15%, 
55%, 30% in relative thickness for surface, middle, and deep 
zones, respectively. Axisymmetric finite element meshes are 
employed for simulations. The specimen-platen contact is 
assumed to be adhesive in the tests of Li et al. [16], and the 
boundary conditions for unconfined compression and tension 
are given by 

uz = u t( ), ur = 0, Uz = uz  at z = h,

uz = 0, ur = 0, Uz = uz  at z = 0,

ur = 0, Ur = 0    at r = 0,

p = 0                   at r = R .

   (33) 

where (ur ,uz )  and (Ur ,Uz )  are components of the displace-
ment vectors of the solid phase and fluid phase, respectively, 
and p  is the pore pressure. 

 For unconfined compression tests of Disilvestro and Suh 
[26], the specimen-platen contact is assumed to be friction-
less. The boundary conditions are similar to equation (33) 
except that ur  is not constrained at z = h  and z = 0 . Since 
the lateral displacement is not uniform throughout the thick-
ness, we use the averaged lateral displacement in the curve-
fitting. 

 The following boundary conditions are specified for in-
dentation test using porous indenter: the nodes are confined 
in all directions at z = 0 ; the nodes are confined in radial 
direction at r = 0 ; the nodes are constraint by zero pore pres-
sure at r = R  and at z = h ; the rigid porous indenter is com-
pressed by applying specified axial displacement u(t) ; the 
contact between cartilage specimen and indenter is friction-
less. The axial load is computed from the top surface of the 
indenter. 

3. RESULTS 

3.1. Equilibrium Strain-Dependent Behavior: Single Tis-

sue Layer 

 We investigate the effect of fibril nonlinearity on the 
stress and the lateral Poisson’s ratio 12 . Fig. (1) shows equi-
librium stress and lateral Poisson’s ratio varying with nomi-
nal strain in tension for random fibril distribution, when we 
fix parameter values at HA0 = 0.6 MPa , = 0.4 , = 1.0 , 
Ef0

= 30 MPa , but vary the ratio of Ef1
/ Ef0

. It may be ob-
served that both stress and lateral Poisson’s ratio curves shift 
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upwards as Ef1
/ Ef0

 is increased. Apparently, the nominal 
stress-strain curves have a toe region and a linear region 
(Fig. 1A), which is consistent with experimental observa-
tions [32]. Though the tangent fibril stiffness is strain-
dependent, the nominal stress may be reduced due to the 
significant transverse contraction. The lateral Poisson’s ratio 
does not change significantly with nominal strain when the 
ratio of Ef1

/ Ef0
 is fixed (Fig. 1B), but it is greater than 0.5, 

indicating significant fibril-induced anisotropy. For surface 
and deep zones, similar strain-dependent results are calcu-
lated, though tensile modulus and lateral Poisson’s ratio are 
higher in surface zone and lower in deep zone than that in 
middle zone. 

(A) 

 

(B) 

 

Fig. (1). Effects of fibril nonlinearity on the equilibrium stress-

strain responses in tension for random fibril distribution: (A) nomi-

nal stress; (B) lateral Poisson’s ratio. The parameter values are 

fixed at HA0 = 0.6 MPa , = 0.4 , = 1.0 , Ef0
= 30 MPa , while 

the ratio Ef1
/ Ef0

 changes. 

 Huang et al. [31] found that the Poisson’s ratio was ap-
proximately constant within the range of 6-12% tensile strain 
from their experiments. Elliott et al. [32] also found that the  
 

 

Poisson’s ratio was almost independent of strain up to 15% 
tensile strain. These experimental findings are consistent 
with our model predictions. Furthermore, their measured 
values of lateral Poisson’s ratio are within the range of our 
computational results. 

 In previous study of a linear microstructural model, we 
found that the tensile Poisson’s ratio was mainly determined 
by Ef / HA  ratio [17]. However, in the present nonlinear mi-
crostructural model, both Ef  and HA  change with strain. A 
fibril that has smaller incline angle to the load will undertake 
larger tensile strain, which makes effective fibril stiffness 
change with direction. All these factors contribute to the ten-
sile Poisson’s ratio, and make the behavior of strain-
dependent Poison’s ratio not easy to forecast. As shown in 
Fig. (1), the tensile Poisson’s ratio may increase first then 
decrease later as the strain increases, or it may be strain-
independent. 

3.2. Time-Dependent Behavior: Composite (Three-
Layered) Tissue 

Sensitivity Analysis 

 The sensitivity is investigated on 9 parameters in both 
unconfined compression and tension stress-relaxation using a 
calculated target. The target stress-relaxation is computed 
based on the target parameters, 

HA0 = 0.8 MPa, = 0.4, = 0.5,  k0 = 3.0 10 16  m4N-1s 1, 

M = 6.0, f = 120 s,

Ef0
= 10.0 MPa, Ef1

= 2500 MPa,  

f = 1.5 104  MPa s.

 

 The sample dimension are R=1.5 mm, H=1.0 mm. There 
are 5 stress-relaxation steps; one-step time is 500 seconds, 
and the loading rate is 1% in 10 seconds for both unconfined 
compression and tension. The sensitivity analysis is per-
formed by changing each parameter in turn by ±20%, while 
keeping all other parameters fixed at their target values. It is 
found that the Poisson’s ratio of solid matrix  is the most 
sensitive parameter, while  and M are the least sensitive 
parameters. The computational stress-relaxation curves in 
unconfined compression and tension by changing parameter 

f  are shown in Fig. (2). 

 To indicate the part of the time-dependence due to the 
biphasic nature of the cartilage through Darcy’s law and the 
part due to the purely viscoelastic behavior of the fibrils, we 
present a comparison among fluid pressurization, purely 
elastic and viscoelastic fibrils on the time-dependence of the 
material response. The target curves are calculated using the 
same parameters and loading rates as those in Fig. (2). For a 
clearer view, only one single loading-unloading ramp but 
with different fibril moduli ( Ef0

= 10 MPa  and 
Ef0

= 100 MPa ) is shown in Fig. (3), where the purely elastic 
fibril network is represented by f = 0  and f = 0 ; the time-
dependence of the material response due to purely viscoelas-
tic behavior of the fibril network is specified by no fluid 
pressurization ( k ). 

 It is observed that fluid pressurization and fibril viscoe-
lasticity play important roles on the time-dependent behavior  
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(A) 

 

(B) 

 

Fig. (2). Sensitivity of stress-relaxation curve to the changes in f : 

(A) unconfined compression; (B) tension. 

of the tissue in both unconfined compression and tension 
(Fig. 3). For unconfined compression, if there is no fluid 
pressurization, stress-relaxation is not observed; if fibrils are 
purely elastic, the peak stress is decreased significantly, 
though the extent of reduction is dependent on the fibril 
modulus (Fig. 3A). For uniaxial tension, if fibrils are purely 
elastic, the stress-relaxation behavior is still observed, which 
is due to the fluid pressurization; if there is no fluid pressuri-
zation, the peak-to-equilibrium stress ratio is much lower 
(Fig. 3B). Because of the large transverse contraction during 
tensile loading, the interstitial fluid is pressurized. The pore 
pressure will resist transverse contraction and tighten more 
fibrils, therefore enhance the stress-relaxation in uniaxial 
tension. 

Unconfined Compression and Tension 

 Li et al. [16] performed tensile and compressive stress-
relaxation tests in the axial direction, where cartilage sam-
ples were glued between loading platens. We take their pub-
lished experimental data and fit them with our model. The 
dimension of selected cartilage sample is R = 1.82 mm  and 
h = 1.13 mm , and each step loading is 0.6% strain. 

(A) 

 

(B) 

 

Fig. (3). Effects of fluid pressurization and fiber viscoelasticity on 

the time-dependent response: (A) unconfined compression; (B) 

tension. Curves not labeled for Ef0
have Ef0

= 10MPa . 

 The model parameter values are obtained by curve-fitting 
simultaneously experimental stress-relaxation data in uncon-
fined compression and tension tests. 

HA0 = 1.64 MPa, = 0.361, 

= 0.16,  k0 = 7.05 10 17  m4N-1s 1, 

M = 4.8, f = 102 s,

Ef0
= 105 MPa, Ef1

= 5670 MPa,  

f = 2.21 104  MPa s.

 

 Figs. (4,5) show experimental and predicted stress-
relaxation curves in tension ( R2

= 0.992 ), and in unconfined 
compression ( R2

= 0.983 ), respectively. Agreement between 
model prediction and experiment is satisfactory. Therefore, 
our model shows the capability to fit stress-relaxation in both 
axial tension and unconfined compression on an identical 
cartilage sample. 

 In agreement with findings of Li et al. (2005), it is ob-
served that the aggregated modulus for the solid matrix is 
higher than those reported in the literature. This difference 
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may be partially due to that the stress-relaxation does not 
reach equilibrium in unconfined compression (Fig. 5). It may 
also due to different cartilage source, and experimental 
method using glue between sample and platen. To obtain 
more detailed material properties of articular cartilage, we 
need various experimental data in future studies that will 
highlight the effects of large deformation. 

 

Fig. (4). Curve-fit to stress-relaxation data in tension (data, [16]). 

 

Fig. (5). Curve-fit to stress-relaxation data in unconfined compres-

sion (data, [16]). 

Unconfined Compression and Indentation 

 Disilvestro and Suh [26] performed unconfined compres-
sion on eighteen cartilage plugs ( h = 1.28 mm , R = 1.5 mm ) 
from 1-2 years old bovine. They measured both axial reac-
tion force and lateral displacement changing with time. Ad-
ditionally, four of the eighteen specimens were tested in an 
indentation stress-relaxation protocol using a porous indenter 
( rind = 1.01 mm ). Both unconfined compression and indenta-
tion tests consist of a preload of 10% strain, equilibration for 
15 minutes, and a ramp test of 5% strain at a rate of 0.1% 
strain/s. We take these two kinds of experimental data and 
compare with our model predictions. 

 The model parameter values are obtained by fitting to the 
measured axial load and lateral displacement simultaneously 
in unconfined compression. 

HA0 = 0.57 MPa, = 0.4, = 0.15,   

k0 = 1.26 10 15  m4N-1s 1, M = 11.2, f = 226 s

E f0
= 12.1 MPa, Ef1

= 5017 MPa,  

f = 3.24 104  MPa s.

 

 The experimental and predicted axial loads (normalized 
to equilibrium load) are shown in Fig. (6A), indicating good 
agreement ( R2

= 0.995 ). Fig. (6B) shows that experimental 
and predicted lateral displacements also agree well 
( R2

= 0.936 ). We conclude that the constitutive model pre-
dicts successfully both time-dependent axial reaction force 
and lateral displacement in unconfined compression. The 
values for aggregate modulus and permeability agree well 
with those reported in the literature [15, 26]. 

(A) 

 

(B) 

 

Fig. (6). Curve-fits to data of Disilvestro and Suh [26] in uncon-

fined compression: (A) normalized axial load; (B) normalized lat-

eral displacement. 

 Using the parameter values obtained from unconfined 
compression, we predict the axial load and compare it with 
experimental data in indentation test using a porous indenter. 
The thickness of the specimen is 1.28 mm, and the radius of 
the indenter is 1.01 mm, while the radius of the specimen is 
assumed to be four times of the radius of the indenter. Fig. 
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(7) shows experimental and predicted axial loads (normal-
ized to equilibrium load) in the indentation test ( R2

= 0.94 ). 
It is observed that the model predicts a somewhat higher load 
during the relaxation period. Since only four of the eighteen 
specimens are tested in indentation, there is a difference in 
population between unconfined compression and indenta-
tion. That may partially account for the mismatch between 
experimental data and model prediction in indentation using 
the parameter values obtained from unconfined compression 
curve-fits. Nevertheless, our model shows the potential to 
simulate time-dependent mechanical behavior in indentation. 

 

Fig. (7). Comparison of normalized axial load from indentation test 

[26] with model prediction. 

4. DISCUSSION 

 To overcome the limitations of small deformation mod-
els, a nonlinear microstructural model is developed. This 
model can be applied to large deformation, incorporate arbi-
trary fibril distribution, fibril nonlinearity and fibril viscoe-
lasticity, though we have employed a specific fibril stress-
strain relation and a three-layered fibril configuration in the 
present study. A finite element method is presented for the 
microstructural model. 

 The fibril distribution functions for three zones are iden-
tical to that in a previous study [17]. A nonlinear viscoelastic 
constitutive model based on standard solid model is pro-
posed to mimic fibril behavior. The fibril stress-strain rela-
tion is different from that of Li et al. [16] and that of Wilson 
et al. [15], but all these previous models have already shown 
the effects of fibril viscoelasticity and demonstrated capabil-
ity to fit to experimental data to some extent. Though in this 
study we do not incorporate inhomogeneity and swelling 
effects of solid matrix, such effects can be incorporated into 
our model in the manner of Wilson et al. [33]. The thrust 
behind our model development is to minimize the number of 
model parameters, while at the same time to capture the be-
havior of the tissue. 

 Based on specific fibril structure and constitutive law, a 
new set of material parameters are defined. An analytical 
method is developed to study strain-dependent behavior at 
equilibrium in tension and unconfined compression. The 
whole set of parameter values can be determined by curve-
fitting time-dependent experimental data. Our model can 
predict strain-dependent equilibrium stiffness and Poisson’s 

ratio of cartilage in tension. The model can also simulate 
stress-relaxation behavior of cartilage in tension, unconfined 
compression, and indentation, and time-dependent lateral 
displacement in unconfined compression. 
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