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Abstract: This work deals with the influence of the pure torsional (St. Venant) moment on deriving the elastoplastic in-

teraction curves of internal forces and moments of a symmetrical I-section. The problem is addressed employing the exact 

theory of torsion. The simultaneous action of normal and shear stresses due to axial forces as well as bending and tor-

sional moments is thoroughly investigated and the results are compared to the provisions of Eurocode 3 (EC3). Is has 

been found that the code’s provisions are partly simplified formulae leading in most cases to uneconomic design. 
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INTRODUCTION 

 Each cross-section of a structural member (beam or col-
umn) is subjected to a set of six internal forces and moments 
due to bending, pure torsion or axial distress and two more 
forces caused by warping of the cross-section (bimoment and 
warping torsion). Although the stress-state problem can be 
easily formulated for the bending moments and forces, it 
becomes rather difficult if one attempts to formulate it taking 
into account the torsion moment and apply the exact theory 
of torsion [1, 2]. On the other hand the usually applied sim-
plifications for the torsional stresses distribution on a cross-
section lead to formulae of questionable exactitude that 
sometimes overestimate the carrying capacity of the cross-
section [3, 4]. 

 The present work deals with the study of the interaction 
of the aforementioned internal forces and moments on a 
symmetrical I-section. The material is assumed elastic-
perfectly plastic. The warping stresses (due to non-uniform 
torsion) have been neglected due to the vagueness of the way 
and time of their appearance during the plasticization process 
of the cross-section [5]. Prandtl’s theory of torsion, also 
known as Prandtl’s membrane analogy, is used for the de-
termination of the stresses caused by pure torsion (St. Ve-
nant’s torsion) in the elastic as well as in the plastic regions 
[6, 7]. A cross-section goes through certain stages of stress-
state until its complete plasticization [8]. Decoupling of 
bending and torsional problems is based on the provisions of 
EC3. 

 The interaction formulae for internal forces and moments 
are determined for both the elastic and the plastic stage as 
well as for several partial plasticization stages of a cross-
section using the above Prandtl’s theory and the equivalence 
principle [9, 10]. 
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ELEMENTARY CONCEPTS 

The Strains 

 We consider the infinitesimal part dx of a beam which is 

strained by an axial force Nx and a bending moment My. The 

beam is referred to the classic clockwise system of coordi-

nates as it is shown in Figs. (1 and 2). On the plane of the 

neutral axis it is x=0 and therefore x=0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Bending of an infinitesimal element dx. 
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The Stresses 

 Let us consider next the cross-section in Fig. (2), which 

is symmetric about Oz axis. It is known that, when parts of 

the cross-section go into the plastic region, the neutral axis 

moves to its final position where equilibrium of forces and 

moments is satisfied. 

 

 

 

 

 

 

 

 

 
Fig. (2). Elastic-plastic stress distribution on a cross-sectional area 

A. 

 

 Easily, we find that: 

x

F

=
z +

+ c
            (2) 

 If Ao and Au are the top and bottom plastic regions of the 

cross-section A, and Ae is the remaining elastic part, equilib-

rium of forces gives: 

xdA = xdA + F (Au Ao ) = Nx
AeA

 

and finally 

Ae + (Au Ao nx A)( + c) = Se          (3) 

 On the other hand, equilibrium of moments gives: 

xzdA = FzdA + F
z +

+ c
zdA

AeApA

= My  

and finally 

Se + (So Su Wyp my )( + c) = Ie          (4) 

where:  

nx =
Nx

Nxp

, my =
My

Myp

, Spo = zdA ,
Ao

Spu = zdA ,
Au

Se = zdA , Ie = z2dA
AeAe

         (5) 

and Wyp is the resistant moment of the fully plastic cross-

section. By solving the above system of eqs(3) and (4) we 

obtain the unknown quantities  and c. 

CLASSICAL THEORY OF PURE TORSION 

The Principle 

 For pure torsion, the shearing stresses xy  and 
xz

 are 

independent on the normal ones x (y, z)  [1]. In this case, 

we set: 

u = u(x, y, z,D)

D = x = cons tan t
       

(6a)

(6b)
 

where  is the constant change of the rotation angle  of 

axis Ox. Using von Mises’ criterion we have: 

x
2
+ 3 ( xy

2
+ xz

2 ) = F
2

          (7) 

 It is known that: 

xy = z
, xz = y

       
(8a)

(8b)
 

where , is the so called stress-function. 

 Introducing eqs(8) into eq(7), we finally obtain: 

y

2

+
z

2

=
1

3
[ F

2
x
2 (y, z)] = F2 (y, z)  

with =0 on the boundaries, or finally: 

grad = F(y, z),  with = 0  on        (9a) 

and 

F(y, z) =
1

3
[ F

2
x
2 (y, z)]1/2         (9b) 

 In order to solve the aformentioned boundary-value prob-

lem, we set: 

xy = z
= F(y, z) cos (y, z)

xz = y
= F(y, z) sin (y, z)

   
(10a)

(10b)
 

 The above stress distributions satisfy eqs(9). On the other 

hand it is known that: 

yx

y
+

zx

z
= 0  

and according to the Gauchy’s principle: 

xy

y
+

xz

z
= 0           (11) 

 Because of eqs(10), eq(11) becomes: 

F

y
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 The following relations are valid (see Fig. 3): 
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 Introducing eqs(13) into eq(12), we obtain: 

+
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F

F
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= 0           (14) 
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Fig. (3). Geometrical conditions of the shear stresses. 

 

where t and  are the tangential and the normal directions, 

respectively, at point R(yR,zR) as shown in Fig. (3). Assum-

ing that the equation of the boundary curve is known, i.e., 

that it has the form: 

f ( R ) = zR + yR cot R          (15) 

we can integrate eq(14). Thus, the function F can be deter-

mined and, subsequently, from eq(10) the stresses xy and 

xz. Finally, the torsion moment Mx can be determined using 

the well-known formula: 

Mx = 2GD ( xy z + xz y)dA
A

        (16) 

where G is the shear modulus of steel. 

The Case of a Symmetrical I-Cross-Section 

 Depending on the stress state, x may be either constant 

or variable along the main axes of the cross-section. In this 

work, we will examine the cases of constant or linearly vary-

ing normal stress x. 

The Stress x is Constant 

 The main goal is to determine the additional torsion mo-

ment Mx needed to fully plasticize a cross-section with area 

A subjected to a known axial force Nx. We symbolize with 

p the stress function of the complete plasticization of A 

under the action of the Mxp alone, and with  the one of the 

complete plasticization of A under the simultaneous action 

of Mx and Nx. 

 According to the analysis presented in the previous para-

graph, we can write: 

For Mxp : grad p =
F

3

For Nx + Mx : grad =
1

3
[ F

2
x
2 ]1/2

   
(17a)

(17b)
 

 But since x = Nx / A = const. , it also follows that 

F
2

x
2
= h

2
= const. . According to Prandtl’s membrane 

theory, the membranes of eq(17), having constant inclina-

tions, degenerate to simple roofs-in-plane with inclinations 

grad  and grad p  as shown in Fig. (4). Therefore, 

the torsion moment Mx (according to the above analysis) is 

equal to the double of the volume that is bounded by the 

membrane . Thus, one can write: 

Mx

Mxp

=

p

=
tan

tan p

=
grad

grad p

=

= 1 x

F

2

= 1
Nx

Nxp

2

     (18a) 

or finally: 

nx
2
+ mx

2
= 1         (18b) 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Stress functions  and P. 

 

The Stress x Varies Linearly 

 In this case, we assume that the distribution of normal 

stresses x along the main axes of an orthogonal cross-

section is known and we proceed to determine the torsion 

moment Mx, which along with the given external forces Nx 

and My (or Nx and Mz) causes the complete plasticization of 

the cross-section. In such a case, the stress x varies linearly 

according to the following relation: 

x =
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A
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z

h / 2
         (19) 

 Thus, 
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z

h / 2
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z

h / 2
       (20) 

where 

nx =
Nx

Nxp

, my =
My

Myp

, ky =
Wyp

Wy

, 

and Nxp is the axial force which acting alone on the cross-

section causes its complete plasticization, and Myp is the 

bending moment which acting alone causes the complete 

plasticization of the cross-section. Hence, eq(20) can be writ-

ten as: 
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x

F

= nx +
z
, where : =

h

2 ky my

       (21) 

 Equations (9a) and (9b) give: 

y

2

+
z

2

=
F

3
1 nx +

z 2

= F2 (z)        (22) 

with =0 on (Lb). 

 In order to be able to determine the moment Mx=2V  

through the calculation of the volume V  that is bounded 

below the membrane (y,z), we must first solve the above 

boundary-value problem, as it is described by eq(22). For the 

solution of this problem, we apply eq(13b): 
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 Since dz = d cos , the above equation can be written 

as follows: 

z
cos =

nx + z
2 ( nx + z)

2 sin  

or 

cot d =
nx + z

2 ( nx + z)
2 dz =

d [ 2 ( nx + z)
2 ]

2 [ 2 ( nx + z)
2 ]

 

or, in a more concise form 

cot d =
1

2

d [ 2 ( nx + z)
2 ]

2 ( nx + z)
2  

and 

 

n(sin ) = n
c

2 ( nx + z)
2

 

or, finally 

sin =
c

2 ( nx + z)
2

        (23) 

 For a random point R at the boundary  (see Fig. 5), a 

value sin R corresponds to each value of zR, and hence, from 

eqs(23) we obtain: 

c = sin R
2 ( nx + zR )

2  

 Thus, eq.(23) becomes: 

 

 

 

 

 

 

 

 

Fig. (5). (a) Distribution of normal stresses and (b) shear stresses. 

 

sin =

2 ( nx + zR )
2

2 ( nx + z)
2 sin R         (24) 

 Along the boundary  (as shown in Fig. 5), it is sin R=1 

and eq.(10) gives xz=F(z) sin , or: 

xz =
F

3
1

nx + z
2 2 ( nx + zR )

2

2 ( nx + z)
2

 

and 

xz =
F

3

2 ( nx + zR )
2

2          (25) 

where zR is now equal to z, because it expresses the ordinate 

of the boundary . So, eqs(25) give for zR=z the diagram of 

Fig. (5b), while the additional torsion moment Mx will be: 

Mx = xz
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or finally: 
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2
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h

2
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h

2

2
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h

2
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h

2

2

+
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h

2
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h
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 Introducing the expression of  from eq(21b) into the 

above expression, we obtain: 

Mx
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mx =
1

Jdp

b2 h

16kymy 3
([ nx + kymy ) (nx + kymy )

(nx kymy ) (nx kymy )

+ arcsin(nx + kymy ) arcsin(nx kymy )

    (26b) 

where Jdp for an orthogonal cross-section is given by  

Jdp =
hb2

4 3
. 

INTERACTION CURVES 

 Since the methodology presented in the previous para-

graph is too extensive, we will examine in detail only a lim-

ited number of cases that are the most characteristic ones. 

This technique can be applied to all other cases. 

The Case Nx+Mx 

 This case is already presented above. If Nx is the acting 

axial force and Mx the searched additional torsion moment, 

the following relation is valid: 

nx
2
+ mx

2
= 1           (27) 

where nx=Nx/Nxp and mx=Mx/Mxp. 

The Case Mx+My 

 We assume that the distribution of the stresses, caused by 

a bending moment My, along the Oz axis is known (see Fig. 

6). If A is the area of a doubly symmetric I-cross-section, we 

search for the additional torsion moment Mx which acting 

simultaneously with the given bending moment My causes 

the complete plasticization of the cross-section A. The cross-

section goes to its complete plasticization through the fol-

lowing steps: 

1
st
 Step 

 This step starts from My=0 up to the plasticization of the 

first external fiber under the moment My1. It is My1= F Wy, 

or finally: 

my1 =
My1

Myp

=
Wy

Wyp

         (28) 

2
nd

 Step 

 This step starts from My1 up to the plasticization of both 

flanges under the moment My2. It is 

My2 = Myp 2
1

2 Ftw
ho
2

3
 , 

or finally: 

my2 =
My2

Myp

= 1
hoAw
6Wyp

         (29) 

3
rd

 Step 

 This step starts from My2 up to the complete plasticiza-

tion of the entire cross-section under the moment Myp. 

The 1
st
 Step: Torsion on the Entire Cross-Section 

The Part I (Flanges) 

 In this case, since it is tf<<h, and the direction of shear 

stresses  is parallel to the flanges’ large dimension, one can 

consider the mean stress of each flange (see also Fig. 6). It 

is: 

o

F

=
My /Wy

Myp /Wyp

= ky my  

where ky can be obtained from eq(20). Thus:  

m

F

= ky my
h + 2 ho
2 h

         (30) 

and from eq(18a) we have: 

MxI

MxIp

=
grad

grad p

=

1

3
F
2
+ m

2

F / 3
= 1 m

F

2

 

or 

MxI = F JdpI 1 ky
2 h + 2 ho

2 h

2

my
2

       (31) 

where 

JdpI =
b t f

2

2 3
 

for both flanges. 

The Part II (Web) 

 It is (see Fig. 6): 

 

 

 

 

 

 

 

 
Fig. (6). Normal stresses on an I-section during the plasticization progress. 
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x

F

=
o

F

z

h / 2
=
z

         (32) 

where 

=
h

2 ky my

 

 With nx=0 and  computed from eq(32), eq(26a) gives: 

MxII =
Ftw
2

4 3
ho 1

2 hoky
h

my

2

+

+
h

2 kymy

arcsin
2 hoky
h

my

       (33) 

 Thus, the total torsion moment is the summation of the 

above two parts MxI and MxII: 

Mx = FJdpI 1 ky
2 h + y

2

2

my
2
+

+ Ftw
2

4 3
ho 1 y

2my
2
+

h

2 kymy

arcsin ymy( )
 

and finally: 

mx1 =
1

Jdp
JdpI 1 ky

2 h + y

2

2

my
2
+

+
tw
2

4 3
ho 1 y

2my
2
+

h

2 kymy

arcsin ymy( )

       (34) 

with ky =Wyp /Wy and y = 2 hoky / h . 

The 2
nd

 Step: Torsion on the Web and a Part of Flanges 

(ho< <h/2) 

 Since an exact calculation of distance 2 (Fig. 6c) leads to 

the solution of a 3
rd

 order algebraic equation and observing 

that 2 varies almost linearly within thickness tf, one can 

determine 2 through the following approximate relation: 

2 =
h

2

6 t f (Wy Wyp my )

6 (Wy Wyp ) + ho Aw
        (35) 

 We divide the elastic region of the cross-section in two 

parts: the elastic part of the flanges and elastic part of the 

web (as shown in Fig. 6c). 

The Part I (Flanges) 

 Since the thickness tf of the flanges is small compared to 

the height h, one can consider that the normal stresses in Fig. 

(6c) have a uniform distribution along the thickness to. So, 

one can use the mean stress: 

m =
F + x (ho )

2
= F

ho + 2

2 2

        (36) 

 Using eq(19a), we obtain the following relation: 

MxI = F JdpI 1
ho + 2

2 2

2

        (37) 

where 

JdpI =
b to

2

2 3
=
b ( 2 ho )

2

2 3
 

The Part II (Web) 

 The normal stress x at a distance z (Fig. 6c) is given by: 

x (z) = F
z

2

          (38) 

that has the same form with the expression of eq(32). Fol-

lowing the same procedure as the one presented above, one 

can obtain the relation: 

xz =
F

3
2
2 z2

2
2 for ho z ho         (39) 

 The torsion moment undertaken by part II will be: 

MxII = xz
tw
2

2

dz
ho

ho

=
F

4 3
tw
2

2

1

2

z

2

1
z

2

2

+ arcsin
z

2
ho

ho  

or finally 

MxII =
F tw

2

4 3
2

ho

2

1
ho

2

2

+ arcsin
ho

2

       (40) 

 Thus, the total torsion moment is the sum of the above 

two parts MxI and MxII : 

Mx = F
b ( 2 ho )

2

2 3
1

ho + 2

2 2

2

+

+
F tw

2

4 3
ho 1

ho

2

2

+ 2 arcsin
ho

2

 

and finally: 

mx =
1

Jdp

b ( 2 ho )
2

2 3
1

ho + 2

2 2

2

+

+
tw
2

4 3
ho 1

ho

2

2

+ 2 arcsin
ho

2

       (41) 

where 2 can be computed from eq(35). 

The 3
rd

 Step: Torsion Only on the Web ( 3<ho) 

 In this case (see Fig. 6e), we have: 

My = Myp tw F 3
2 / 3  

or finally: 
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3 =
3Wyp

tw
(1 my )           (42) 

 On the other hand, we know that (see Fig. 6e): 

x (z) = F
z

3

for z 3          (43) 

 The above expression has the same form with eq(38). 

Following the same procedure as the one presented above, 

we obtain the expression: 

xz =
F

3
3
2 z2

3
2 for 3 z 3  

 The torsion moment will be: 

Mx =
F

4 3
tw
2 3

2

z

3

1
z

3

2

+ arcsin
z

3
3

3

=

=
F tw

2

8 3
3

 

or finally 

mx =
tw
2

8 3 Jdp

3Wyp

tw
(1 my )         (44) 

The Case Mx+Mz 

 Following the procedure given in the previous paragraph, 

one can distinguish between the following two cases (see 

Fig. 7): 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Normal stress x for bending moment Mz. 

 

Torsion on the Entire Cross-Section 

 Neglecting the very small part of bending moment Mz 

that can be undertaken by the web and assuming that the 

flanges undertake the whole bending moment Mz, we have: 

R

F

=
Mz /Wz

Mzp /Wzp

= kz mz  

and 

x

R

=
y

b / 2
 

 thus x = R 2 y / b = F kz mz 2 y / b , or finally: 

x

F

=
y
, where : =

b

2 kz mz

        (45) 

 For the flanges, it is valid that 
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3
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and, therefore, 
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2
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2
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b
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      (46) 

 On the other hand, normal stresses do not develop within 

the web due to the axial force but only shear stresses due to 

torsion. Thus, 

MxII = F JdpII            (47) 

 The total torsion moment is the summation of the above 

two parts MxI and MxII : 

mx =
1

Jdp
{JdpII +

t f
2

2 3
[
b

2
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2
+

+
b

2 kz mz

arcsin(kz mz )]}

       (48) 

where 

JdpII =
ho tw

2

2 3
. 

Torsion on the Web and a Part of Flanges 

 This case exists only if 

mz Wz /Wzp           (49) 

 Then, the following relation is valid: 

Mz = Mzp F t f 2
2 / 3  

or finally: 

=
3Wz p

2 t f
(1 mz )           (50) 

and through an analysis analogous to the one presented 

above, we obtain:  
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MxI = 2
F t f

2

8 3
         (51) 

 Thus, the total torsion moment is the summation of the 

above two parts MxI and MxII, with MxII computed from 

eq(47) 

mx =
1

Jdp
JdpII +

t f
2

4 3

3 Wz p

2 t f
(1 mz )        (52) 

The Case Mx+My+Vz 

 In the present case (existence of My and Vz) and since the 

flanges undertake an almost negligible part of the shear force 

(~2%), we can assume that the shear force is undertaken 

solely by the web. The shear force Vzp (i.e., the shear force 

needed for complete plasticization of the cross-section) will 

be: 

Vzp = Aw F / 3 = 2 ho tw F / 3        (53) 

Torsion on the Entire Cross-Section 

 The stresses x and  are given by the following expres-

sions: 

x =
My

Jy
z , =

Vz
Jy tw

Af

4
(h t f ) + tw

ho
2 z2

2
      (54) 

 The most unfavorable stress combination occurs at z=(h-

2tf)/2, and since 

h = F = x
2
+ 3 2  

the following condition must be also valid in order for the 

cross-section to be able to undertake an additional torsion 

moment: 

Vz
2 16 tw

2

Af
2 (h t f )

2
F
2 J 2

3

h 2 t f
2

2

My
2       (55) 

 The distribution of shear stresses in a rectangular cross-

section due to simultaneous action of torsion moment Mx and 

shear force Vz may be regarded similarly to the distribution 

of normal stresses caused by axial force Nx and bending 

moment My. Thus, we consider the model shown in Fig. (8), 

where tV is the width of the web that can be plasticized by 

the shear force Vz . 

 

 

 

 

 

 

Fig. (8). Shear stress distribution in the web. 

 

 In this case, the following relation is valid 

tV
F

3
dz = tw dz  

and taking into account the second expression of eq(54), the 

above relation results tV=μ(z) v, where v=Vz/Vzp and 

μ(z) =
A

Jy

Af
4
(h t f ) + tw

ho
2 z2

2
        (56) 

 Thus, the searched torsion moment of the web will be 

MxII = xz
tw
2 tv

2

4
dz

ho

ho

  

and 

mx =
1

Jdp
JdpI 1

ky + y

2

2

my
2
+

+
tw
2

4 3
ho 1 y

2 my
2
+

h

2 kymy

arcsin( ymy )

v2
( 1 2 z2 )2

4 3
1

z 2

dz
ho

ho

with : ky =Wyp /Wy , y = 2 ho ky / h

       (57) 

Torsion on the Web and a Part of Flanges 

 The distribution of shear stresses  is the shown in Fig. 

(8). Under the same assumptions eq(36) is valid, and thus we 

finally obtain: 

mx =
1

Jdp

b ( ho )
2

2 3
1

ho +

2

2

+

+
tw
2

4 3
ho 1

ho
2

+ arcsin
ho

v2
( 1 2 z2 )2

4 3
1

z 2

dz
ho

ho

        (58) 

Torsion Only on the Web 

 It can be easily proved that the distribution of shear 

stresses starts from the boundaries of the plastic regions of 

the cross-section, as shown in Fig. (7b). Thus the part of the 

web that receives the shear stresses due to Vz, may as well 

behave like a rectangular cross-section with dimensions 

w
t2 . Evidently, we may write: 

x = F
z
, =

3 Vz
4 tw

1
1

z
2

       (59) 

and 

max =
3 Vz
4 tw

 

 When max  reaches the limit value F = F / 3 , eq(8c) 

gives: 

=
3 3 Vz
4 tw F

          (60) 
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 According to the diagram in Fig. (7a), one can write 

My = Myp F tw
2 / 3 , or because of eq(40) and taking 

into account eq(33), we find that in order for the cross-

section to be able to undertake a torsion moment Mx the fol-

lowing condition must apply:  

Vz
2 16

9

tw Wp

Aw
2 1

My

Myp

Vzp
2          (61) 

 The width tv, using eq(39b), is:  

tv =
3 3

4 tw F

1
z

2

=

=
3 ho
2

1
z

2
Vz
Vzp

        (62) 

and, the searched torsion moment will be: 

 

mx =
tw
2

8 3 Jdp

3 Wyp

tw
(1 my )

1

Jdp
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3 ho
2

1
z

2 2

1
z

2

dz

      (63) 

The Special Case Mx+Vz 

 Following the same procedure as in the previous section, 

we obtain: 

mx = 1
1

4 Jdp 3
v2 μ(z) 1

z

ho

2

dz
ho

ho

 

for Vz Aw/A, and 

mx = 1
(A v Aw )

2

8 b Jdp 3

1

4 Jdp 3

Aw
A

2

μ(z) 1
z

ho

2

dz
ho

ho
       (64) 

where 

μ(z) =
Aw
Jy

Af

4
(h t f ) + tw

ho
2 z2

2
 

The Case Nx+Mx+My. 

 In this case, the analysis is very complicated since it de-

pends on the values of Nx (and, therefore, on the plastic part 

of the cross-section) and also on the values of My. The paths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Plasticization processes for a symmetrical I-section.  
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leading to the complete plasticization of the cross-section 

and the corresponding steps are shown in Fig. (9). The 

analysis is carried out following the same steps as in the pre-

ceding paragraphs and a detailed description is out of the 

scope of this paper. 

NUMERICAL RESULTS & CONCLUSIONS 

 Considering first the simultaneous action of axial force 

Nx and torsion moment Mx, we obtain the diagram of Fig. 

(10) showing the interaction curve mx - nx in non-

dimensional form. It is observed that for intermediate values 

of the axial force and the torsion moment the interaction 

curve is smooth and represents the limiting combinations Nx 

- Mx corresponding to the fully plastic cross-section. 

 

 

 

 

 

 

 

 

 

Fig. (10). Interaction curve mx – nx. 

 

 In Figs (11a) and (11b), one can see the interaction 

curves mx - my for HEB and IPE cross-sections, respectively. 

It is observed that for small or intermediate values of the 

bending moment My, both interaction curves are smooth and 

almost coincident, while for higher values of My near the 

plastic resistance value, a sudden drop is observed on both 

curves due to phase-chance in the plasticization process ac-

companied by a 15% -20% difference between the short- and 

wide-flange I-cross-sections. 

 The diagram of Fig. (12) shows the interaction curve mx – 

mz. One can observe the limited carrying capacity of the I-

section in bending moment Mz and torsion moment Mx when 

comparing to the corresponding diagrams mx – my. 

 

 

 

 

 

 

 

 

Fig. (12). Interaction curve mx - mz. 

 

 Fig. (13) shows the interaction curves mx-my for different 

values of the ratio v=Vz/Vzp. The presence of a shear force 

Vz with simultaneously acting moments My and Mx causes a 

gradual reduction of the carrying capacity of the I-section 

with a maximum 10% drop. 

 The interaction curves v-mx are shown in Fig. (14) ac-

cording to the proposed approach (continuous line) and ac-

cording to the provisions of EC3-Annex G (doted line). One 

can observe that EC3 always underestimates the carrying 

capacity of I-sections leading to uneconomic design. It 

should be noted at this point that the provisions of Eurocode 

3 refer to only this loading case for which, a comparison 

between the results shows that the code’s provisions are 

partly simplified but certainly uneconomic. 

 

 

 

 

 

 

 

 

 

 

Fig. (13). Interaction curves mx – my for different values of the ratio 

v=Vz/Vzp. 

 

 In Fig. (15), the interaction curves mx-my are shown for 

(a) short-flange IPE sections and (b) for wide-flange HEB 

sections and for different values of the axial force nx. In both 

cases, a high reduction of the carrying capacity of the cross-

section is observed for high values of the bending moment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Interaction curves mx-my for (a) wide-flange and (b) 

short-flange I-sections. 
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My. Also, an additional reduction of the carrying capacity of 

the I-section with a maximum 15% drop is observed when a 

significant axial force Nx is present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15). Interaction curves mx – my for various values of 

nx=Nx/Nx,pl. 

 

 Finally, we can conclude that following the present ap-

proach one can achieve the fulfillments of a very economic 

and safe design. 

LIST OF SYMBOLS 

 = normal stresses 

 = normal strains 

xy = shear stresses 

F = yield stress 

 = stress function 

F = failure criterion 

Nx = axial force 

Mx = torsional moment 

My = bending moment about y 

Mz = bending moment about z 

e = index for sizes in the elastic region 

p = index for sizes in the plastic region 

f = index for flange sizes 

w = index for web sizes  

W = first moment of inertia 

J = second moment of inertia 

Jd = polar moment of inertia 

nx = non-dimensional axial force 

mx = non-dimensional torsional moment 

my = non-dimensional bending moment about y 

mz = non-dimensional bending moment about z 

vz = non-dimensional shear force along z 
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Fig. (14). Interaction curves mx -v. 
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