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Abstract: The study of magnetostrictive material in laminated plate under thermal vibration is calculated by using the 

generalized differential quadrature (GDQ) method. The YNS shear deformation effect is included in the time dependent of 

displacement field. In the thermoelastic stress-strain relations that containing the linear temperature rise and the magne-

tostrictive coupling terms with velocity feedback control. We use the GDQ method to normalize and discrete the dynamic 

differential equations in terms of displacements and shear rotations into the form of dynamic discretized equations. Four 

edges of rectangular laminate with simply supported boundary conditions are considered. The time responses of thermal 

stresses and center displacement with and without velocity control are obtained. 
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1. INTRODUCTION 

 One of the new trends of material in the mechanical en-

gineering is the functionally gradient materials (FGM). In 

each type of FGM, there are some functional layers e.g. pie-

zoelectric, magnetostrictive, electrostrictive, shape memory 

alloys, in their sections can make a controlled progressive 

change of smart structures [1,2]. Magnetostrictive materials 

have the Magneto-electric coupling property under the action 

of magnetism and mechanism. Terfenol-D is one of available 

Magnetostrictive materials, can be used usually in the sen-

sors and actuators [3]. 

 In 2005, Lee and Reddy presented the finite element 

method to analyze the non-linear response of laminated plate 

of Magnetostrictive material under thermo-mechanical load-

ing [3]. They found the temperature can decrease the ampli-

tude and period of deflection. In 2005, Pradhan presented the 

analytical solutions for the FGM shells of embedded Magne-

tostrictive layers under vibration [1]. 

 It was found that the Magnetostrictive layers should be 

placed away from the neutral plane and made thinner to get 

better attenuation effects. In 2006, Ramirez, Heyliger and 

Pan present the Ritz approach to get an approximate solution 

for the free vibration problem of two-dimensional magneto-

electro-elastic laminates [4]. They obtained the elastic dis-

placements, electric potential, and magnetic potential nu-

merical solutions. In 2004, Buchanan presented the candi-

date materials of multiphase magneto-electro-elastic com-

posites [5]. They found the multiphase material properties 

vary depending upon the ratio of fiber material to matrix 

material. In 2003, Hong and Jane presented the GDQ method 

to study the shear deformation in the thermal vibration and 

bending of laminated plates [6,7]. They found that the 

maximum deflection and interlaminar stresses at center posi-  
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tion of laminate increasing with the side-to-thickness ratio 

value decreasing. In 2005, Hong et al. presented the GDQ 

method to study the thermal vibration of a thermal sleeve 

[8]. They found that the computational GDQ solutions of the 

natural frequency, displacement and thermal stress. In 2006, 

Hong et al. used the GDQ method to study the piezoelectric 

material under mechanical and electric loads [9]. They found 

that the numerical GDQ solutions of stress and electric po-

tential function for the analyses of local symmetric pressure 

with no overshoot and no Gibbs effect and under traction-

free boundary condition of the strip. Now it is interesting to 

study and find the natural frequency, displacement and ther-

mal stress of the Magnetostrictive material in laminated 

plates with the GDQ method. 

2. FORMULATION 

2.1. Displacement Field 

 The time dependent of displacements fields are assumed 

in the following YNS (Yang-Norris-Stavsky, 1966) form [6], 

which is the first-order shear deformation theory in the linear 

equation: 

u = u0 (x, y, t) + z x (x, y, t)

v = v0 (x, y, t) + z y (x, y, t)

w = w(x, y, t)

   (1) 

where u0
 and v0

 are tangential displacements, w  is trans-

verse displacement of the middle-plane, x  and y  are the 

shear rotations, t  is time. 

2.2. GDQ Method 

 The GDQ method was presented in 1990 by Shu and 

Richards [11]. The GDQ method approximates the derivative 

of function would be used [6] and can be restated that: the 

derivative of a smooth function at a discrete point in a do-

main can be discretized by using an approximated weighting 

linear sum of the function values at all the discrete points in 

the direction [10,11]. For example, the first-order and the 
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second-order derivatives of function f *(x, y)  at coordinates 

(xi , yj )  of grid point (i, j)  can be discretized by: 

f *

x i, j Ai,l
(1) f *

l , j
l=1

N

, 
f *

y i, j Bj ,m
(1) f *

i,m
m=1

M

, 

2 f *

x2 i, j Ai,l
(2) f *

l , j
l=1

N

, 
2 f *

y2 i, j Bj ,m
(2) f *

i,m
m=1

M

, 

2 f *

x y i, j Ai,l
(1)

l=1

N

Bj ,m
(1) f *

l ,m
m=1

M

   (2) 

where Ai, j
(m)

 and Bi, j
(m)

 denote the weighting coefficients for 

the m th
-order derivative of the function f *(x, y)  with re-

spect to the x  and y  directions. 

2.3. Thermoelastic Stress-Strain Relations with Magne-
tostrictive Effect 

 We consider a homogeneous, orthotropic, rectangular 

laminated host plate that mounted with magnetostrictive lay-

ers under uniformly distributed loading and thermal effect. 

Typical three-layer laminate with upper surface magne-

tostrictive layer which is shown in Fig. (1), where a and b is 

the length in the x , y  direction of the plate, h*
 is the plate 

thickness, p1  and p2  are the in-plane distributed forces, q  

is the applied pressure load, T = T0 (x, y, t) +
z

h* T1(x, y, t)  is 

the temperature difference between the laminate and curing 

area. For simplicity, the heat conduction equation for the 

host laminate would be used [6]. 

 For the plane stress in a laminated material, the in-plane 

stresses constitute the membrance stresses, bending stresses 

and thermal stresses with magnetostrictive effect for the kth
 

layer are in the following equations [3]: 

 

x

y

xy (k )

=

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66 (k )

x x T

y y T

xy xy T
(k )

0 0 e31

0 0 e32

0 0 e36 (k )

0

0

Hz (k )

 (3) 

and the interlaminar shear stresses are calculated from the 

following equation: 

 

yz

xz (k )

=
Q44 Q45

Q45 Q55 (k )

yz

xz (k )

e14 e24 0

e15 e25 0
(k )

0

0

Hz (k )

   (4) 

where x  and y  are the coefficients of thermal expansion, 

xy  is the coefficient of thermal shear. Qij  is the so called 

transformed reduced stiffness can be in terms of the elastic 

stiffness of materials and can be explained more detail by 

Whitney [12]. x , y , xy  are in-plane strains and yz , xz  are 

shear strains in terms of displacement components and shear 

rotation, respectively. 
 
eij  is the transformed magnetostrictive 

coupling moduli. 
 
Hz  is the magnetic field intensity, ex-

pressed in the following equation. 
 
Hz (x, y, t) = kcI (x, y, t)  

 

Fig. (1). Typical three-layer laminate with magnetostrictive layers. 
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with velocity feedback control 
 

I (x, y, t) = c(t)
w

t
 where kc  

is the coil constant, 
 
I (x, y, t)  is the coil current, c(t)  is the 

control gain. 

2.4. Dynamic Equilibrium Differential Equations 

 The dynamic equilibrium differential equations in terms 

of displacements and shear rotations included the magne-

tostrictive loads are expressed in the following matrix forms 

[3,6,12]: 

A11 2A16 A66 A16 A12 + A66 A26 0 0 0

A16 A12 + A66 A26 A66 2A26 A22 0 0 0

0 0 0 0 0 0 A55 2A45 A44

B11 2B16 B66 B16 B12 + B66 B26 0 0 0

B16 B12 + B66 B26 B66 2B26 B22 0 0 0

2u0

x2

2u0

x y

2u0

y2

2v0

x2

2v0

x y

2v0

y2

2w

x2

2w

x y

2w

y2

t

 

+

B11 2B16 B66 B16 B12 + B66 B26

B16 B12 + B66 B26 B66 2B26 B22

0 0 0 0 0 0

D11 2D16 D66 D16 D12 + D66 D26

D16 D12 + D66 D26 D66 2D26 D22

 

2
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2
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2
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2
y
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2
y
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+
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A45 A44 0 0 0 0
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x
x

y
y

x
y
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t

+
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x
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=
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+
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0 0 0

2u0

t 2
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t 2

2w
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+H

0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 0

0 1 0 0

2u0

t 2

2v0

t 2

2
x

t 2

2
y

t 2

+I

0 0

0 0

0 0

1 0

0 1

2
x

t 2

2
y

t 2

    (5) 

where 
 
f1,…, f5  are the expressions of thermal loads 

(N , M ) , mechanical loads (p1, p2 , q)  and magnetostrictive 

loads 
 
(N , M ) . 

 

f1 =
Nx

x
+

Nxy

y
+ p1 +

Nx

x
+

Nxy

y
 

 

f2 =
Nxy

x
+

Ny

y
+ p2 +

Nxy

x
+

Ny

y
 

f3 = q  

 

f4 =
M x

x
+

M xy

y
+

M x

x
+

M xy

y
 

 

f5 =
M xy

x
+

M y

y
+

M xy

x
+

M y

y
 

(Ny , M y ) = (Q12
h*

2

h*

2
x + Q22 y + Q26 xy )(T0 , z

z

h* T1 )dz  

(Nxy , M xy ) = (Q16
h*

2

h*

2
x + Q26 y + Q66 xy )(T0 , z

z

h* T1 )dz  

 

(Nx , M x ) = e31
h*

2

h*

2 Hz (1, z
2 )dz  

 

(Ny , M y ) = e32
h*

2

h*

2 Hz (1, z
2 )dz  

 

(Nxy , M xy ) = e36
h*

2

h*

2 Hz (1, z
2 )dz  

(Aij , Bij , Dij ) = Qij
h*

2

h*

2 (1, z, z2 )dz , (i, j = 1, 2, 6)  

A
i* j*

= k k Q
i* j*h*

2

h*

2 dz , (i*, j*
= 4, 5; = 6 i*, = 6 j* )  

( , H , I ) = 0
h*

2

h*

2 (1, z, z2 )dz  

in which k , k  are the shear correction coefficients, 0  is 

the density of ply. 

2.5. Dynamic Discretized Equations 

 We apply the weighting coefficients of discretized equa-

tions (2) in the two-dimensional generalized differential 

qradrature (GDQ) method to discrete the differential equa-

tions (5) under the vibration of time sinusoidal displacement 

and temperature: 

u = [u0 (x, y) + z x (x, y)]sin( mnt) , 

v = [v0 (x, y) + z y (x, y)]sin( mnt)  

w = w(x, y)sin( mnt) , T = [T0 (x, y) +
z

h* T1(x, y)]sin( t)  
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where mn  is natural frequency of the plate,  is frequency 

of applied heat flux. 

 And the following non-dimensional parameters are intro-

duced: 

X = x / a, Y = y / b, U = u0 / a, V = v0 / b,

W = 10h*w / ( xT1a
2 )

 under the vibra-

tion of time sinusoidal displacement and temperature. 

 We obtain the following dynamic discretized equations in 

matrix notation: 

AM[ ] SUVW{ } + BM[ ] SSIXY{ } + KE[ ] SWSI{ }

+ FQ[ ] UVWSI{ } = F{ }
 (6) 

where 

SUVW{ } = { Ai,l
(2)Ul , j Ai,l

(1) Bj ,m
(1) Ul ,m Bj ,m

(2)Ui,m
m=1

M

Ai,l
(2)Vl , j

l=1

N

m=1

M

l=1

N

l=1

N

 

Ai,l
(1) Bj ,m

(1) Vl ,m Bj ,m
(2)Vi,m

m=1

M

Ai,l
(2)Wl , j

l=1

N

m=1

M

l=1

N

Ai,l
(1) Bj ,m

(1) Wl ,m Bj ,m
(2)Wi,m

m=1

M

}t

m=1

M

l=1

N

SSIXY{ } = { Ai,l
(2)

x l , j Ai,l
(1) Bj ,m

(1)
x l ,m Bj ,m

(2)
x i,m

m=1

M

m=1

M

l=1

N

l=1

N

 

Ai,l
(2)

y l , j Ai,l
(1) Bj ,m

(1)
y l ,m Bj ,m

(2)
y i,m

m=1

M

m=1

M

l=1

N

l=1

N

}t
 

SWSI{ } = { Ai,l
(1)Wl , j Bj ,m

(1) Wi,m
m=1

M

Ai,l
(1)

x l , j
l=1

N

l=1

N

 

Bj ,m
(1)

x i,m
m=1

M

Ai,l
(1)

y l , j Bj ,m
(1)

y i,m
m=1

M

l=1

N

}t
 

UVWSI{ } = {Ui, j Vi, j Wi, j x i, j y i, j }
t
 

F{ } = {F1 F2 F3 F4 F5}t
 

 The elements of 5 9  matrix AM[ ] , 5 6  matrix 

BM[ ] , 5 6  matrix KE[ ]  and 5 5  matrix FQ[ ]  are as 

follows: 

AM11 = (A11 / a)sin( mnt)  AM12 = (2A16 / b)sin( mnt)  

AM13 = (A66a / b2 )sin( mnt)  

AM14 = (A16b / a2 )sin( mnt)  

AM15 = [(A12 + A66 ) / a]sin( mnt)  

AM16 = (A26 / b)sin( mnt)  

AM17 = AM18 = AM19 = 0 AM 21 = (A16 / a)sin( mnt)  

AM 22 = [(A12 + A66 ) / b]sin( mnt)  

AM 23 = (A26a / b2 )sin( mnt)  

AM 24 = (A66b / a2 )sin( mnt)  AM 25 = (2A26 / a)sin( mnt)  

AM 26 = (A22 / b)sin( mnt)  AM 27 = AM 28 = AM 29 = 0  

AM 31 = AM 32 = AM 33 = AM 34 = AM 35 = AM 36 = 0  

AM 37 =
xT1

10h* A55 sin( mnt)  

AM 38 =
xT1

10h* (2A45a / b)sin( mnt)  

AM 39 =
xT1

10h* (A44a
2 / b2 )sin( mnt)  

AM 41 = (B11 / a)sin( mnt)  AM 42 = (2B16 / b)sin( mnt)  

AM 43 = (B66a / b2 )sin( mnt)  

AM 44 = (B16b / a2 )sin( mnt)  

AM 45 = (B12 + B66 )(1 / a)sin( mnt)  

AM 46 = (B26 / b)sin( mnt)  AM 47 = AM 48 = AM 49 = 0  

AM 51 = (B16 / a)sin( mnt)  

AM 52 = (B12 + B66 )(1 / b)sin( mnt)  

AM 53 = (B26a / b2 )sin( mnt)  

AM 54 = (B66b / a2 )sin( mnt)  AM 55 = (2B26 / a)sin( mnt)  

AM 56 = (B22 / b)sin( mnt)  AM 57 = AM 58 = AM 59 = 0  

BM11 = (B11 / a2 )sin( mnt)  BM12 = [2B16 / (ab)]sin( mnt)  

BM13 = (B66 / b2 )sin( mnt)  BM14 = (B16 / a2 )sin( mnt)  

BM15 = [(B12 + B66 ) / (ab)]sin( mnt)  

BM16 = (B26 / b2 )sin( mnt)  

BM 21 = (B16 / a2 )sin( mnt)  

BM 22 = [(B12 + B66 ) / (ab)]sin( mnt)  

BM 23 = (B26 / b2 )sin( mnt)  BM 24 = (B66 / a2 )sin( mnt)  

BM 25 = [2B26 / (ab)]sin( mnt)  BM 26 = (B22 / b2 )sin( mnt)  

BM 31 = BM 32 = BM 33 = BM 34 = BM 35 = BM 36 = 0  

BM 41 = (D11 / a2 )sin( mnt)  BM 42 = [2D16 / (ab)]sin( mnt)  

BM 43 = (D66 / b2 )sin( mnt)  BM 44 = (D16 / a2 )sin( mnt)  

BM 45 = [(D12 + D66 ) / (ab)]sin( mnt)  

BM 46 = (D26 / b2 )sin( mnt)  

BM 51 = (D16 / a2 )sin( mnt)  

BM 52 = [(D12 + D66 ) / (ab)]sin( mnt)  

BM 53 = (D26 / b2 )sin( mnt)  BM 54 = (D66 / a2 )sin( mnt)  

BM 55 = [2D26 / (ab)]sin( mnt)  BM 56 = (D22 / b2 )sin( mnt)  

 

KE11 =
xT1a

2

10h* [
1

a
kcc(t) e31

k=1

Nk
(zk zk 1 )] mn cos( mnt)

 

KE12 =
xT1a

2

10h* [
1

b
kcc(t) e36

k=1

Nk
(zk zk 1 )] mn cos( mnt)  

KE13 = KE14 = KE15 = KE16 = 0  
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KE21 =
xT1a

2

10h* [
1

a
kcc(t) e36

k=1

Nk
(zk zk 1 )] mn cos( mnt)

 

KE22 =
xT1a

2

10h* [
1

b
kcc(t) e32

k=1

Nk
(zk zk 1 )] mn cos( mnt)  

KE23 = KE24 = KE25 = KE26 = 0  

KE31 = KE32 = 0  KE33 = (A55 / a)sin( mnt)  

KE34 = (A45 / b)sin( mnt)  KE35 = (A45 / a)sin( mnt)  

KE36 = (A44 / b)sin( mnt)  

KE41 =
xT1

10h* A55a sin( mnt)

 

xT1a
2

10h* [
1

a
kcc(t)

1

3
e31

k=1

Nk zk
3 zk 1

3

h* ] mn cos( mnt)  

KE42 =
xT1

10h* (A45a
2 / b)sin( mnt)

 

xT1a
2

10h* [
1

b
kcc(t)

1

3
e36

k=1

Nk zk
3 zk 1

3

h* ] mn cos( mnt)  

KE43 = KE44 = KE45 = KE46 = 0  

KE51 =
xT1

10h* A45a sin( mnt)

 

xT1a
2

10h* [
1

a
kcc(t)

1

3
e36

k=1

Nk zk
3 zk 1

3

h* ] mn cos( mnt)  

KE52 =
xT1

10h* (A44a
2 / b)sin( mnt)

 

xT1a
2

10h* [
1

b
kcc(t)

1

3
e32

k=1

Nk zk
3 zk 1

3

h* ] mn cos( mnt)  

KE53 = KE54 = KE55 = KE56 = 0  

FQ11 = mn
2 a sin( mnt)  FQ12 = FQ13 = FQ15 = 0  

FQ14 = H mn
2 sin( mnt)  

FQ22 = mn
2 b sin( mnt)  FQ25 = H mn

2 sin( mnt)  

FQ21 = FQ23 = FQ24 = 0  

FQ31 = FQ32 = FQ34 = FQ35 = 0  

FQ33 = mn
2 [ xT1a

2 / (10h* )]sin( mnt)  

FQ41 = H mn
2 a sin( mnt)  FQ42 = FQ43 = 0  

FQ44 = ( A55 +I mn
2 )sin( mnt)  FQ45 = A45 sin( mnt)  

FQ51 = FQ53 = 0  FQ52 = H mn
2 b sin( mnt)  

FQ54 = A45 sin( mnt)  

FQ55 = ( A44 + I mn
2 )sin( mnt)  

in which F1, ..., F5  are represented in the following discre-

tized equation: 

F1 = (
1

a
Ai,l

(1)

l=1

N

Nxl, j +
1

b
Bj ,m

(1)

m=1

M

Nxyi,m )sin( t) + p1i, j  

F2 = (
1

a
Ai,l

(1)

l=1

N

Nxyl, j +
1

b
Bj ,m

(1)

m=1

M

Nyi,m + p2i, j )sin( t)  

F3 = qi, j  

F4 = (
1

a
Ai,l

(1)

l=1

N

M xl, j +
1

b
Bj ,m

(1)

m=1

M

M xyi,m )sin( t)  

F5 = (
1

a
Ai,l

(1)

l=1

N

M xyl, j +
1

b
Bj ,m

(1)

m=1

M

M yi,m )sin( t)  

in which p1  and p2  are the in-plane distributed forces, q  is 

the applied pressure load. The force resultants N x , N xy , N y  

and moment resultants M x , M xy , M y  are expressed as fol-

lows: 

N x = N x
T

, N xy = N xy
T

, N y = N y
T

, M x = M x
T

, M xy = M xy
T

, 

M y = M y
T

 

in which {N
T
}  is the thermal force resultant, {M

T
}  is the 

thermal moment resultant. 

3. SOME NUMERICAL RESULTS AND DISCUS-
SIONS 

 We consider the cross-ply laminates including shear de-

formation under four sides simply supported. The elastic 

modules of the typical host material and Terfenol-D magne-

tostrictive material are listed in the following Table 1 [3,6]. 

 The value of shear correction coefficient is 

K K = 5 / 6 . For the simplification the typical host mate-

rial conductivity = 0.002963 Btu / (s in °F) , specific heat 

Cv = 0.216 Btu / (lbm °F)  are used to calculate 

K = / ( Cv )  value, and find some of the lowest frequency 

 of applied heat flux and vibration frequency 11  of plate,  

 

Table 1. Material Properties of Typical Host and Terfenol-D 

 

Material 
E1

E2

 
G12

E2

 
G23

E2

 
G12

E2

 12  (lb / in3 )  x (1 / °F)  y (1 / °F)  

Typical Host 25 0.5 0.2 0.5 0.25 0.0978 1 10 6
 3 10 6

 

Terfenol-D 1 
13.25

26.5
 

13.25

26.5
 

13.25

26.5
 0.0 0.334179 12 10 6

 12 10 6
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at time t =0.003s, 1s, 2s,…, 9s, for a / b = 1 , three-layer 

(0°m / 90° / 0° )  laminate as shown in Fig. (2). 

 

Fig. (2a). The lowest frequency  of three-layer (0°m / 90° / 0° )  

laminate. 

 

Fig. (2b). The lowest vibration frequency 11  of three-layer 

(0°m / 90° / 0° )  laminate. 

 The magnetostrictive coupling moduli is 

e31 = e32 = Emdm
 and Em

= 26.5GPa , dm
= 1.67 10 8 mA 1  

for Terfenol-D. We use the following coordinates for the 

grid points: 

xi = 0.5[1 cos(
i 1

N 1
)]a, i = 1, 2, ..., N  

yj = 0.5[1 cos(
j 1

M 1
)]b, j = 1, 2, ..., M   (7) 

 Firstly, we make the studies of dynamic convergence of 

center deflection amplitude W (a / 2,b / 2)  in the thermal 

vibration of sinusoidal temperature only ( T0 = 0 , 

T1 = 1.0 °F , p1 = p2 = q = 0 ) at time 6sec, m = n = 1  mode 

shape, with kcc(t) = 108
, aspect ratio a / b = 0.5 , 1.0, and 

2.0, side-to-thickness ratio a / h*
=100, 50, 20, 10 and 5. Fig. 

(3) shows that W (a / 2,b / 2)  in the grid point N M = 

9 9 , 11 11  and 13 13  of GDQ method for the upper 

surface magnetostrictive layer of the three-layer 

(0°m / 90° / 0° )  laminated plate. We find that W (a / 2,b / 2)  

is in good convergence in grid point N M =13 13. 

 

Fig. (3a). Convergence for a / b = 0.5 , three-layer (0°m / 90° / 0° )  

laminated plate. 

 

Fig. (3b). Convergence for a / b = 1.0 , three-layer (0°m / 90° / 0° )  

laminated plate. 

 Fig. (4) shows that W (a / 2,b / 2)  in the grid point 

N M = 9 9 , 11 11  and 13 13  of GDQ method for the 

upper and lower surface magnetostrictive layers of the ten-
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layer (0°m / 90° / 0° / 90° / 0° )s  symmetrical laminated plate. 

The superscript of m denotes magnetostrictive layer, the 

subscript s denotes the symmetric of laminate. We find that 

the 13 13 grid point have the convergence result and used 

further in the GDQ analyses of time responses for deflection 

and stress. We used the kcc(t)  values to control and reduce 

the amplitude of center deflection W (a / 2,b / 2). 

 

Fig. (3c). Convergence for a / b = 2.0 , three-layer (0°m / 90° / 0° )  

laminated plate. 

 

Fig. (4a). Convergence for a / b = 0.5 , (0°m / 90° / 0° / 90° / 0° )s  

laminated plate. 

 

Fig. (4b). Convergence for a / b = 1.0 , (0°m / 90° / 0° / 90° / 0° )s  

laminated plate. 

 

Fig. (4c). Convergence for a / b = 2.0 , (0°m / 90° / 0° / 90° / 0° )s  

laminated plate. 

 Figs. (5,6) show that the kcc(t)  values with time for 

thick laminated plate a h*
= 10  and thin laminated 

a h*
= 100 , in three-layer and ten-layer magnetostrictive 

layer of laminate, respectively. 

 

Fig. (5). kcc(t)  values vs time t (sec) in (0°m / 90° / 0° )  laminated 

plate. 

 

Fig. (6). kcc(t)  values vs time t (sec) in (0°m / 90° / 0° / 90° / 0° )s
 

laminated plate. 

 Fig. (7) shows that time response of the non-dimensional 

transverse center deflection amplitude W (a / 2,b / 2)  with 

and without kcc(t)  values at a h*
= 10  and a h*

= 100 , 

respectively, for three-layer (0°m / 90° / 0° )  laminated plate, 

a b = 1 , N M = 13 13 , m = 1, n = 1 , q = 0, T 1 = 1,  

p1 = p2 = 0  under shear effect. We find that the values of 

the center deflection amplitude W (a / 2,b / 2)  with kcc(t)  
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are smaller than the values of W (a / 2,b / 2)  without kcc(t) . 

The amplitude W (a / 2,b / 2)  can be controlled and adjusted 

to a desired smaller value by using a suitable kcc(t)  value, 

especially at time 0.003s, 1.2s, 5.9s and 8.8s in Fig. (7a) with 

thick plate a h*
= 10 of the GDQ method. But in Fig. (7b) 

with thin plate a h*
= 100  of the GDQ method, the varia-

tions are small, except at time 0.003s and 0.8s. 

 

Fig. (7a). Thick, three-layer laminated magnetostrictive plate. 

 

Fig. (7b). Thin, three-layer laminated magnetostrictive plate. 

 Fig. (8). shows that time response of the dominated non-

dimensional stress x = xh
* / x T1aE2( )  at center position 

of lower surface Z = 0.5h*
 with and without kcc(t)  values 

as the analyses of deflection W (a / 2,b / 2)  at a h*
= 10  and 

a h*
= 100 , respectively, for three-layer (0°m / 90° / 0° ) lami-

nate, a b = 1 , N M = 13 13 , m = 1, n = 1 , q = 0, T 1 = 1,  

p1 = p2 = 0  under shear effect. We find that the amplitudes 

of the stress x  do not become the smaller values under the 

controlled W (a / 2,b / 2)  condition in Fig. (8a) with plate 

a h*
= 10  of GDQ method. But in Fig. (8b) with thin plate 

a h*
= 100 of the GDQ method, the variations are small. 

 Fig. (9) shows that time response of the non-dimensional 

transverse center deflection amplitude W (a / 2,b / 2)  with 

and without kcc(t)  values at a h*
= 10  and a h*

= 100 , 

respectively, for ten-layer (0°m / 90° / 0° / 90° / 0° )s  symmet-

ric laminate, a b = 1 , N M = 13 13 , m = 1, n = 1 , 

q = 0, T 1 = 1, p1 = p2 = 0  under shear effect. We find that 

the values of the center deflection amplitude W (a / 2,b / 2)  

with kcc(t)  are smaller than the values of W (a / 2,b / 2)  

without kcc(t) . The amplitude W (a / 2,b / 2)  can be con-

trolled and adjusted to a desired smaller value by using a 

suitable kcc(t)  value, especially at time 0.003s, 2.6s, 5.2s 

and 7.8s in Fig. (9a) with thick plate a h*
= 10  of the GDQ 

method. But in Fig. (9b) with thin plate a h*
= 100  of the 

GDQ method, the variations are small, except at time 5.1s. 

 

Fig. (8a). Thick, three-layer laminated magnetostrictive plate. 

 

Fig. (8b). Thin, three-layer laminated magnetostrictive plate. 

 

Fig. (9a). Thick, ten-layer laminated magnetostrictive plate. 
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Fig. (9b). Thin, ten-layer laminated magnetostrictive plate. 

 Fig. (10) shows that time response of the dominated non-

dimensional stress y = yh
* / x TaE2( )  at center position of 

lower surface Z = 0.5h*
 with and without kcc(t)  values as 

the analyses of deflection W (a / 2,b / 2)  at a h*
= 10  and 

a h*
= 100 , respectively, for ten-layer (0°m / 90° / 0° / 90° / 0° )s

 

symmetric laminate, a b = 1 , N M = 13 13 , m = 1, n = 1 , 

q = 0, T 1 = 1, p1 = p2 = 0  under shear effect. We find that 

the amplitudes of the stress y  are almost the same value in 

controlled and uncontrolled W (a / 2,b / 2)  condition of thick 

plate a h*
= 10  and thin plate a h*

= 100  by the GDQ 

method. 

 

Fig. (10a). thick, ten-layer laminated magnetostrictive plate. 

 

Fig. (10b). Thin, ten-layer laminated magnetostrictive plate. 

4. CONCLUSIONS 

 (a) The numerical GDQ calculations provides an efficient 

method to compute the deflection and stress in the cross ply 

laminated plate with magnetostrictive layer subjected to ther-

mal vibration of sinusoidal temperature including shear de-

formation. (b) The amplitude of transverse center deflection 

W (a / 2,b / 2)  can be controlled to a smaller desirable value 

with suitable velocity feedback gain kcc(t)  value, especially 

in the thick plate a h*
= 10  by using the GDQ method. (c) 

The amplitude of the dominated stress x  is not become a 

smaller values under the corresponding controlled 

W (a / 2,b / 2)  condition for three-layer (0°m / 90° / 0° )  lami-

nate in the thick plate a h*
= 10  of the GDQ method. But the 

amplitudes of the dominated stress y  are almost the same 

value in the corresponding controlled and uncontrolled 

W (a / 2,b / 2)  condition for ten-layer (0°m / 90° / 0° / 90° / 0° )s  

symmetric laminate of the GDQ method. (d) The GDQ 

method provide the less grid points ( N M = 13 13 ) and 

less computational time to get the numerical solutions of de-

flection and stress for magnetostrictive layer laminates. 
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