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Abstract: When the fibrous structure of collagen in soft tissue is adapted to an external load, its stiffness and topological 

characteristics are changed to achieve favorable function during the adaptation. Thus, a study of the formation of such fi-

brous tissue under mechanical stimuli is essential. To investigate the formation by the functional adaptation of fibrous tis-

sue from a mechanical viewpoint, the vector of type I collagen fiber density is first defined by analogy to the dislocation 

density tensor. Then the mathematical model for the motion of a fibroblast and the reaction-diffusion equations for con-

centrations of the growth factors secreted from a fibroblast are generalized by considering the effect of mechanical load. 

After a multi-axial constitutive equation for the fibrous tissue is proposed, a finite element simulation of fibrous tissue 

formation by type I collagen fibers under mechanical stress is performed. 

INTRODUCTION  

 The skin is the largest organ of the human body, and its 
weight reaches about 15% of body weight [1]. It carries out 
various functions such as moisture retention, body tempera-
ture regulation, perception, and it breathes to keep the body 
healthy [1]. At same time, it also plays a role of as a physical 
barrier between the external environment and the internal 
organs. Thus, the skin is mechanically stiff in order to pro-
tect internal organs not only from invasions of a foreign sub-
stance but also from the external load. Fig. (1) shows a 
schematic illustration of the hierarchical structure of skin on 
a face. At a finer length scale, various complicated structures 
with different components also appear as in the case with the 
heart, lungs, muscles, and the other organs. Specifically, a 
fibrous structure consisting of collagen fibers is stiffer at the 
micro-length scale which bridges the macro- to a nano-
length scales, and this structure can support the mechanical 
load imposed.  

 At the same time, the fibrous structure of extracellular 
matrices such as collagen plays a key role in a series of dis-
eases such as collagen disease involving the scleroderma, 
connective tissue disease, and autoimmune disease, which 
occur frequently and simultaneously [2]. One may think that 
these diseases cause an abnormal formation of extracellular 
matrices in tissues and make the organs harder as a result of 
a functional adaptation. The fibrous structure is established 
by complicated interactions between biological and me-
chanical factors. The macroscopic external load becomes a 
key factor. Unfortunately, medical treatment methods have 
not been developed yet since many unclear mechanisms have  
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been proposed from the viewpoints of pathology and etiol-
ogy [2]. To clarify the mechanisms, it is necessary to extract 
not only the important biological factors but also the impor-
tant mechanical factors at the microstructural level in the 
tissue and to determine if a relationship exists between fi-
brous tissue formation and functional adaptation on the basis 
of various governing factors. 

 Let us consider the closing of the eyes as shown in Fig. 
(1) as an example. In order to close the eyes, a macroscopic 
deformation of the skin realized by a muscle contraction 
makes a local reversible wrinkling near the edge of the eyes. 
If closing the eyes is repeated many times and/or aging takes 
place, part of the skin stiffens. As a result, wrinkling shifts 
from being reversible to being permanent. Similar to the dis-
eases mentioned, this phenomenon is also one example of a 
functional adaptation. It can be understood that the skin can 
be adapted functionally by responding to a variety of me-
chanical environments. During the adaptation in this case, 
some events happen in the fibrous microstructure of colla-
gen, which mainly supports the deformation caused by mus-
cle contraction. One of the events is an increase in the size of 
a single collagen fiber, and the other may be a change in the 
topological characteristics of the structure such as an orienta-
tion, a number, and a configuration of a single fiber. As a 
result, a macroscopic property undergoes a change that de-
pends on the topological characteristics of the microstruc-
ture. The mechanical load, which is induced by the deforma-
tion, is an important factor for the functional adaptation.  

 Up to now, many numerical and experimental studies 
considering mechanical stimuli have been carried out to re-
veal the formation of biological tissues such as skeletal mus-
cle, blood vessels and bone. Tsubota et al. [3] simulated a 
change in a tissue in a trabecula, which is a microscopic 
structural element of bone, during functional adaptation by 
using a local nonuniform stress. Tezuka et al. [4] numeri-
cally examined the remodeling of bone by combining the 
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finite element method (FEM) and the reaction- diffusion 
equation of density in osteoblasts and osteoclasts. For a 
blood vessel, research has examined the relationship between 
an applied shear stress on a vessel wall and the orientation of 
endothrial cells in flowing blood [5]. For type I collagen, 
Dale et al. [6] proposed a group of reaction-diffusion equa-
tions for governing factors in the formation of fibrous tissue 
by collagen. Dallon et al. [7] studied a change in orientation 
of fibrous tissues with the motion of a fibroblast which deals 
with the assumption of a point-like cell. On the other hand, 
in order to study functions of a fibroblast such as recognition 
of and adaptation to mechanical load, experimental work has 
examined changes in a mechanical property of test piece 
made from a collagen gel inside of which fibroblasts are cul-
tured, and then the change in the configuration of the fibro-
blast in the test piece is observed under stress stimuli [8], [9]. 
However, neither a clarification of the mechanism of forma-
tion of tissue nor the functional adaptation corresponding to 
an external load has been investigated sufficiently in the re-
search described. To achieve this sizable goal, not only an 
excellent experiment but also a numerical simulation based 
on a sophisticated model is strongly required. 

 In this paper, we present our understanding of functional 
adaptation by the formation of tissue in skin from a me-
chanical viewpoint. We studied a fibrous tissue of type I 
collagen, which is the principal component of the dermis. A 
vector of collagen fiber density is defined by its similarity 
with the dislocation density tensor [10] used frequently in 
metallurgy. A group of reaction-diffusion equations pro-
posed by Dale et al. [6] and the models proposed by Dallon 
et al. [7] are extended to consider not only cell migration and 
chemotaxis but also the effects of the mechanical stimuli 
based on a strain energy and a principal stress. In addition, 
the rate form of a constitutive equation at a local region for 
collagen fibrous tissue is derived using a volume average of 

a stress rate. The constitutive equation is a function of the 
vector of collagen fiber density. Finally, influences of a mac-
roscopic tensile stretching on the formation of fibrous tissue 
are examined by a coupled computational analysis of the 
proposed model by FEM [11]. 

MATHEMATICAL MODEL OF THE FORMATION 
OF FIBROUS TISSUE 

Definition of Vector of Collagen Fiber Density and its 

Evolution Equation 

 A vector of collagen fiber density is defined by using its 

similarity with the dislocation density tensor frequently em-

ployed in metallurgy. According to the definition, the vector 

indicates the total length of collagen fibers per unit volume 

[10]. Its physical meaning becomes the total number of col-

lagen fibers that pass through a unit area; the vector has unit 

of 1/m
2
. Fig. (2) shows a schematic representation of a colla-

gen fiber. The collagen fiber can be written using a line; 

however, the molecular structure is a complicated triple helix 

observed by magnifying part of a line-like collagen fiber. As 

shown in Fig. (2), the wavelength (like the pitch of a screw) 

vector of the helical structure in the molecules of )(a th col-

lagen fiber is assumed to be 
)(a

b . Let us consider the situa-

tion in which the )(a th collagen fiber with a unit vector 

)(a
 in the longitudinal direction corresponds to a unit nor-

mal vector n  on an infinitesimal area s  including a point 

x  when the )(a th fiber passes through s . From this physi-

cal meaning, the tensor of the collagen fiber density  can 

be defined as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A schematic illustration on a hierarchy of a structure in a skin under various length scales. 
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 Here, 
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N  is the total number of collagen fibers which 

pass through s . Since this expression may mean an average, 

the limit of Eq. (1) is taken, and the next expression defined 
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 However, there is a different point from the case of 

dislocation density; namely, that 
)(a

b  and 
)(a
have the 

same direction. From this fact,  can be expressed using a 

contraction from the tensor to the vector. This is the 

definition of a vector of collagen fiber density, and it is 

defined mathematically as follows: 
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 Here, |||| •  shows the magnitude of vector • . The colla-

gen fibrous tissue can be dealt with by the continuous vector 

field using c .  

 On the other hand, the evolution equation of c  can be 

modeled as follows. c  has both magnitude and direction. 

The evolution equations can be considered separately. The 

direction indicates the statistical fact that collagen fibers oc-

cupy a domain at a certain time. 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Definition of the vector of collagen fiber density. 

 

 It is assumed that the direction to which the fibroblasts 

move affects the direction of c , as discussed in Dallon et al. 

[7]. In addition, since the oriented structure of a trabecula 

depends on the direction of the principal stress in a biologi-

cal tissue such as bone [12], we choose the assumption that a 

similar phenomenon occurs in the tissue of skin, and the 

model proposed by Dallon et al. [7] can be generalized as  

)sin(||||),( = ftx  

)sin(||||+ .            (4) 

  indicates the orientation angle of c ,  and  are 

the principal stress vector and its direction angle, and  is 

the direction angle of f  which we describe later.  is a 

parameter determined by characteristics of both the fibro-

blasts and the collagen fiber, and it shows that the fibroblast 

may change the direction of collagen fiber.  is a newly-

introduced parameter that shows that  may change the 

direction of collagen fiber just as well as .  

 Obeying the derivation of the model proposed by Dallon 

et al. [7], f  indicates the influence which fibroblasts move 

as a group, and it can be expressed using the weight function 
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 Here, N  is the number of fibroblasts, D  is the dimen-

sion of space, the superscript i  is the number to identify the 

fibroblast, and L  is the characteristic length of the effective 

domain of 
i

w .  is the time delay to change the direction in 

which the fibroblast moves after it undergoes any stimulation 

from the surrounding environment. 
if  indicates the position 

vector of the fibroblast, and its details are described in the 

next section.  

 The magnitude |||| cc
I
=  of c  shows the concentration 

of collagen fiber, and it strongly depends on both the compo-

sition of the extracellular matrices and the biochemical envi-

ronments [6]. Chemical substances are secreted collectively 

by surrounding fibroblasts. As the result, the formation of 

tissue is promoted [7]. Here, the time evolution of the con-

centration of the collagen fiber 
I

c  is expressed by consider-

ing both influences as 

=

=

N

i

iIIIIII txwcsAepAc
1

21 ),()( .          (6) 

 Here, 
1

A  and 
2

A  are the coefficients of the reaction 

kinetics, Ip  is the concentration of pro-collagen which is 

used to synthesize type I collagen fiber, 
II

e  is the concentra-

tion of enzyme which activates pro-collagen, and 
I

s  is the 

concentration of collagenase which degrade type I collagen 

fiber. The first term in the round bracket on the right hand 

side of Eq. (6) indicates that the production of collagen 

obeys zeroth order reaction kinetics; the second term is the 
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degradation of 
I

c  by a first order reaction. The summation 

of 
i

w  means the contribution of all fibroblasts inside the 

domain with L  to produce 
I

c .  

 The reaction rate shown in the above equation markedly 

depends on temperature and pressure [13]. Since the Gibbs 

free energy is a function of the strain energy stored in de-

formable media, it becomes possible to describe the relation-

ship between the coefficients 
i

A  in the equation, the abso-

lute temperature T , and the strain energy W  as  

=
Tk

W
kA

B

ii
exp .           (7) 

 Here, 
B

k  is the Boltzmann constant and 
i

k  is the coeffi-

cients of reaction kinetics when the strain energy is not con-

sidered. 

Motion of Fibroblasts 

 Fibroblast can move in any direction after receiving 

stimuli from the extracellular matrices [7]. Additionally, it 

can be assumed that the collective moving velocity of fibro-

blasts is similar to the basic concept of a convection-

diffusion equation for a molecule, and the migration of the 

fibroblasts can be quantified using the transportation equa-

tion for the collective motion of the fibroblasts [14]. As done 

by Dallon et al. [7], these factors can be included using a 

position vector of the fibroblast ),,( 321

iiii ffff = , and its 

time evolution can be expressed as 
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where , , and  are positive constants. Moreover, the 

moving velocities for the migration ),( tfM i  and che-

motaxis ),( tfN i  of the fibroblasts can be shown as [14] 

fM •=  μ , AN •=  ,           (9) 

where f  and A  are the concentrations of the fibroblasts 

and the attracting factor. The symbol ・ means the inner 

product of the tensor. μ  is the coefficient for the migration 

of the fibroblast and is similar to the diffusion coefficient.  

is a coefficient of chemotaxis and is the function of A  [14]. 

Chemotaxis is produced by from the spatial distribution of a 

number of complexes composed of a receptor and an attrac-

tive factor over the total the circumferential length of the 

fibroblast [14]. The third term on the right hand side in Eq. 

(9) shows the dispersive motion of the fibroblasts along with 

a spatial gradient for the concentration of the fibroblasts, and 

the fourth term indicates a convection velocity for the mo-

tion of the fibroblasts through a spatial gradient of A  [14]. 

A Group of Reaction-Diffusion Equations for Fibro-

blasts-Derived Substances 

 The formation of tissue is accomplished through the 

complicated interactions between various factors, sub-

stances, and cells in the tissue. Since it is quite difficult to 

consider all these factors in detail, a simplified model is ef-

fective. Obeying the ideas of Dale et al. [6], type I and III 

collagen are considered because they are major ingredients 

in the dermis. The biochemical reactions of a production 

system and a degradation system are shown in Fig. (3). Ac-

cording to this figure, the evolution equation for each chemi-

cal substance can be formulated as follows. 

 The fibroblast is the principal cell of the dermis and is 

sparsely dispersed in the extracellular matrices. In the case of 

a low concentration of TGF- , a group of fibroblast expo-

nentially increases and its proliferation at saturated in its 

highest concentration. The model can be expressed as 

fA
k

f
fAAAf IIII 4

1

543 1)( ++=        (10) 

 Here, 
I

 and 
III

 are the concentrations of the active 

TGF-  which act to produce type I and III collagen fibers, 

respectively. The second term indicates apoptosis of the fi-

broblast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). A schematic illustration of correlations in biochemical 
reactions on type I collagen production. 

 

 TGF-  is dealt with as a growth factor, which helps col-

lagen production. The fibroblast is stimulated with any type 

of TGF- , and it secretes latent TGF- . The latent TGF-  

freely diffuses, it barely increases to infinity, and it under-

goes the autocrine mechanism (self-activation). Therefore, 

TGF-  increases by self-secretion. These phenomena can be 

expressed as 
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where 
I

 and 
III

 are the concentration of latent TGF-   

 Because the active TGF-  also diffuses freely similarly to 

the latent TGF- ,  it can be modeled by the diffusion equa-

tion of Fick’s law to move chemically  
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 Pro-collagen and collagenase are considered primary 

factors in the production system and a degradation system of 

collagen, respectively. Pro-collagen is synthesized by the 

fibroblasts, and the synthesis is stimulated by TGF- . Pro-

collagen fiber barely diffuses in the tissue. It can be assumed 

that it is secreted constantly from fibroblasts when other 

chemical substances have a low concentration. It can be 

modeled that pro-collagen dies naturally in accordance with 

a first order reaction, assuming that the longevity of a pro-

collagen fiber is constant  

fAAAp IIIII )( 272625 ++=  

IIII peApA
2928

, 

fAAAp IIIIIII )( 323130 ++=  

IIIIIIII peApA
3433

,          (13) 

where IIIp  is the concentration of pro-collagen which acts 

on the production of type III collagen fiber. Collagenase is 

an active zymogen; it actively binds to collagen, and the fi-

ber is thereby destroyed. The natural decrease of collagenase 

is modeled by a first order reaction as 

IIIIII
sAezAs
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IIIIIIIIIIII
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= ,         (14) 

where 
I

z  and 
III

z  are the concentrations of zymogens 

which assist the degradation of type I and III collagen fibers, 

respectively. 
III

s  is the concentration of collagenase which 

degrades type III collagen fiber. 

 A zymogen is secreted from the fibroblasts as an inactive 

collagenase. It has no ability to degrade collagen until it is 

activated. Diffusion of zymogens is not well-characterized, 

and they are synthesized and secreted as the fibroblasts 

move. However, their secretion is suppressed by the pres-

ence of active TGF- . The suppression is assumed to be lin-

ear; in addition, the natural death of zymogen takes place and 

obeys the first order reaction kinetics, and a zymogen 

changes into a collagenase after it is activated with a specific 

enzyme 
III

e  as  
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where 
III

c  is the concentration of type III collagen fiber. 

 Type III collagen is also a protein with a threefold helical 

structure, and it is formed when type III pro-collagen is acti-

vated. The following evolution equation can be formulated 

under the assumption of gradual and linear degradation of 

type III collagen by type III collagenase  

IIIIIIIIIIIIII csAepAc
3736

= .         (16) 

 It can be assumed that this evolution equation does not 

include a spatial gradient because no experimental facts are 

available on the diffusion of type III collagen. 

 In the tissue formation process, a variety of active growth 

factors interact. However, the interactions are numerous, 

complex, and many points are still unclear. To simplify the 

model, only the specific enzymes 
I

e , 
II

e , and 
III

e , which 

activate the latent TGF- , pro-collagen, and zymogen, are 

considered. Their evolution equations can be expressed as 

)( 2019 IIIIII
AAee += ,  

)( 2221 IIIIIIII pApAee += ,  

)( 2423 IIIIIIIIII
zAzAee += ,         (17) 

where it can be assumed that an increase in the concentration 

of enzyme is spatially independent. 

Cell Adhesion 

 The fibroblast is an anchorage-dependent cell. As an an-

chorage-dependent cell, the fibroblast plays important roles 

in the synthesis and degradation of chemical components and 

controls self-proliferation after recognizing its environment 

by adhering to the extracellular matrices [15]. Therefore, it is 

necessary to consider cell adhesion to the extracellular ma-

trices. When the following criterion is satisfied as a adhesive 

condition to the extra cellular matrices, it is assumed 
if = 0 

and 
ICI

cc > ,  

when  

rtxtf i   |)()(| < ,          (18) 

where r  and 
IC

c  are constants for a threshold. Originally, 

the production of adhesive protein by the fibroblast such as a 
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fibronectin and laminin, which promote cell adhesion in the 

biosyntheses of type I collagen must be considered. Here, the 

effect is on cell adhesion considered and it can be omitted to 

simplify the model. 

Evaluation of Local and Global Stress in Fibrous Tissue 

 To employ the updated Lagrangian method and the finite 

element equation based on the rate form of the principle of 

virtual work, a rate form of a constitutive equation for a 

given collagen fiber density is derived. First, the following 

uniaxial constitutive equation experimentally obtained by 

Haut et al. [16] is employed for the relationship of nonlinear 

uniaxial stress - strain  and strain rate  for a single 

collagen fiber  

2

22

3
ln1),( μ

E
+= ,        (19) 

where μ  and E  are the material constants, respectively. 

 The uniaxial stress  in Eq. (19) is assumed to be one 

component of the stress tensor 
)(a
 on the coordinate sys-

tem placed on the )(a th collagen fiber in the microscopic 

area. In this case, all other components of 
)(a
 are zero. In 

addition, a structural tensor )(a
Q  to express the direction of 

the )(a th collagen fiber is introduced. Using 
)(a
 and 

)(a
Q , the Jaumann rate of the second Piola-Kirchhoff stress 

)(a

S of the )(a th collagen fiber on the reference frame ar-

ranged in the microstructure can be written in the form of a 

coordinate transformation as  
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QQS = , )()()( aaa
Q = .        (20) 

 It is assumed that the macroscopic stress rate with objec-

tivity  can be calculated from a volume average of the 

microscopic stress rate 
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S as 

=
v

a

v

dvS
v

)(

0
   

1
lim  

dvQQ
v v

aaTa

v
=

)()()(

0
 

1
lim .         (21) 

 Here, v  is the infinitesimal representative volume ele-

ment considered in a body.  

 By considering a finite v , we can employ a summation 

with respect to a further infinitesimal volume dv  on v  in-

stead the integral as 

)(

)(

)()()(

0
 

1
lim a

a

aaTa

v
QQ

v
= ,        (22) 

where 
)(a
 is the infinitesimal length of the (a)th collagen 

fiber.  

 The following mixture rules can be obtained if 

)()()(  aaTa
QQ  becomes uniform about each fiber at the 

limit as 

I

T
cQQ   = , and nnQ = .         (23) 

 Moreover, if one component of the stretching tensor d  

corresponds to the uniaxial strain rate  in Eq. (19), the 

macroscopic constitutive equation as a function of collagen 

fiber density and orientation angle can be obtained as a form 

of  

dcD
I

a  ),()(
= .          (24) 

FINITE ELEMENT FORMULATIONS, COMPUTAT-

IONAL MODEL AND CONDITIONS 

 Roughly speaking, there are two fields to be solved in the 

problem. One is the stress field, and the other is the diffusion 

field. To obtain the solution of the stress field, the rate form 

of constitutive equation (24) is introduced into the rate form 

of the principle of virtual work, and the computational simu-

lation is performed by FEM. The rate form of the principle 

of virtual work in the finite deformation regime can be for-

mulated for the current configuration as 

=+
tS

dSvFd
x

v

x

v

  

  ,        (25) 

where v  is the velocity field,  is the second Piola-

Kirchhoff stress tensor,  is the Cauchy stress tensor, F  is 

the surface tension vector, and  and S  are the volume and 

surface of the deformable body being considered, respec-

tively. The symbol ･・ means the inner product of the ten-

sors. The velocity v  and its spatial derivative can be discre-

tized by the shape function matrix N  and the nodal quantity 

of the velocity d : 

d N=v , dBg = , and dEq = ,         (26) 

where bold face indicates the matrices and vectors of nodal 

value. g  and q  are the nodal vectors corresponding to d  

and the velocity gradient tensor, respectively. After rear-

rangement obeying the conventional FE formulation, we 

obtain the following equation: 

fdK = ,           (27) 

( )[ ]+=
 

 d
TT
QEEBGDBK ,  

=
tS

T
dS

 

  FNf ,  

where D  is the matrix of the constitutive tensor in Eq. (24), 

and G  and Q  are the matrices derived from the considera-

tion of the finite deformation. 

 A group of the reaction-diffusion equations shown in Eq. 

(6), and Eqs. (10) to (17) are strongly coupled to each other. 

However, it requires too high a computational cost to calcu-
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late the solutions. In order to reduce the huge cost, the weak 

coupling assumption is introduced [11]. In this assumption, 

the time step must be shortened as much as possible, and 

instead each equation can be solved sequentially. The solu-

tions of the equations, except for Eqs. (11) and (12), can be 

obtained using the finite difference method for only the time 

integration since the spatial derivative is not included. Here, 

at least four partial differential equations expressed in Eqs. 

(11) and (12) are solved by FEM. For simplicity of explana-

tion in the FE formulation based on the reaction-diffusion 

equations discussed, only one equation is formulated as fol-

lows. According to weighted residual method [11], the weak 

form of governing equation Eq. (6) can be formulated as 

follows: 

( )+ dAleAD
IIIIII
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 The concentration 
I

 and its time derivative can be dis-

cretized by the shape function matrix N  and the nodal quan-

tity of the concentration b : 
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 After rearrangement obeying the conventional FE formu-

lation, we obtain the following equation: 
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 Fig. (4) shows the computational model for the two-

dimensional region. The computational region is a rectangu-

lar area with an edge length of 0.05 mm, and it is divided 

into ten isoparametric quadratic elements with eight nodes in 

the directions of x  and y , respectively. As an initial condi-

tion, a total of 25 fibroblasts are arranged in this area using 

random numbers as shown in figure. The parameters uses in 

all equations are the values published in Refs. [5], [6], and 

[15]. When the tensile deformation is given, the displace-

ment rate in the x  direction is given to the right side, and 

other constraint conditions are as shown in the figure.  

COMPUTATIONAL RESULTS AND DISCUSSIONS 

 In order to discuss the computational results of fibrous 
tissue formation without any mechanical stimulations at first, 
Fig. (5) shows (a) the electron micrograph of type I collagen 
fibrous tissue taken from [17], (b) the distribution in the vec-
tor of the collagen fiber density, (c) the distribution in colla-
gen fiber density, and (d) a histogram of the direction in the 
vector of the collagen fiber density. Figs. (5b) to (5d) are 
obtained from the computation. The fibroblasts are shown as 
solid circles in Fig. (5b). From Fig. (5b), the network struc-
ture can be obtained by computation, and it is quite similar to 
the actual tissue in the photograph shown in Fig. (5a). It can 
be observed that the fiber is oriented as a vortex at the center 

of the area, and the fiber is synthesized over almost the entire 
area. Corresponding to this result, the region where the fiber 
density becomes higher can be seen from Fig. (5c) at the 
center of the area, and the region of a low fiber density can 
be observed in the vicinity of the boundary. As shown in Fig. 
(5d), the frequency in the direction of the collagen fiber den-
sity is counted in each 45 deg range. The orientation angle of 
0 deg indicates that the fiber is parallel to the y  axis, and it 
is positive in the clockwise direction. In Fig. (5d), the fibers 
mainly orient to 45 and 135 deg, however, the data indicate 
that the frequency without the deformation is comparatively 
uniform.  

 Fig. (6) shows the distribution in the vector of the colla-
gen fiber density under a strain of (a) 10 % and (b) 20%. 
From Figs. (6a) and (6b), the basic features can be observed 
as well as the case without deformation even if mechanical 
stimulation is given. The vector of the fiber density with an 
orientation angle near 135 deg appears at the left part of the 
area, and the vector in the vertical direction can be observed 
on the right side as shown in Fig. (6a). Many fibers are gen-
erated from the center to the upper part in the area. With the 
promotion of deformation, the fibers show quite complicated 
orientation, such as the vortex-like configuration at the cen-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). (a) Finite element model in 2D rectangular space and (b) 

initial configuration of 25 fibroblasts. 
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ter of the area shown in Fig. (6b). The area where the fiber is 
synthesized voluminously moves to the center. The region 

where the fiber density becomes zero moves to the lower 
side and to the left of the model. In addition, the bigger fi-
brous structure, which consists of the vortex and network, is 
formed at the center of the model. Focusing on the fibro-
blasts, the fibroblasts are mutually adjacent compared with 
the case without deformation although the configuration of 
fibroblasts is random throughout the entire area. The re-
markable tendency appears that the fibroblasts initially ap-
proach each other near the center of the model, and then the 
intercellular distance shortens with the progress of the de-
formation. Figs. (6c) and (6d) show histograms of the orien-
tation angle in the vector of the collagen fiber density. From 
Fig. (6c), many fibers have the horizontal direction at a strain 
of 10%. However, the frequency in the direction of 45 deg is 
the highest after further deformation as shown in Fig. (6d). 
From the histograms shown in Figs. (5 and 6), a compara-
tively uniform distribution of the orientation of fibers can be 
observed in the case without deformation, and then a bias in 
the distribution in either direction of 45 or 135 deg can be 
seen once the deformation is given. Concretely speaking, the 
fibers orient to strongly in a parallel direction against the 
tensile axis in the initial stage of deformation, and then they 
collectively rotate to the direction of maxi-mum shear stress. 
It can be assumed that the fibers collectively orient at a cer-
tain specific direction when the deformation is given, and 
this phenomenon is the adaptation against the deformation.  

 Fig. (7) shows the distribution of (a) the collagen fiber 
density and (b) the normal stress component in the tensile 
direction when a tensile strain of 20% is applied. From Fig. 
(7a), it can be seen that the fiber density has a higher value 
near the center of the area as in the case without deformation 
shown in Fig. (5c). However, the area with the higher fiber 
density expands by comparison with the case without defor-
mation, and a few domains with higher density appear lo-
cally. From Fig. (7b), the stress has a higher value in the area 
corresponding to Fig. (7a), and a structure bearing mac 
roscopic deformation is formed with an increase of fiber 
density. In the area with higher stress, the direction in the 
vector of the fiber density changes to 45 or 135 deg as shown 
in Fig. (6). The local stress induced by macroscopic defor-
mation plays an important role in tissue formation. 

CONCLUDING REMARKS 

 In this paper, the vector of collagen fiber density was 
defined by its similarity with the dislocation density tensor. 
The vector was sensitive to fibrous tissue formation of type I 
collagen, which is the principal ingredient of skin. The 
model for the motion of fibroblasts, a group of reaction-
diffusion equations generalized by considering a mechanical 
stimulation, cell migration and chemotaxis, and the rate form 
of constitutive equation for the fibrous tissue of collagen was 
formulated. By coupled analyses with the finite element 
method introduced in these models, the influences of macro-
scopic deformation on fibrous tissue formation of collagen 
were examined. 
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(a) Observation of micrograph 

 

 

 

 

 

 

 

 

 

(b) Configuration of density of collagen fiber 

 

 

 

 

 

 

 

 

 

 

 

(c) Distibution of density of collagen fiber 

 

 

 

 

 

 

 

(d) Histogram of orientation angle 

Fig. (5). Computational results on tissue formation of collagen 

fiber without mechanical stimulation. 
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(a) Distribution in direction of fiber for 10% stretching 

 

 

 

 

 

 

 

 

 

 

(b) Distribution in direction of fiber for 20% stretching 

 

 

 

 

 

 

 

 

 

(c) Histogram in orientation angle for 10% straining 

 

 

 

 

 

 

 

 

(d) Histogram in orientation angle for 10% straining 

Fig. (6). Computational results on fibrous tissue formation under 

tensile deformation in horizontal direction  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Density of collagen fiber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Stress 
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Fig. (7). Distribution of collagen fiber density and stress component 

in horizontal direction under 20 % straining. 
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