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Abstract: A dynamic load, suddenly applied at a point of a beam, produces a local disturbance that propagates or diffuses 
to the rest of the beam. This propagation takes place with a speed depending on the material and geometrical characteris-
tics of the beam. It has been demonstrated that an impulsive disturbance involving shear and moment will result in two 
wave types, one that propagates with the shear wave velocity and a second that propagates with a moment-wave velocity. 
It is observed that tampering with the cross-section of the beam may result to equal shear wave and moment-wave veloci-
ties and the two types of disturbances will travel together along with additionally interfering shear waves from beam's 
ends reflections. In this paper, the effect of the traveling waves on the dynamic characteristics of a beam is studied. A 
complete beam model is presented, which motion is governed by the Timoshenko equation. Two main cases are exam-
ined, namely a simply supported beam, and a beam resting on a Winkler-type elastic foundation. Analytical results are 
presented in graphical form showing the influence of the traveling waves on the eigenfrequencies and critical speeds of 
such a beam and useful conclusions are drawn. 

INTRODUCTION  

 A dynamic load, suddenly applied at a point of a beam, 
produces a local disturbance that propagates or diffuses to 
the rest of the beam. This propagation takes place with a 
speed depending on the beams characteristics as well as the 
material characteristics from which the beam is made from. 

 The above simple fact is the basis for the study of the 
subject known as wave propagation. 

 This phenomenon is familiar to everyone in various 
forms such as the transmission of sound in air, or the spread-
ing of ripples on water surface, the transmission of an earth-
quake waves, or the radio waves.  

 The physical basis of the propagation of a disturbance is 
finally caused by the interaction of the discrete atoms within 
a solid. 

 In solid and fluid mechanics, the medium is assumed to 
be continuous and thus, its physical characteristics such as 
density or modulus of elasticity are also considered to be 
continuous functions representing average values. 

 A disturbance to a mass particle is transmitted to the next 
particle by an imaginary intervening spring. Through this 
way, the disturbance is transmitted to a remote mass particle. 
The material characteristics such as density and elastic con-
stants affect the speed of propagation. Increasing the elastic 
constant (or in other words the spring constant), the speed of 
propagation increases and vice-versa.  

 In a solid, two different actions are possible for wave 
propagation. 

 In the first case, the solid will transmit stresses (tensile or 
compressive), and motion of the particles will take place  
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along the direction of the wave motion. The behavior is 
analogous to that of fluids, and solids of this type do not 
have any resistance to bending. A characteristic case of this 
behavior is the flexible string.  

 A solid though may also transmit shear stresses, and the 
motion of particles is transverse to the propagation direction. 
Such a behavior does not exist in fluids.  

 During their motion, the waves encounter the boundaries 
of the solid body and, evidently, an interaction between 
waves and boundaries will be inevitable. The behavior of 
waves in a solid differs from that in a fluid. 

 In structural mechanics, the motion of rods, beams, and 
plates can be described without needing to consider the 
propagation and reflection of waves within the structure. The 
so-called “strength of materials” theories may be derived on 
the basis of various assumptions regarding deformation. 

 Wave propagation in structures has been studied over a 
considerable period of time by a significant number of re-
searchers. 

 Many solution techniques have been reported [1-4] for 
structures with specific geometrical characteristics and finite, 
periodic, or semi-infinite boundary conditions. 

 Among many frequency domain methods, the spectral 
element method [5] has been proved suitable for analysis of 
wave’s propagation in real engineering structures. The spec-
tral element method uses the exact solution of the differential 
equations which govern the problem. 

 Flügge demonstrated [6,7] that an impulsive disturbance 
on a beam involving both shear and moment will result in 
two wave trains, i.e., one that propagates with the shear wave 

velocity = /GkQ  and another that propagates with a 
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moment-wave velocity = /E
M

 along the beam (  be-

ing the mass per unit volume). 

 It has been observed that if the cross-section of the beam 
is such as to have EGk = , then the velocities Q  and 

M
 

will be equal and the two types of disturbances will travel 
together. In general, these two types of disturbance will 
travel with different velocities. Moreover, since the reflec-
tions of moment waves from the beam’s boundaries will 
result in additional shear waves trains, the moment and shear 
interfering waves will soon create a very complicated situa-
tion. 

 For studying the aforementioned very interesting prob-
lems, numerous mechanical models of beams have been pre-
sented. In Fig. (1), three mechanical models of beams are 
presented, in which the main parameters are the lumped 
masses. These models were first proposed and studied by 
Schirmer [8]. As the lumping of the masses becomes smaller 
and approaches in size the uniformly distributed mass and 
restoration elements of the beam, the wave travel velocities 
in the models will approach the limiting values Q  and 

M
. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Lumped mass and spring models with hinged joints for the 
wave travel properties: (a) Shear stiffness, and translation inertia 
only, (b) Flexural stiffness, and translation inertia only, and (c) 
Flexural and shear stiffness as well as translation and rotatory iner-
tias. 

 
 In this paper, the effect of the traveling waves on the dy-
namic characteristics of a beam is studied. 

 For this study, the complete model (see Fig. 1c) is used, 
the motion of which is governed by the Timoshenko equa-
tion. 

 After expressing the Timoshenko equation in its com-
plete form and evaluating the contribution of each term in 
the equation (and subsequently, the necessity of keeping or 
ignoring each term), two main cases are examined, namely: 
the single-span simply supported beam, and the finite beam 
on a Winkler-type elastic foundation. 

 Graphical results showing the influence of the traveling 
waves on the eigenfrequencies and critical speeds of a beam 
are presented and useful conclusions are gathered. 

MATHEMATICAL FORMULATION  

 Let us consider the one-span simply supported beam of 
Fig. (2a), subjected to the distributed load p(x,t). 

 After its deformation, the infinitesimal part dx of the 
beam takes firstly the position abcd (caused by the bending 
of the beam) and finally the position ABCD because of the 
shear influence.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The deformed state of the infinitesimal part dx. 

 

 The final deformation  of a fiber in a distance z from the 
central axis is:  

z)t,x()t,x( =            (1) 

because, as the coordinate x increases the angle  decreases. 

 On the other hand we have:  

z
x

)t,x(

dx

d
x ==            (2) 

and finally: 

z
x

)t,x(
EE xx ==            (3) 

 Equilibrium of moments gives: 

dx

dM
V

x

M
=              (4) 
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where M  is the inertia moment produced by the rotation of 
the infinitesimal part dx. 

 Equilibrium of forces gives: 

)t,x(pwm
x

V
=             (5) 

where, wm  is the inertia forces because of the movement 
of dx in parallel to Oz axis. 

1. For the moment M we find the following expression: 

===

A A
y

2
x

x

)t,x(
JEdAz

x
EdAzM          (6) 

2. For the shear force V, we have: 

AGkAV ==             (7) 

where k  is the corrective factor of Timoshenko, expressing 
the non-uniform distribution of shear stresses along the 
height of the cross-section. 

 From Fig. (2b) we have the relation: 

+=
x

w
             (8) 

and Eq. (7) becomes: 

=
x

w
AGkV             (9) 

3. The inertia moment M  is produced by the inertia forces 

of the fibers dx in parallel to Ox axis in a distance z from the 
neutral axis:  

dxdAzdxdAF ==  

where  is the mass per unit volume. Therefore the produced 
moment will be: 
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So, Eq. (4) becomes: 

= yJV
x

M
          (11) 

 Introducing M and V from Eqs. (6) and (9) respectively 
into Eqs. (11) and (5) we obtain the following differential 
system: 
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 From Eq. (12b), we determine ,
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that we introduce into the equation getting after differentia-
tion of Eq. (12a). So, we come to the following equation: 
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 The equation of the free vibrating beam is: 

0
t

w

AGEk

m

tx

w

EAGk

m

t

w

EJ

m

x

w

4

4

22

4

2

2

y
4

4

=+

+++

       (14) 

 Assuming a solution of the form: 

tie)x(X)t,x(w =          (15) 

we get the following equation: 
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and since it is m= , the above equation becomes: 
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 The characteristic equation of the above differential one 
is: 

0
EJ
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 The roots of the above equation are: 
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 Hence, the solution of Eq. (16) is given by the following 
relation: 

xcoshcxsinhcxcoscxsinc)x(X 4321 +++=        (18) 

 For the case of a simply supported one-span beam, the 
following boundary conditions are valid: 

0)L(X)0(X)L(X)0(X ====          (19) 

 Using the above conditions we arrive at the system: 
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 In order for the system to have not only trivial solutions, 
the following condition must be fulfilled: 

0

LcoshLsinhLcosLsin

LcoshLsinhLcosLsin

00

1010

2222

22

=  

which simplifies to the following eigenfrequencies equation: 

2
+
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2

sin L sinh L = 0
 

and since it is 

2
+

2( )
2

sinh L 0
, it will be: 

0Lsin =             (20) 

 The above equation has the solution: 
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Eq. (17), we have: 
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or finally: 
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 Flügge [6], demonstrated in 1942, that an impulsive 
disturbance involving shear and moment will result in two 
wave trains, one that propagates with the moment-wave 
velocity: 

=
E

M
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and another that propagates with the shear-wave velocity: 

=
Gk

Q          (22b) 

 On the other hand we have: 
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where ry is the radius of gyration in parallel of Oy axis and  
the slenderness of the beam. 

 Introducing Eqs. (22a,b,c) into Eq. (21), we obtain: 
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and after some manipulations: 
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 The above equation has the solution: 
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 Neglecting the term )EGk/( 4
n

4  as being very small 

compared to the other terms, we arrive at the following ap-
proximate relation: 
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THE EIGENFREQUENCIES’ CHANGE 

 The expression giving the eigenfrequencies spectrum by 
the classical theory is:  
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or finally: 
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 The following ratio is of great interest: 
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THE CRITICAL SPEEDS’ CHANGE 

 A factor of great interest for the bridges, is the so called 
“critical speeds”. As critical speed, we define the speed that 
a vehicle needs for crossing a beam in time equal to the cor-
responding half-period of the beam. Thus for the nth period 
the critical speed will be: 
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 Introducing 
n

 from Eq. (26) into Eq. (29) we get: 
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 Calling 
oncr

 the critical speed found by the classical 

theory, we finally obtain: 
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 From the spectrum of the above critical speeds given by 
Eq. (30), the first one 

cr1
 is the most interesting, which 

from now on we shall call 
cr

. 
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FINITE BEAM ON ELASTIC FOUNDATION  

 Let us consider now the beam AB in Fig. (3), which is 
based on a Winkler-type elastic foundation. 

 According to the classical theory, the force per unit 
length of the beam reacting to the external loading is: 

wkP =             (32) 

where k is the so-called Winkler factor. 

 We shall proceed determining this factor. 

 

 

 

 

 

 
Fig. (3). Finite beam on elastic foundation. 

 
 The reduced deformations of an earthen infinitesimal part 

dzdydx  which is under three-axial loading are: 
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where Es is the soil modulus of elasticity and s the Poisson’s 
ratio (with values from 0.2 to 0.4). 

 If the lateral inflation is restrained (i.e., 0yx == ), it 

will be: 
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1
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and introducing x, y, into the third of Eqs. (33): 
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 It is valid that: 
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 Assuming additionally that Es and z remain constant 
along the depth H (see Fig. 4) we will have: 
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Fig. (4). Stress distribution under a beam of width b. 

 
 We next set: 
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where 
s

 is the mass per unit volume of the earth, and h is 

the height of the equivalent orthogonal cross-section that has 
the same area with the one of the beam AB. 

 Thus Eq. (36) becomes: 
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 Introducing the reaction of the foundation into Eq. (13) 
we get: 
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where the higher order terms have been neglected.  

 The equation of the free vibrating beam is: 
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 Following a similar process, like the one for Eq. (14), we 
finally obtain the equation: 
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and 
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where 
s

 is the speed of the sound in the earth (depended on 

the characteristics of the ground), and QM ,  are given by 

Eqs. (22a,b). 

 Thus the critical speed will be: 
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 From Eqs. (30) and (42), arises the following interesting 
ratio between the cr of the one-span simply supported beam 
and the scr of the same beam but laid on an elastic founda-
tion: 
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NUMERICAL RESULTS AND DISCUSSION 

 The materials used in engineering structures have 
modulus of elasticity waving from E=0.4x1010 dN/m2 to 
2.1x1010 dN/m2 , while their mass per unit volume starts 
from =200 kg/m3 to 800 kg/m3. 

 Assuming that the Timoshenko coefficient k =0.2 to 
1.00 we get the following values for the speed of the travel-
ing waves:  

a. Speed of the moment waves: 3.5 km/sec to 5.5 km/sec, 
and 

b. Speed of the shear waves: 0.4 km/sec to 3.2 km/sec 

 For different soil qualities we have: 

a. Modulus of elasticity: Es=0.15x106 dN/m2 to 15x106 
dN/m2 

b. Mass per unit volume: s=140 kg/m3 to 300 kg/m3, and 
thus we can determine the waves speed: 

.sec/km350.0tosec/km025.0
s

=  

 

The One-Span Simply Supported Beam 

 Let us consider firstly a beam of steel in which the speed 
of moment waves is sec/km172.5

M
= . For values of  

Timoshenko’s factor 0.1to2.0k =  we get speeds of shear 

waves from Q =1.42 to 3.192 km/sec respectively.  

 In the diagram of Fig. (5a) it is plotted the ratio 
onn

/  

versus , for sec,/km172.5M =  sec/km42.1Q = , and 

n=1, 2, 3, 4, 5. 

 In the diagram of Fig. (5b) it is plotted the ratio onn
/  

versus , for sec,/km172.5M =  sec/km192.3Q = , and 

n=1, 2, 3, 4, 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). a. Ratio 
onn

/  versus , for sec/km172.5
M

=  and 

sec/km42.1Q = . 

b. Ratio 
onn

/  versus , for sec/km172.5
M

=  and 

sec/km19.3Q = . 

 
 We next consider a beam made from concrete, in which 
the speed of moment waves is sec/km082.4

M
= . For 

values of Timoshenko’s factor from 0.1to2.0k =  the 

speeds of shear waves vary from Q =0,04 to 0,913 km/sec 

respectively.  

 In Fig. (6), we see the same as above diagrams corre-
sponding to a concrete beam. 
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Fig. (6). (a) The ratio 
onn

/  versus , for 

sec/km40.0andsec/km082.4 QM == .  

(b) The ratio 
onn

/  versus , for 

sec/km913.0andsec/km082.4 QM ==  

 

 In Fig. (7a), the diagrams of the critical speed 
cr

 of the 

beam versus the slenderness  for sec/km5.5
M

=  and 

various values of Q  are drawn.  

 In Fig. (7b), the same as in Fig. (7a) diagrams are drawn 

for sec/km5.3
M

=  and various values of Q . 

Finite Beam on Elastic Foundation 

 The commonly used material for such a beam is concrete. 

 For concrete, it is M=4,082 km/sec while the values of 

Q vary from 0,4 km/sec up to 0,913 km/sec for k =0,2 to 
1,00, respectively. For soil, the corresponding values for the 
speed of waves are s=0.025 km/sec up to 0.35 km/sec. 

 Considering a beam with length L=20 m, b=2.00 m and 
h=0.2 up to 1.0 m, and H varying from 10 to 30 m, the coef-
ficients 1, 2, and 3 take the following values: 
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and  waves from ~4 to ~940. 

 In Fig. (8), on can see the diagrams 
scrbcr

/  versus 

s
 for different , and for =4, 100, 300 and 800. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). (a) cr versus  for M=5,5 km/sec and various values of 
Q. 

(b) cr versus  for M=3,5 km/sec and various values of Q. 

 

CONCLUSIONS 

 From the results obtained and the diagrams shown in the 
preceding analysis, we can draw the following conclusions: 

Single-Span Simply Supported Beam 

 The use of the exact theory gives eigenfrequencies, 
which are significantly smaller than the ones obtained using 
the classical simplified theory. 

a. For steel beams and for speed of the shear waves 
sec/km42.1Q = , this effect is significant and amounts: for 

=20, and n=5 to 80%, for =20, and n=1 to 18%, for =40, 
and n=5 to 55%, and for =40, and n=1 to 7%. For >40, the 
effect is still significant for the eigenfrequencies and takes its 
minima (~1%) for =100 and n=1. 

 For speed of the shear waves sec/km19.3Q = , the 

above values decrease as follows: for =20, and n=5 the in-
fluence is 55%, for =20, and n=1 it is 5%, while for =100 
it is 5% (for n=5) and 0.5% (for n=1), respectively. 

For beams made from concrete, the effect is more signifi-
cant, i.e., for sec/km40.0Q = , it is 55% for  =20, and 
n=1,90% for  =20, and n=5,20% for =40, and n=1,75% for 
 =40, and n=5,10% for =80, and n=1,55% for  =80, and 

n=5,5% for =100, and n=1,45% for  =100, and n=5, while 
for sec/km913.0Q = , it is 20% for =20, and n=1,85% 
for =20, and n=5,10% for =40, and n=1), 55% for =40, 
and n=5,5% for =80, and n=1, 25% for =80, and n=5,2% 
for =100, and n=1, 15% for =100, and n=5. 
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Fig. (8). Velocity ratio 
scrbcr

/  vs soil speed 
s

. 

The critical speeds are especially affected by the speed of the 
shear wave Q  for slenderness <40. The speed Q  

(strongly depended on the cross-sectional shape) is possible 
to result (for the same slenderness) differences amounted to 
about 30% (for =40) to 100% (for =30), etc. 

Finite Beam on Elastic Foundation 

 The problem of how the traveling waves affect the criti-
cal speeds is very complicated in this case. 

 The characteristics of the soil that, according to Eqs. (42) 
and (43), affect the critical speed are two: the factor  and the 
speed of sound in the soil s. Higher values of  correspond 
to a more coherent soil. 

 The critical speeds of a beam resting on an elastic foun-
dation, compared to the ones of the corresponding one-span 
simply supported beam with the same characteristics, are 
significantly higher. 

 For different values of the slenderness , we observe that 
the primary critical speed of a finite beam on elastic founda-
tion is much higher than the one of the corresponding simply 
supported beam. Only for stiff beams and especially soft 
soils (see Fig. 8a, for =4 and =20) there is an insignificant 
difference. 

 For >20 and usual soil types, the primary critical speed 
is higher from 2 times (Fig. 8a) up to 30 times (Fig. 8d). 
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