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Abstract: An analytic relation for the terminal solid solubility of hydrogen in a stressed metal is derived, based on finite 

deformation theory. Phase transformation is assumed to be a reversible process, which occurs under local chemical equi-

librium among hydride, metal and hydrogen in solid solution. Hydrogen terminal solid solubility depends on stress due to 

the interaction of the applied stress field with the field of the expanding hydride as well as due to the reduction of hydro-

gen chemical potential in solid solution, caused by hydrostatic stress. The present analysis is complementary to hydride-

induced embrittlement studies in metals, under conditions, which require the use of finite deformations. 
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1. INTRODUCTION 

 Hydride-induced embrittlement is one type of material 
deterioration caused by hydrogen in metals such as zirco-
nium, titanium, niobium and vanadium. According to in-situ 
electron microscopy studies (e.g. [1-4]), embrittlement oc-
curs by precipitation of brittle hydrides at stress concentra-
tion locations. Indeed, a positive hydrostatic stress reduces 
hydrogen chemical potential in solid solution [5], thus creat-
ing hydrogen flux towards stress concentrators. When hy-
drogen terminal solid solubility is reached at the stress con-
centration locations, hydrides precipitate. Subsequently 
crack generation and propagation may occur by hydride frac-
ture.  

 An important part, in predicting hydride-induced frac-
ture, is the determination of hydrogen terminal solid solubil-
ity. Earlier theoretical studies have shown that terminal solid 
solubility depends on stress. In [6], the effect of stress on 
hydrogen terminal solid solubility is introduced by hydride 
expansion during precipitation. An additional stress effect 
was revealed in [7], caused by the reduction of hydrogen 
chemical potential in solid solution due to hydrostatic stress. 
Recently in [8, 9], hydrogen terminal solid solubility was 
derived analytically for anisotropic hydrides of any shape 
with different elastic properties than those of the metal, as-
sumed to be anisotropic too. According to relations (9a-b) in 
[9], a third stress effect on terminal solid solubility is attrib-
uted to the change of elastic material properties, when phase 
transformation occurs.  

 All previously mentioned analytical relations for hydro-
gen terminal solid solubility were derived, based on infini-
tesimal displacement gradient theory. However, in several 
applications, at room or higher temperatures, crack growth 
occurs by repeating steps, which involve crack tip blunting, 
hydride precipitation at a distance from the crack tip, hydride  
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fracture and ductile rupture of the ligament between the main 
crack and the generated micro-crack (e.g. [10, 11]). This 
mechanism is also called delayed hydride cracking. Crack tip 
blunting as well as ligament rupture are associated with sig-
nificant material deformation (e.g. fig. 3-7 in [11]). There-
fore, a finite deformation approach is necessary for the de-
tailed simulation of a crack growth step, which involves the 
simultaneous operation of the coupled processes of hydrogen 
diffusion, hydride precipitation, non-mechanical energy 
flow, mainly in the presence of temperature gradient as in 
nuclear industry applications, and material deformation. In 
previous papers, the governing equations for mass diffusion 
and non-mechanical energy flow in metals, under finite de-
formation, were presented [12, 13]. In the present work, the 
terminal solid solubility of hydrogen in a metal is derived by 
employing finite deformations. Thus, a tool for predicting 
hydride precipitation is provided. In other words, the present 
relation of hydrogen terminal solid solubility, together with 
the governing equations for hydrogen diffusion and non-
mechanical energy flow in [12, 13], can be part of a finite 
element algorithm, based on finite deformation, for the de-
tailed simulation of delayed hydride cracking.  

 Hydride precipitation in a metal is generally associated 
with elastic as well as plastic deformation of the metal. In 
vanadium, at relatively low temperatures, hydride accommo-
dation is elastic. In zirconium, plastic deformation occurs at 
room or larger temperatures. Hydride size is also a factor, 
affecting the type of deformation during precipitation. In the 
case of coherent sub-micron precipitates, the effective yield 
stress becomes equal to the theoretical yield strength and 
thus plastic relaxation is not possible unless the transforma-
tion stress, caused by the misfitting precipitate, is extremely 
large [14]. For incoherent sub-micron precipitates, the effec-
tive yield stress is approximately inversely proportional to 
the precipitate size and plastic relaxation is again impossible 
for precipitate size less than 10 nm. Note that the occurrence, 
or not, of plastic deformation during precipitation has impor-
tant implications on hydride stability. In vanadium, with 
elastic hydride accommodation at relatively low tempera-
tures, the hydrides, which form ahead of the crack tip, re-
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dissolve after fracture and crack propagation [1]. On the 
other hand, in zirconium alloys at room or larger tempera-
tures, hydrides are found on the crack faces [11]. 

 According to the above discussion, the precipitation of a 
sub-micron hydride, which corresponds to a slight increase 
of hydride volume fraction in a metal, is accommodated elas-
tically. However, the growth of the hydrides may eventually 
lead to irreversible metal plastic deformation, depending on 
temperature and hydride expansion during precipitation. This 
effect could be taken into account in a numerical simulation, 
by elastic-plastic governing equations for the deformation of 
the metal. Such an approach has been successfully followed 
in previous theoretical studies [9,15], under infinitesimal 
displacement gradient theory, which show excellent agree-
ment with experimental measurements of threshold stress-
intensity factor and steady-state sub-critical crack growth 
velocity; these studies do not simulate the details of a crack 
growth step. Having in mind the cases, where hydride ac-
commodation is elastic, as well as the approach followed in 
[9,15], the present derivation of hydrogen terminal solid 
solubility is based on finite elasticity. Thus an analytic rela-
tion is derived, which clearly reveals the effect of important 
physical parameters and it is easily incorporated in numerical 
algorithms. A finite element model, based on elastic-plastic 
finite deformation approach, could incorporate the present 
terminal solid solubility relation and still simulate delayed 
hydride cracking accurately, when a small time step time 
integration scheme is employed. Indeed, within a sufficiently 
small time integration interval, the increase of hydride vol-
ume fraction is accommodated elastically, corresponding to 
the precipitation of sub-micron hydrides.  

 In the following, tensor notation is used throughout. 

Bold-faced symbols are used to denote vectors and second or 

higher order tensors. Products are indicated with dots and 

products containing no dots are dyadic products. Latin indi-

ces range from one to three and repeated Latin indices are 

always summed. Inverses, transposes and transposed in-

verses are denoted with a superscripted –1, T  and T , re-

spectively. For example: 

A B = AikBkjbib j  , 

A :B = AijBji  , 

cd = cid jbib j  , 

c d = cidi  , 

B c = Bikckbi  . 

 The base vectors, bi , are Cartesian and independent of 

time, t.  

2. HYDROGEN TERMINAL SOLID SOLUBILITY  

 A hydride forming metal, which contains hydrogen, is 

subjected to an externally applied load. It is assumed that the 

metal undergoes a purely elastic deformation, described by 

the deformation gradient Fa  = x X( ) ; x is the position of 

a solid particle in the deformed configuration (spatial coor-

dinates) and X is its position in a reference (non-deformed) 

configuration (material coordinates), at t=0. The resulting 

stress field is given by Cauchy stress, a , defined on the 

deformed configuration. The respective second Piola-

Kirchhoff stress, defined on the reference configuration, is 

equal to Sa = Fa Fa 1 a Fa T
, where Fa  is the deter-

minant of the deformation gradient. When the metal deforms 

plastically too, then Fa  is set equal to the elastic part of the 

deformation gradient (e.g. [13]) and the reference configura-

tion is produced by applying the mapping Fa 1
 on the de-

formed configuration, where a  is applied. 

 Hydride precipitation in the stressed metal occurs, when 

hydrogen concentration in the solid solution exceeds hydro-

gen terminal solid solubility. In the present analysis, it is 

proven that hydrogen terminal solid solubility (TSS) in a 

metal takes the following form: 

CTS
= Ce

TS exp
wint
xRT

exp
W H

RT
,        (1a) 

wint = Sa :dE dV0  V M  0

  Eexp

,        (1b) 

W H
= V H 3( )  tr a( ) .         (1c) 

 The composition of the precipitating hydrides is given by 

MHx, where M could be any hydride forming metal and x is 

the number of hydrogen moles in a mole of hydride. In rela-

tion (1a), hydrogen terminal solid solubility, CTS
, is defined 

on the reference configuration. Ce
TS

, defined also on the 

reference configuration, is the terminal solid solubility, 

which is measured in experiments under conditions of 

chemical equilibrium and no externally applied stress. It is 

worth mentioning that Ce
TS

 contains the effect of the energy 

of hydride accommodation, which is stored in the metal due 

to hydride expansion during precipitation; the energy of hy-

dride accommodation is derived in section 3. R and T are the 

gas constant and the absolute temperature, respectively. wint , 

given in (1b), is the interaction energy, which results from 

the interaction of the applied stress with the expanding hy-

dride. The interaction energy is calculated by integrating 

over the molal volume of the metal, V M
, in the non-

deformed configuration, as well as up to the Lagrangian 

strain Eexp , which describes stress-free hydride expansion. 

Generally wint  depends on the change of solid elastic prop-

erties during hydride precipitation [8, 9]. However, in the 

present analysis, it is assumed, for simplicity, that the elastic 

properties of the hydride and the metal are identical. W H
 is 

the work per mole of addition of hydrogen in the solid solu-

tion, given by relation (1c), where tr a( )  is the trace of the 

applied Cauchy stress, kk
a

, and V H
 is the molal volume of 

hydrogen in solid solution. Relations (1a) to (1c) lead to rela-

tions (8a) and (8b) of [15], under infinitesimal displacement 

gradient theory. They also lead to relations (9a) and (9b) of 

[9], under infinitesimal displacement gradient theory and 
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identical hydride and solid solution elastic properties. The 

derivation of hydrogen terminal solid solubility follows. 

 Phase transformation is assumed to be a reversible proc-

ess, which occurs under local chemical equilibrium among 

hydride, metal and hydrogen in solid solution: 

μhr = μM
+ xμH

,             (2) 

where μhr , μM
 and μH

 are hydride, metal and hydrogen 

chemical potentials under stress, respectively, given in units 

of energy per mole (i.e. J/mol in SI units). The chemical po-

tentials of mobile and immobile components in stressed sol-

ids have been derived in [5]. According to [5], the chemical 

potential of a component B in a solid, under stress, satisfies 

the following relation: 

μB
= μB,0

+
w

NB W B
 .           (3) 

 μB,0
 is the chemical potential of component B, under 

stress-free conditions, for the same concentration as that un-

der stress. w  is the strain energy of the solid and NB
 is the 

number of B moles. Therefore, w NB
 represents the 

strain energy of the solid per mole of component B. W B
 is 

the work performed by the applied stresses per mole of addi-

tion of component B. For immobile components, since the 

addition or removal of the component takes place at an ex-

ternal surface or an interface, the chemical potential is con-

sidered to be a surface property.  

 In the case of hydrogen, one may show, that w NH
 is 

orders of magnitude smaller than W H
, given by relation 

(1c). Then, if w NH
 is neglected, one derives that hydro-

gen chemical potential in a stressed solid takes the form 

μH
= μH ,0 V H 3( )  tr a( ) , which is identical to relation 

(7a) in [12]. μH ,0
 is assumed to follow the law for ideal or 

dilute solutions (Raoult’s law).  

 By substituting (3), for every component, into (2) and 

using the law of ideal solutions for hydrogen, one may de-

rive: 

xRT ln
CTS

CTS,0 =
w

Nhr

w

NM W hr W M( )   

+xW H
.                (4) 

 CTS,0
 is the terminal solid solubility of hydrogen in the 

metal M, under stress-free conditions. According to the dis-

cussion in section 4: 

 
w

Nhr

w

NM W hr W M( ) = wacc + wint ,        (5) 

where wacc  is the strain energy of hydride accommodation. 

Then by substituting (5) into (4) and taking into account the 

relation between stress-free terminal solid solubility and the 

experimental measurements: 

Ce
TS

= CTS,0 exp
wacc
xRT

,           (6) 

relations (1a) to (1c), for hydrogen terminal solid solubility 

of a metal under stress, are derived.  

 In the following sections, the strain energy stored in the 

solid, when hydride precipitation occurs, is discussed and the 

mathematical model of hydrogen terminal solid solubility is 

further analyzed.  

3. ENERGY OF ACCOMMODATION OF A 

PRECIPITATING HYDRIDE 

 A region of volume V M
, in a stress-free metallic solid of 

total volume VM
, where V M

<<VM
, is transformed into a 

hydride of volume V hr
. This is the well-known transforma-

tion problem, which has been studied by Eshelby [16], in the 

case of infinitesimal displacement gradient theory. In order 

to relate to hydrogen terminal solid solubility, the volume of 

the transformed region is taken equal to the molal volume of 

the metal. The interface between the precipitating hydride 

and the surrounding metal is Si . The geometry of the prob-

lem in the reference configuration, is given in Fig. (1). Hy-

dride precipitation is associated with the stress-free expan-

sion strain Eexp , which depends on the metal. Because the 

hydride is constrained by the surrounding metal, during pre-

cipitation, a compressive stress field, S , and an associated 

strain field, E , develop, thus leading to the storage of elastic 

energy both in the precipitated hydride and the surrounding 

metal. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Geometry of the hydride precipitation problem in the ref-

erence configuration (t=0). The shaded area of the metal, of volume 

VM  (VM << VM ), transforms into a hydride. When the transfor-

mation occurs under stress, as in Section 4, traction is applied on 

the external boundary.  

 

 The differential of the elastic energy, in the transformed 

region, depends on the compressive stress field, S , and the 

elasticity tensor, K :  

dwhr = S :K 1 :dS dV0  V M  

= S : dE dEtr( )  dV0  V M ,           (7) 

)0( tSr

MV

MV

)0( tSi



4    The Open Mechanics Journal, 2010, Volume 4 Andreas G. Varias 

where dV0  corresponds to the volume differential in the ref-

erence configuration. Also dEtr  is the differential of stress-

free hydride transformation strain. On the reference configu-

ration, the generalized Hooke’s law is employed (e.g. [17]). 

Thus, the elasticity tensor relates linearly the differentials of 

the second Piola-Kirchhoff stress, dS , and the total Lagran-

gian strain minus the stress-free expansion part, dE dEtr , 

i.e. dS = K : dE dEtr( ) . Indeed, the principle of material 

frame indifference requires that, in terms of the second 

Piola-Kirchhoff stress, the response function of the material 

depends only on Lagrangian strain, or equivalently on 

Cauchy-Green deformation tensor (C=2E+I, where I is the 

identity tensor) or on the stretch tensor (U=C
1/2

), (e.g. [17]). 

Also the generalized Hooke’s law, describing with sufficient 

accuracy the elastic response of metals, which are elastically 

stiff, has been used in several finite deformation models ap-

plied to various engineering problems (e.g. [18-22]). 

 The differential of the elastic energy, in the surrounding 

metal, satisfies the following relation:  

dwm = dt   n
  Si t( )

v  dS = dt   :D
  V hr t( )

 dV   

= S :dE dV0  V M .            (8) 

 dV  corresponds to the volume differential in the de-

formed configuration. n  is the vector, normal to the inter-

face, pointing from the hydride to the metal. Also v  is the 

velocity of a solid particle on the interface and D  is the re-

spective rate of deformation tensor. In (8), relations 

dE dt = FT D F  and :D dV = S : dE dt( )  dV0  were 

taken into account. 

 By adding relations (7) and (8) and integrating over hy-

dride expansion strain, Eexp , one derives the energy of elas-

tic hydride accommodation, in a metal under no externally 

applied stress:  

wacc =  S :dEtr  dV0  V M  0

  Eexp

.          (9) 

 In the case of infinitesimal displacement gradient theory, 

relation (9) leads to the well-known relation (2.21) of 

Eshelby [16]. When the metal is under stress, the strain en-

ergy of hydride accommodation is given by (15), where, 

from the total stress in the hydride, the externally applied 

part is subtracted.  

4. STRAIN ENERGY DURING HYDRIDE PRECI-

PITATION UNDER STRESS 

 In the present case, the metal is under externally applied 

Cauchy stress, a , associated with a deformation gradient, 

Fa , and a Lagrangian strain, Ea . As in the previous section, 

a part of the volume, equal to molal volume of the metal in 

the reference configuration, V M
, transforms into a hydride.  

 The elastic energy of the transformed region includes the 

strain energy, due to the applied stress, as well as the strain 

energy, due to constrained hydride expansion: 

whr = S :K 1 :dS dV0  V M  0

  Sa
+ S :dE dV0  V M  Ea

  Eh
 

S :dEtrdV0  V M  0

  Eexp

.          (10) 

 In (10), Eh  is the total Lagrangian strain, which devel-

ops in the hydride, during precipitation, and includes the 

transformation expansion strain Eexp . 

 The elastic energy in the metallic volume, which sur-

rounds the hydride, satisfies the following relation: 

wm = S :K 1 :dS dV0  VM V M  0

  Sa
 

dt  n
  Si t( )  t 0( )

  t Eexp( ) v  dS  

+ dt  n a
  Sr t( )  t 0( )

  t Eexp( ) v  dS .         (11) 

 Sr  is the remote boundary of the metal, where a  is 

applied. Both the interface between the transforming region 

and the surrounding metal, Si , and the remote boundary, Sr , 

change with time, during transformation. Following a similar 

manipulation as in (8), one may show: 

dt  n
  Si t( )  t 0( )

  t Eexp( ) v  dS = S :dE dV0  V M  Ea
  Eh

.      (12) 

 When (11) is added to (10) and (12) is taken into ac-

count, the total elastic energy in the metal and the hydride is 

derived: 

w = wm + whr = S :K 1 :dS dV0  VM  0

  Sa
 

S :dEtr  dV0  V M  0

  Eexp

+ dt  n a v  dS
  Sr t( )  t 0( )

  t Eexp( )
. (13) 

 Relation (13) provides the strain energy of the solid, 

when a mole of metal transforms into a mole of hydride. 

Consequently, the sum of the last two terms on the right-

hand side of (13) is equal to the strain energy of the solid per 

mole of hydride minus the strain energy of the solid per mole 

of metal: 

w

Nhr

w

NM = S Sa( ) :dEtr  dV0  V M  0

  Eexp

 

Sa :dEtr  dV0  V M  0

  Eexp

 

+ dt  n a v  dS
  Sr t( )  t 0( )

  t Eexp( )
.        (14) 

 The first integral of the right-hand side is equal to the 

strain energy of hydride accommodation, taking into account 

that in the present case the metal is under externally applied 

stress, Sa : 

wacc = S Sa( ) :dEtr  dV0  V M  0

  Eexp

.       (15) 

 Also the third integral of right-hand side of (13) and (14) 

is equal to the work per mole of addition of hydride minus 
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the work of addition of a mole of metal, both performed by 

the applied stress: 

W hr W M
= dt  n a v  dS

  Sr t( )  t 0( )

  t Eexp( )
.        (16) 

 Therefore, by taking into account relations (14), (15), and 

(16) as well as (1b), where wint  is defined, one derives rela-

tion (5).  

5. STRESS EFFECT ON HYDRIDE PRECIPITATION 

 Two cases of hydride precipitation under simple homo-

geneous deformation fields, namely dilatation and simple 

shear, are investigated in the present section. In both cases 

the hydride is assumed to expand isotropically, while pre-

cipitating. Therefore the Lagrangian expansion strain is re-

lated to the ratio of molal volumes of hydride and metal as 

follows: 

Eexp =
1

2

V hr

V M

2
3

1 I .         (17) 

 In the case of dilatation, the spatial and material coordi-

nates of a metal particle satisfy the following relations (e.g. 

[23]): 

x =
2

3

SD
K

+1
1
2
X ,          (18) 

where K  is the bulk modulus of elasticity of the metal. Also 

SD  is the hydrostatic stress, applied on the reference 

configuration: 

Sa = SDI .          (19) 

 After straightforward calculations, one may show that the 

work per mole of addition of hydrogen in the solid solution 

and the interaction energy depend also on hydrostatic stress: 

W H
=

SDV
H

2

3

SD
K

+1

,         (20) 

wint =
3

2
SDV

M V hr

V M

2
3

1 .        (21) 

 Relations (20) and (21) reveal opposite effects of hydro-

static stress on hydrogen terminal solid solubility. Increase 

of hydrostatic stress leads to decrease of terminal solid solu-

bility, through the contribution of the interaction energy. 

Indeed a hydrostatic tension field facilitates energetically the 

transformation of an expanding particle. On the other hand, 

increase of hydrostatic stress leads to increase of terminal 

solid solubility, through the contribution of the work per 

mole of addition of hydrogen in the solid solution. This is 

also an expected trend, since a hydrostatic tension field cre-

ates space for hydrogen atoms, thus favoring hydrogen in 

solid solution. The overall effect is given in Fig. (2) for Zir-

caloy-2 and -hydride (ZrH1.66) at 573 K. Zircaloy-2, a hy-

dride forming alloy with properties presented in Table 1, is 

used in the fuel cladding of nuclear reactors, where the tem-

perature under consideration develops. The sources of mate-

rial properties are given in [7].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Effects of applied stress on normalized hydrogen terminal 

solid solubility, CTS Ce
TS , of Zircaloy-2 at 573 K, in the case of 

dilatation and simple shear, where the normalized stress is given by 

SD K  and SS μ , respectively.  

 

Table 1. Material Properties of Zircaloy-2 and -Hydride 

(ZrH1.66) at 573 K 

K  102.3 GPa 

μ  29.4 GPa 

 82.7 GPa 

VM  14·10-6 m3/mol 

Vhr  16.3·10-6 m3/mol 

VH  7·10-7 m3/mol 

x  1.66 

 

 According to Fig. (2), hydrogen terminal solid solubility 

decreases by more than 10%, when hydrostatic stress ex-

ceeds the yield stress of irradiated alloy, which is equal to 

580 MPa at 300
o
C (e.g. [9]). 

 In the case of simple shear, the spatial and material coor-

dinates of a metal particle satisfy the following relations (e.g. 

[23]): 

xi = iJ XJ +
SS
μ

i1X2 ,         (22) 

where small and capital letter indices are used to distinguish 

between spatial and material coordinates. iJ  is Kronecker 

delta, μ  is the shear modulus of the metal and SS  is the 

shear stress applied on the reference configuration. The ten-
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sor of the applied stress includes also higher order normal 

components: 

Sa =

1

2

SS
μ

2

SS 0

SS
1

2
+ μ

SS
μ

2

0

0 0
1

2

SS
μ

2

.        (23)  

 In the case of simple shear, the work per mole of addition 

of hydrogen in the solid solution and the interaction energy 

depend on applied shear stress, according to the following 

relations: 

W H
=
1

2
+ μ V H SS

μ

2

+
1

3

SS
μ

4

,       (24) 

wint =
3

4
K

SS
μ

2

V M V hr

V M

2
3

1 .       (25) 

 According to relations (24) and (25), the effect of applied 

shear stress on hydrogen terminal solid solubility is weak, 

involving second and fourth order terms of SS μ . Numeri-

cal results are given in Fig. (2) for Zircaloy-2 and -hydride. 

 The strong effect of hydrostatic stress on hydrogen ter-
minal solid solubility has direct implications on delayed hy-
dride cracking. Indeed the area of large hydrostatic stress is 
directly ahead of the tip of an open mode crack, on the crack 
plane. In this area, hydrogen terminal solid solubility de-
creases most and the precipitation of brittle hydrides is facili-
tated. As a consequence the crack propagates ahead without 
deviation from the crack plane. Experimental studies on Zir-
conium alloys show, in the presence of hydrogen, the devel-
opment of long straight cracks with fractured hydrides along 
the crack faces (e.g. fig. 5-4 in [11]). Also due to crack tip 
blunting hydrostatic stress is maximum at a distance from 
the crack tip (e.g. [21, 24]). Therefore the hydrides precipi-
tate at distance from the crack tip, which is also confirmed 
by experimental studies (e.g. [10]).  

6. CONCLUSIONS 

 In the present study, the terminal solid solubility of hy-
drogen in a stressed metal is derived, analytically, based on 
finite elasticity. The phase transformation is considered to be 
a reversible process, occurring under local chemical equilib-
rium among hydride, metal and hydrogen in solid solution. It 
is shown that, besides temperature, hydride precipitation 
depends on stress due to (i) the interaction energy per mole 
of transforming metal, which results from the interaction of 
the applied stress field with the field of the expanding hy-
dride and (ii) the work of addition of a mole of hydrogen in 
the metal, which also measures the reduction of hydrogen 
chemical potential in solid solution, caused by hydrostatic 
stress. The stress effect due to the variation of the elastic 
strain energy of the metal per mole of hydrogen in solid so-
lution is neglected. The finite deformation relations have a 

structure similar to the structure of previous relations, de-
rived based on infinitesimal displacement gradient theory [9, 
15], and lead to them in the small strain limit. The effects of 
dilatation and simple shear on hydrogen terminal solid solu-
bility are also investigated. It is shown that hydrostatic stress 
strongly influences hydrogen terminal solid solubility, which 
agrees with experimental observation on position of hydride 
precipitation ahead of a mode-I blunted crack and on direc-
tion of crack growth. The present analysis is complementary 
to previous papers on mass diffusion and non-mechanical 
energy flow in metals under finite deformation [12, 13] and 
it is expected to facilitate hydride induced embrittlement 
studies under conditions, which require finite deformation 
approach. 
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