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Bond-Breaking Relaxation Governs Onset of the Fracture Instability 
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Abstract: A dynamic crack will travel in a straight path up to a material-dependent critical speed beyond which its path 

becomes erratic. Predicting this critical speed and discovering the origin of this instability are two outstanding problems in 

fracture mechanics. We recently discovered a simple scaling model based on an effective elastic modulus that gives suc-

cessful predictions for this critical speed. We now show that a simple atomic picture based on broken-bond relaxation at 

the dynamic crack tip provides an explanation for the origin of the effective elastic modulus.  

PACS: 62.20.MK 

 In 1951, Yoffe [1] made the physically intuitive sug-
gestion that mode I crack growth occurs in the direction of 
maximum asymptotic hoop stress and found the crack 
speed for the onset for branching to be about 70% of the 
Rayleigh wave speed cR [2, 3].

 
However, this high speed is 

rarely observed in experiment [4, 5]. An obvious shortcom-
ing in Yoffe’s analysis is the assumption of a constant lin-
ear elastic response for all deformations. In our recent 
study of brittle fracture [6], we showed that hyperelasticity, 
the elasticity at large strain, plays a governing role in the 
onset of the crack instability from unidirectional motion. 
We discovered a simple, yet remarkable, scaling based on 
an effective elastic modulus for our modelled solid (the 
secant modulus at the stability limit of the bulk solid), 
which led to successful predictions for the onset speed of 
the crack instability. We have also applied this scaling to 
the same-modelled solid with the exception that the crack 
is constrained to travel unidirectional irrespective of its 
speed [7]. This allowed the crack to achieve a unique 
steady-state speed that has a dependence on hyperelastic-
ity. Using our scaling law, we found that the steady-state 
crack speed scales to a constant value equal to a crack 
speed of a linear solid with our effective elastic modulus. In 
this paper, we demonstrate that atomic relaxation of break-
ing bonds at the crack tip governs these dynamic features 
of the travelling brittle crack. 

 We summarize our earlier findings. Our simulation 
model is based on a generalized bilinear force law com-
posed of two spring constants, one associated with small 
deformations (k1, r < ron) and the other associated with 
large deformations (k2, r > ron). This is shown in Fig. (1a). 
This model allowed us to investigate the generic effects of 
hyperelasticity by changing the relative magnitude of the 
spring constants  = k2/k1 and transition distance ron of the 
potential [in terms of 0 = (ron/r0) -1]. We considered the 
propagation of a crack in two-dimensional hexagonal lat-
tice geometry. The slab is loaded in mode I with a constant 
strain rate. The dynamic crack instabilities for the various 
  = k2/k1 are associated with the precipitous drops in 

crack speed (see Fig. 1b), as indicated by the arrows, and  
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are a consequence of the crack deviating from straight line 
motion (see Fig. 1c). The crack speed at the onset of erratic 
motion is defined as the instability speed.  

 Fig. (2a) presents a log-log plot of the instability speed 
as a function of  = k2/k1 for various 0 = (ron/r0)–1. For 
each 0, we found that the dependence is essentially lin-
ear, the slope approaching one-half for 0 tending to zero. 
This trend is required since k2/k1 = 1 for 0 = 0 and the 
solid is strictly linear with a spring constant equal to k2. 
Therefore, the instability speed will have a trivial square-
root dependence on the spring constant k2 when normalized 
by k1. The other limit is ron = rbreak. In this limit, the bilinear 
force law is simply the linear force with spring constant k1. 
Fig. (2b) defines, graphically, our choice for an effective 
spring constant keff of the bilinear force law. The elastic 
modulus associated with this effective spring constant is 
the secant modulus at the mechanical stability limit. By 
plotting in Fig. (2c) the instability speed as a function of 

eff = keff/k1, we see a remarkable collapse of the data 
from Fig. (2a) onto a common straight line with slope 
equal to one-half. For determining the instability speed of a 
dynamic brittle crack, this finding allows one to model the 
bilinear material as a linear solid with the effective spring 
constant just described. We applied this concept of an ef-
fective spring constant to a continuous interatomic poten-
tial: in particular, to the Lennard-Jones 12:6 potential. The 
prediction is in agreement with computer simulations [8, 
9].  

 For a simple linear solid, the instability speed is 0.73 in 
agreement the Yoffe prediction. For a nonlinear solid, the 
instability speed is 0.73(keff / k1)

1/2
. This suggests that 

Yoffe’s picture of the dynamic instability in brittle fracture 
may be valid. It is only necessary to replace the elastic 
modulus for small deformation with an effective elastic 
modulus (the secant modulus) described in this study, giv-
ing successful predictions for the onset speed of the crack 
instability for nonlinear materials.  

 Abraham et al. [8, 9] proposed that the onset of the 
instability can be understood from the point of view of 
reduced local lattice vibration frequencies due to softening 
at the crack tip. They noted that the onset of the roughen-
ing (the instability) corresponds to the point in the crack tip 
dynamics where the time it takes the tip to transverse one 
lattice spacing approximately equals the period of one 
atomic vibration. Hence, they propose that the bond-
breaking process no longer “sees” a symmetric environ-
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Fig. (1). (a) The bilinear force is composed of two spring constants, one associated with small deformations (k1 for r < ron) and the other asso-

ciated with large deformations (k2 for r > ron). The Lennard-Jones force law is shown as a dotted blue line. (b) A crack speed history is de-

picted for the bilinear solid for a particular  = k2/k1 and transition distance expressed as 0 = (ron/r0) – 1. The dynamic crack instability is 

indicated by the arrow. (c) A picture of a crack is shown at a significant time beyond the onset of the instability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). a) A log-log plot of the instability speed as a function of   = k2/k1 is presented for various 0 = (ron /r0) – 1. b) The effective 

spring constant keff is defined graphically for the bilinear force. c) The instability speed is presented as a function of eff = keff/k1 and shows 

the remarkable collapse of the data to a simple square-root dependence. Application of the scaling to the continuous Lennard-Jones potential 

is demonstrated. 

ment due to thermal averaging, but begins to experience 
local atomic configurations “instantaneously” distorted 
from the perfect lattice symmetry. They suggested that this 
gives rise to small scale atomic fluctuations in the bond-
breaking path and, hence, atomic roughening. This symme-
try breaking results in atomic roughening of the crack path 
and triggers larger scale deviations with growing crack 
length.  

 Marder [10] discovered the importance of the atomic 
vibrations at the crack tip in explaining the phenomenon of 
lattice trapping and the velocity gap associated with the 
initiation of crack motion. We will paraphrase his discus-
sion since it lends important insights into crack dynamics 
that demand incorporating atomic scale behavior. Dynamic 
fracture is a cascade of bonds breaking, one after another, 
like a toppling line of dominos. The crack moves forward 
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when the bond between two atoms defining the crack tip 
breaks. There is no guarantee that the next crack tip bond 
will break. The crack could fall into a static lattice-trap 
state. The best chance to avoid this fate is for the bond-
breaking atoms to deliver a sufficient blow to the new tip’s 
bond on a time scale equal to the first half of the first vi-
brating period of the bonded atoms. A longer time scale 
results in greater energy dispersion to all surrounding 
neighbors in the form of traveling waves and decreases the 
chance that there will be sufficient energy to snap the par-
ticular bond defining the crack’s tip. Because of this upper 
limit on the time interval between breaking consecutive 
bonds, one should expect a lower limit on the onset speed 
of cracks [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). We note excellent correlation with the keff, clearly show-

ing that a measure of the relaxation of the single atom driven by 

the bilinear spring is well approximated by a linear spring with 

spring constant keff. 

 Both discussions emphasize the importance of consid-
ering the atomic dynamics at the crack tip. Our original 
picture for the origin of the crack instability and Marder’s 
study suggest that the following important question should 
be addressed: “How fast does a ‘snapping bond’ at the 
crack tip relax?” A sensible approximation for answering 
this question is to measure the time it takes for a single 
atom coupled to a spring, obeying our bilinear force law, to 
move from a fully extended state, rbreak, to the unstretched 
state, r0. We determined this time numerically for a variety 
of   and 0 combinations and express it as a measured 
spring constant kbilinear. In Fig. (3b), we note excellent cor-
relation with the keff, clearly showing that a measure of the 
relaxation of the single atom driven by the bilinear spring 
is well approximated by a linear spring with spring con-

stant keff. This finding, along with the picture that the 
atomic relaxation (vibration) is the origin of the dynamic 
instability, is consistent with explaining the “remarkable 
scaling” shown in Fig. (2c).  

 This effective spring constant may be interpreted as 
specifying an effective wave velocity ceff for energy transfer 
between breaking bonds at the crack tip. We know that 
Yoffe’s solution gives the correct instability speed for a 
linear solid. Identifying the linear wave speed in Yoffe’s 
solution with ceff gives a generalization of Yoffe’s theory 
where account for hyperelasticity is included.  

 In summary, a coherent physical picture describing the 
origin of dynamic crack roughening in brittle fracture has 
evolved. The hyperelasticity, or elasticity at large strain, 
plays a governing role in the instability dynamics. A sim-
ple scaling model based on an effective elastic modulus has 
been discovered and gives successful predictions for the 
onset speed of the brittle crack instability by transforming 
the nonlinear crack dynamics problem into a linear elastic-
ity representation. An atomic picture based on broken-bond 
relaxation at the dynamic crack tip provides an understand-
ing for the origin of the effective elastic modulus. The de-
velopment of a first-principles theory remains a theoretical 
challenge.  
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