
6 The Open Mechanics Journal, 2008, 2, 6-11  

 

 1874-1584/08 2008 Bentham Science Publishers Ltd. 

Open Access 

Modified Linear Theory for Spinning or Non-Spinning Projectiles 

D.N. Gkritzapis*
,1
, E.E. Panagiotopoulos

2
, D.P. Margaris

3
 and D.G. Papanikas

4
 

1
Laboratory of Firearms and Tool Marks Section, Criminal Investigation Division, Hellenic Police, and Post graduate 

Student, Mechanical Engineering and Aeronautics Department, University of Patras, Greece 

2
Post-graduate Student, Mechanical Engineering and Aeronautics Department, University of Patras, Greece 

3
Professor, Mechanical Engineering and Aeronautics Department, University of Patras, Greece 

4
Ex-Professor, Mechanical Engineering and Aeronautics Department, University of Patras, Greece 

Abstract: Static and dynamic stability are the most important phenomena for stable flight atmospheric motion of spin and 

fin stabilized projectiles. If the aerodynamic forces and moments and the initial conditions are accurately known, an es-

sentially exact simulation of the projectile’s synthesized pitching and yawing motion can be readily obtained by numerical 

methods. A modified trajectory linear theory of the same problem implies an approximate solution. 

INTRODUCTION 

 More than 80 years ago, English ballisticians [1] con-
structed the first rigid six-degree-of-freedom projectile exte-
rior ballistic model. Their model contained a reasonably 
complete aerodynamic force and moment expansion for a 
spinning shell and included aerodynamic damping along 
with Magnus force and moment. Guided by an extensive set 
of yaw card firings, these researchers also created the first 
approximate analytic solution of the six-degree-of-freedom 
projectile equations of motion by introducing a set of simpli-
fications based on clever linearization by artificially separat-
ing the dynamic equations into uncoupled groups. The re-
sulting theory is commonly called projectile linear theory. 
Kent [2], Neilson and Synge [3], Kelley and McShane [4], 
and Kelley et al. [5] made refinements and improvements to 
projectile linear theory.  

 Projectile linear theory has proved an invaluable tool in 
understanding basic dynamic characteristics of projectiles in 
atmospheric flight, for establishing stability criteria for fin- 
and spin-stabilized projectiles, and for extracting projectile 
aerodynamic loads from spark range data. 

 In the present work, the full six degrees of freedom (6-
DOF) projectile flight dynamics atmospheric model is con-
sidered for the accurate prediction of short and long range 
trajectories of high spin and fin-stabilized projectiles. It takes 
into consideration the influence of the most significant forces 
and moments, in addition to gravity.  

 Projectiles, which are inherently aerodynamically unsta-
ble, can be stabilized with spin. For this condition, the spin 
rate must be high enough to develop a gyroscopic moment, 
which overcomes the aerodynamic instability, and the pro-
jectile is said to be gyroscopically stable. This is the case for 
the most gun launched projectiles (handguns, rifles, cannons,  
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etc.) where the rifling of the barrel provides the required 
axial spin to projectile. In describing this condition, a gyro-
scopic stability factor can be applied, which is obtained from 
the roots of the modified linear theory in the equations of 
projectile motion. 

 Also, dynamic stability is defined as the condition where 
a system is perturbed and the ensuing oscillatory has a ten-
dency to either decrease or increase. Note that this definition 
assumes that the static stability is present, otherwise the os-
cillatory motion would not occur. 

PROJECTILE MODEL  

 The present analysis considers two different types of rep-
resentative projectiles: a spin-stabilized of 105mm and a 
mortar fin-stabilized of 120 mm. 

 Basic physical and geometrical characteristics data of the 
above-mentioned 105 mm HE M1 and the non-rolling, 
finned 120 mm HE mortar projectiles are illustrated briefly 
in Table 1. 

Table 1. Physical and Geometrical Data of 105 mm and 

120mm Projectiles Types 

Characteristics 105 mm HE M1 

projectile 

120 mm HE mortar 

projectile 

Reference diameter, mm 114.1 119.56 

Total Length, mm 494.7 704.98 

Total mass, kg 15.00 13.585 

Axial moment of inertia, 

kg-m2 

2326x10-2 2335x10-2 

Transverse moment of 

inertia, kg-m2 

23118x10-2 23187x10-2 

Centre of gravity from 

the base, mm 

113.4 422.9 
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TRAJECTORY FLIGHT SIMULATION MODEL 

 Flight mechanics of most projectile configurations can be 
captured using a rigid body six degrees of freedom dynamic 
model. The six degrees of freedom flight analysis comprise 
the three translation components (x, y, z) describing the posi-
tion of the projectile’s center of mass and three Euler angles 
( , , ) describing the orientation of the projectile body 
with respect to (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

Fig. (1). No-roll (moving) and fixed (inertial) coordinate systems 

for the projectile trajectory analysis. 

 Two main coordinate systems are used for the computa-
tional approach of the atmospheric flight motion. The one is 
a plane fixed (inertial frame) at the firing site. The other is a 
no-roll rotating coordinate system moving with the projectile 
body (no-roll-frame, NRF, =0) with the XNRF axis along the 
projectile axis of symmetry and YNRF, ZNRF axes oriented so 
as to complete a right hand orthogonal system. 

 Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces (1) and the rate of change of angular momen-
tum must equal the sum of the externally applied moments 
(2), respectively. 

 

m
dV

dt
= F + mg            (1) 

 

dH

dt
= M             (2) 

 The total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. The 
total moment acting on the projectile comprises the moment 
due to the standard aerodynamic force, the Magnus aerody-
namic moment and the unsteady aerodynamic moment. The 
dynamic equations of motion [6-9] are derived in the non-
rolling frame and provided in equations (3) up to (6):  

xif
yif
zif

=
cos cos sin sin cos

cos sin cos sin sin

sin 0 cos
 

uNRF
vNRF
wNRF

        (3) 

for the position of projectile’s center of mass and 

=
1 0 t

0 1 0

0 0 1 / cos

 

 

pNRF
qNRF
rNRF

           (4) 

and for the orientation of the flight body with the classical 
Euler angles , , . From the two laws of Newton’s motion 
the following equations (5) and (6) are derived, respectively: 
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 The total force acting on the projectile in equation (5) 

comprises the weight Wf
, the aerodynamic force Af

 and 

Magnus force M f
: 
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 The total moment acting on the projectile in equation (6) 

comprises the moment due to the standard aerodynamic 

force Am , due to Magnus aerodynamic force Mm
 and the 

unsteady aerodynamic momentUAm : 
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 All aerodynamic coefficients are based on Mach number 

and the aerodynamic angles of attack and sideslip: 

 

= tan 1 wNRF

uNRF
             (9) 

 

= tan 1 vNRF
uNRF

           (10) 

 The total aerodynamic velocity given in equation: 

VT =
 
uNRF

2
+ vNRF

2
+ wNRF

2           (11) 

 The weight force in no-roll system is: 

 

Xwf

Ywf

Zwf

=mg

sin

0

cos

          (12) 

 The aerodynamic force, which acts on the projectile at 

aerodynamic center of pressure, is: 
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 The Magnus, which acts on projectile at the Magnus 

force center of pressure, is: 
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 The moment due to aerodynamic force is: 
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 The moment due to Magnus force is: 
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 In addition, for the unsteady moment UAm  is: 
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 The dynamic equations of motion (3-6) are highly non-
linear. Thus, numerical integration is commonly used to ob-
tain solutions to this initial value problem. 

MODIFIED PROJECTILE LINEAR THEORY 

 To develop the modified projectile linear theory [7], the 

following sets of simplifications are employed: the axial ve-

locity 
 
uNRF  can be replaced by the total velocity VT  because 

the side velocities 
 
vNRF and 

 
wNRF  are small.  

 The aerodynamic angles of attack  and sideslip  are 
small for the main part of the atmospheric trajectory 

 
wNRF /VT , vNRF /VT  

and the projectiles are geometrically symmetrical  

IXY = IYZ = IXZ = 0, IYY = IZZ 

 Constant aerodynamic coefficients for the most important 
forces and moments with respect to angle of attack and Mach 
number are taken into account. Flat-fire and small yaw tra-
jectories are considered so the yaw angle  is small: 

sin( ) , cos( ) 1 

 The independent variable is changed from time t to di-
mensionless arclength s, measured in calibers of travel: 

s =
1

d
Vdt

0

t

           (18) 

 This technique causes the equations determining the cou-
pled pitching and yawing motion independent of the size of 
projectile, which turns out to be very convenient in the 
analysis of free-flight range data.  

DIFFERENTIAL EQUATION OF MOTION 

 The differential equation governing the angular oscilla-
tory motion for the complete linearized pitching and yawing 
motion of slightly symmetric projectiles [6] as a function of 
distance traveled s is shown below: 

+ H iP( ) M + iPT( ) = iPG          (19) 

where 

H =
Sd

2m
CL

Sd

2m
CD y

2 Sd

2m
CMQ

        (20) 

P =
IX
IY

pd

V
           (21) 

M = y
2 Sd

2m
CMA

          (22) 

T =
Sd

2m
CL + x

2 Sd

2m
CNPA

         (23) 

G =
gd cos

V 2
           (24) 

= + i            (25) 

 This differential equation contains all the significant 
aerodynamic forces and moments that affect the pitching and 
yawing motion of a spinning or non-spinning symmetric 
projectile body. The author’s definition = + i was first 
chosen by Fowler et al. and was adopted by R. H. Kent. 
Gunners and engineers usually prefer this definition. The 
gunner observer looks downrange from a position located 
just behind the gun. Upward and to the right are always con-
sidered as positive directions. It is nature for the gunner to 
define the  axis as positive upward, the  axis as positive 
to right and the clockwise direction of all rotations as posi-
tive for right hand twist rifling. 

STATIC AND DYNAMIC STABILITY CRITERIA 

 The solution of differential equation (19) tells us that the 
epicyclic frequencies depend only on the dimensionless roll 
rate P and overturning moment M, and are unaffected by any 
of other aerodynamic forces and moments.  

 From the definition of an unstable motion, we are led 
naturally to the concept of static stability: 

P2 4M( ) 0            (26) 

 Classical exterior ballistics defines the static stability 
factor [5] Sg, as: 

Sg =
IX

2 p2

2 IY SdV
2CMA

          (27) 
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 Eliminating P
2
 between equations (26-27), we have: 

4M Sg 1( ) 0           (28) 

 For statically unstable (spin-stabilized) projectile, M > 0 
and equation (28) reduces to the classical static stability cri-
terion: 

Sg 1             (29) 

 Equation (26) is a more general result than the (29), be-
cause it shows that a statically stable missile (M < 0), is 
statically stable without spin. 

 Dynamic stability requires that both damping exponents 
be negative throughout the projectile’s flight. For a non-
spinning statically stable missile (M < 0) and P is either zero. 
For finned missiles, the pitch damping moment coefficient is 
usually negative. The lift and drag force coefficients are both 
positive, therefore H is nearly always greater than zero, and 
the dynamic stability is assured. 

 The dynamic stability factor Sd is defined as: 

Sd =
2T

H
           (30) 

and the expressions 

H>0            (31) 

1

Sg
Sd 2 Sd( )           (32) 

are the generalized dynamic stability criteria for any spin-
ning or non-spinning symmetric projectile flight body. 

COMPUTATIONAL SIMULATION 

 The constant dynamic flight model [10] uses mean values 
of the experimental aerodynamic coefficients variations (Ta-
ble 2). 

Table 2. Constant Aerodynamic Parameters for Dynamic 

Trajectory Flight of the Two Projectile Types 

105mm Projectile 120mm Projectile 

CD = 0.243, CL = 1.76, 

CLP = -0.0108, CMQ = -9.300, 

CMA = 3.76, CYPA = 0.381 

CNPA = 0.215 

CD = 0.14, CL = 2.76, 

CMQ = -22.300, 

CMA = -15.76 

 
 Initial data for 105 mm dynamic trajectory model with 
constant aerodynamic coefficients are: 

x = 0.0 m, y = 0.0 m, z = 0.0 m,  = 0.0°,  = 45.0° and 
70.0°,  = 3.0°, u

~ =494 m/s, v
~  = 0.0 m/s, w

~  = 0.0 m/s, 
p~  = 1644 rad/s, q~  = 0.0 rad/s and r

~  = 0.0 rad/s.  

 The axial spin rate is calculated from 

 
p = 2 VT / D (rad/s)         (33) 

where VT is the total firing velocity (m/s), the rifling twist 
rate at the gun muzzle (calibers per turn), and D the refer-
ence diameter of the projectile type (m). 

 In addition, the corresponding initial data for 120 mm 
are: 

x = 0.0 m, y = 0.0 m, z = 0.0 m,  = 0.0°,  = 45.0° and 
85.0°,  = 8.0°, u

~ =318 m/s, v
~  = 0.0 m/s, w

~  = 0.0 m/s, 
p~  = 0.0 rad/s, q~  = 1.795 rad/s and r

~  = 0.0 rad/s. 

 The density and pressure are calculated as function of 
altitude from the simple exponent model atmosphere, and 
gravity acceleration is taken into account with the constant 
value g = 9.80665 m/s

2
.  

 The flight dynamic models of 105 mm HE M1 and 120 
mm HE mortar projectile types involves the solution of the 
set of the twelve first order ordinary differentials, equations 
(3)-(6), which are solved simultaneously by resorting to nu-
merical integration using a 4th order Runge-Kutta method, 
and regard to the 6-D nominal atmospheric projectile flight.  

RESULTS AND DISCUSSION 

 The flight path trajectories motion with constant aerody-
namic coefficients of the 105 mm projectile with initial fir-
ing velocity of 494 m/sec, initial yaw angle 3 deg and rifling 
twist rate 1 turn in 18 calibers (1/18) at 45

o
 and 70

o
 are illus-

trated in (Fig. 2).  

 

 

 

 

 

 

 

 

 

Fig. (2). Impact points and flight path trajectories of 6-DOF and 

Modified Linear with constant aerodynamic coefficients for 105 

mm projectile. 

 At 45° the 6-DOF model for 105 mm M1 projectile, fired 
at sea-level neglecting wind conditions, gives a predicted 
range to impact of approximately 11,600 m and a maximum 
height at almost 3,600 m. From the results of the modified 
linear model, the maximum range and the maximum height 
are almost the same, as shown in (Fig. 2). Also at 70°, the 
predicted level-ground range of 6-DOF model is 7,500 m 
with maximum height at about 6,450 m and the modified 
linear trajectory simulation gives the same values. 

 The mortar projectile of 120 mm diameter is also exam-
ined for its atmospheric constant flight trajectories predic-
tions at pitch angles of 45

o
 and 85

o
, with initial firing veloc-

ity of 318 m/s, initial yaw angle 8° and pitch rate 1.795 rad/s, 
as shown in (Fig. 3).  

 At 45
o
, the 120 mm mortar projectile, fired at no wind 

conditions, the 6-DOF trajectory gives a range to impact at 
7,000 m with a maximum height at almost 2050 m. At 85

o
, 

the predicted level-ground range is approximately 1,230 m 
and the height is 3,950 m. For the same initial pitch angles, 
the modified linear model’s results have satisfactory agree-
ment. (Fig. 3). 

 In (Fig. 4), static stability factor for the 105 mm HE M1 
projectile trajectory motion with constant aerodynamic coef-
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ficients is calculated at pitch angles 45° and 70°, respec-
tively. After the damping of the initial transient motion, at 
apogee, the stability factor for 45 degrees has increased from 
3.1 at muzzle to 23 and then decreased to value of 8 at final 
impact point. The corresponding flight behavior at 70 de-
grees initial pitch angle shows that the transient motion 
damps out quickly, where the gyroscopic static stability fac-
tor has increased from 3.1 to 121 and then decreased to value 
of almost 6.6 at the impact area. 

 

 

 

 

 

 

 

 

 

 
Fig. (3). Flight path trajectories of 6-DOF and Modified Linear 

with constant aerodynamic coefficients for 120 mm at quadrant 

elevation angles of 45
o 

and 85
o
. 

 

 

 

 

 

 

 

 

 

Fig. (4). Comparative static stability variation with constant aero-

dynamic model at low and high quadrant angles for the 105 mm 

projectile.  

 In (Fig. 5), at 45 and 70 degrees the Mach number was 
1.45 at the muzzle, then decrease to 0.6 and 0.3 at the sum-
mit of the trajectory and then decrease to values of 0.8 and 
0.9 at the impact area, respectively. The constant value of 
dynamic stability for 105 mm is 1.095 and lies within the 
interval (0 < Sd < 2). So the spin-stabilized 105 mm projec-
tile is gyroscopically and dynamically stable. 

 On the other hand the 120 mm mortar projectile has un-
canted fins, and do not roll or spin at any point along the 
trajectory. Because of that, the static stability is zero, and we 
examined only the dynamic stability for 120 mm projectile. 

 In the modified linear trajectory of the 120 mm mortar 
projectile, the constant value of dynamic stability is 0.735 at 
pitch angles of 45 and 85 degrees. If the dynamic stability 
factor Sd, lies within the interval (0<Sd<2), a statically stable 
projectile is always dynamically stable, regardless of spin. 
The mortar projectile of 120 mm belongs in the above inter-
val and H > 0, so is dynamically stable.  

 

 

 

 

 

 

 

 

 

Fig. (5). Comparative stability factor versus Mach number with 

constant aerodynamic model at low and high quadrant angles for 

the 105 mm projectile. 

CONCLUSION 

 A six degrees of freedom (6-DOF) simulation flight dy-
namics model is applied for the accurate prediction of short 
and long-range trajectories for spin and fin-stabilized projec-
tiles. The modified projectile linear theory trajectory re-
ported here should prove useful to estimate flight trajectory’s 
phenomena as static and dynamic stability.  

A LIST OF SYMBOLS 

CD0
  = zero-yaw drag aerodynamic coeffi-

cient 

CD2
 =  yaw drag aerodynamic coefficient  

CL
  =  lift aerodynamic coefficient  

CLP
  =  roll damping aerodynamic coefficient  

CMQ
  =  pitch damping aerodynamic coeffi-

cient  

CMA
  =  overturning moment coefficient  

CYPA
  =  Magnus moment coefficient  

CNPA
 = Magnus force aerodynamic coefficient 

Sg   = static stability factor 

Sd   = dynamic stability factor 

xif , yif , zif   = projectile position, m  

 
uNRF ,vNRF ,wNRF  = projectile velocity components ex-

pressed in no-roll-frame, m/s 

 
pNRF  = projectile roll rate, rad/s 

 
qNRF ,rNRF  = projectiles pitch and yaw rates  ex-

pressed in no-roll-frame, rad/s 

,  = projectiles pitch and yaw angles, deg 

 = projectile roll angle, deg 

I  = projectile inertia matrix 

IXX , IYY , IZZ  = diagonal components of the inertia 

matrix
 

IXY , IYZ , IXZ  = off-diagonal components of the inertia 

matrix 
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VT  = total aerodynamic velocity, m/s 

 = atmospheric density, kg/m
3 

D  = projectile reference diameter, m
 

Sref  = projectile reference area ( D
2
/4), m

2 

m  = mass of projectile, kg 

t = time, s 

,  = aerodynamic angles of attack and 

sideslip, deg 

R MAC
 = distance from the projectile center of 

mass to the center of pressure, m 

R MAX
 = distance from the projectile center of 

mass to the Magnus center of pres-

sure, m 

g  = gravity acceleration, m/s
2 
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