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Abstract: This paper deals with the rocking response of a free-standing rectangular rigid block subjected to a ground ac-

celeration assuming that the friction between the block and the ground is large enough so that there is no sliding. Particu-

lar attention is focused on the minimum acceleration amplitude which may lead the block to overturning instability. The 

conditions of such a critical state are properly established. Subsequently, two distinct modes of overturning instability un-

der a one-sine ground pulse are examined: (1) overturning without impact and (2) overturning after one impact occurring 

either before or after the ground excitation expires. The effect of initial conditions on the minimum amplitude acceleration 

is also discussed in connection with a one-cosine and a one-sine pulse. The proposed technique is applied to various ex-

amples covering all possible cases of overturning instability.  
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1. INTRODUCTION 

 In recent years the attention of various researchers was 
focused on the rocking response of free-standing multi-drum 
columns carrying statues at their tip. A fundamental relative 
problem for the dynamic analysis of such a column-statue 
system is the rocking response of a free-standing rigid block 
for which various interesting studies have been presented 
lately [1-6]. This work is an extension of the last studies by 
presenting some new results via a simple and comprehensive 
analysis.  

 Consider a rectangular rigid block with dimensions 2b x 
2h and total mass m which is in a vertical equilibrium posi-
tion under its own weight (Fig. 1). The angle  = tan

-1
(b/h) is 

the stockiness parameter (inverse of the slenderness ratio) of 
the block.  

 Depending on the form and magnitude of the ground ex-
citation, the block may translate with the ground, slide, rock 
or slide-rock. Later work [1] on this subject showed that in 
addition to pure sliding and pure rocking a combined slide-
rock mode of rigid body motion may also occur. This de-
pends not only on the ratio b/h=tan  and the static friction 
coefficient μ – as was believed in the past – but also on the 
magnitude of the ground excitation. Subsequently, it is as-
sumed that the coefficient of friction μ is large enough so 
that there is no sliding. 

 Under a positive horizontal ground excitation (displace-
ment or acceleration) who’s magnitude is sufficiently large 
[5] the rigid block will initially rotate with a negative rota-
tion  < 0 (Fig. 2a), and if the block does not overturn it will 
eventually assume a positive rotation, and so on. However,  
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as will be shown, if the positive excitation is moderate the 
rigid block will initially rotate with a positive rotation >0 
(Fig. 2b), and if it does not overturn it will eventually as-
sume a negative rotation, and so on.  

 

 

 

 

 

 

 

 

 

Fig. (1). Free-standing rectangular rigid block under its own 

weight. 

 

 Langrange’s equations for rigid body motion of the 
above rectangular block for the cases of Fig. (2a) and Fig. 
(2b) are given by [7, 8]. 

 

d

dt

K K
+ = 0             (1) 

where K is the total kinetic energy and  the potential of the 
external force mg (the weight of the block) and  the angle 
of the bock rotation measured from the vertical. 

Case 1 (Fig. 2a) 

 According to the sign convention of Fig. (2a) the total 

horizontal displacement of the center of gravity C of the 

block, uc, due to ground displacement ug is [9]. 
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uc = ug xc , xc = b Rsin( + )       ( (t)<0)         (2) 

while the vertical displacement of C, is 

yc = R cos +( ) cos              (3) 

 By virtue of relations (2) and (3) we get 

 
uc = ug + R cos +( ) , 

 
yc = R sin +( )         (4) 

 The total kinetic energy due to the combined motion of 

the block (rotation and translation) is 

 

K =
1

2
Jc

2
+
1

2
m uc

2
+ yc

2( )            (5) 

where Jc = mR
2 / 3  is the polar moment of inertia of the 

block with respect to its center of gravity C. 

 Using relations (4), eq. (5) is written as follows 

 

K =
1

2
Jo

2
+
1

2
mug

2
+mug Rcos( + )           (6) 

where Jo = Jc +mR
2
= 4mR2 / 3  is the polar moment of 

inertia of the block with respect to the pivot point O. 

 From eq. (6) it follows that  

 

K
= Jo +mugRcos( + )  

and 

 

d

dt

K
= 

 
Jo +mugRcos( + ) mug Rsin( + ) .   (7) 

 From eq. (6) we also obtain 

 

K
= mug Rsin( + ) .           (8) 

 Given that  

= mgR[cos( + ) cos ]           (9) 

then  

= mgRsin +( ) .          (10) 

 Using relations (7), (8) and (10), eq. (1) becomes 

 
Jo +mugRcos( + ) mgRsin( + ) = 0      ( (t)<0).   (11) 

 This is the equation of rigid body motion that can be also 

derived by taking equilibrium of moments of all forces with 

respect to the pivot point O (Fig. 3a). 

Case 2 (Fig. 2b) 

 The total horizontal displacement of the center of gravity 

C of the block uc, due to ground displacement ug, according 

to Fig. (2b), is  

uc = ug + xc , xc = b Rsin( )          (12) 

while the vertical displacement of C is 

 yc = R cos ( ) cos          (13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). a. Rigid body block displacement under ground excitation (rather suddenly applied), b. Rigid body block displacement under 

ground excitation (rather suddenly reduced). 
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and the potential due to the external force mg is equal to  

= mgR cos( ) cos[ ] ,         (14) 

 By virtue of relations (12) and (13) we get 

 
uc = ug + R cos ( ) , 

 
yc = R sin ( ) .       (15) 

 The kinetic energy due to the combined rigid body mo-

tion of the block (rotation and translation about O ) using 

relations (15) is 

 

K =
1

2
Jc

2
+
m

2
uc
2
+ yc

2( ) =
1

2
Jo

2
+
1

2
mug

2
+mRug cos ( )     (16) 

where Jo = Jc +mR
2
= 4mR2 / 3  is the polar moment of 

inertia of the block about O . 

 From eq. (16) it follows that  

 

K
= Jo +mRug cos( )   

and  

 

d

dt

K
 = 

 
Jo +mRug cos( + ) +mRug sin( )    (17) 

 Moreover 

 

K
= mRug sin( ) .          (18) 

 Due to relation (14) we get  

= mgR sin( ) .          (19) 

 Using relations (17), (18) and (19), eq. (1) becomes 

 
Jo +mRug cos( ) +mgR sin( ) = 0  ( (t) > 0).  (20) 

 This equation can also be derived by taking equilibrium 

of moments of all the above forces about O  (Fig. 3b). 

 Eqs. (11) and (20) can also be written as follows  

 

+ p2
ug
g
cos +( ) sin +( ) = 0 , (t)<0    (21a) 

 

+ p2
ug
g
cos ( ) + sin ( ) = 0 , (t)>0     (21b) 

where p = 3g 4R  is a measure of the dynamic characteris-

tic of the block and not the oscillatory frequency under free 

vibration, because the oscillation frequency in not constant 

depending strongly on the vibration amplitude [10]. Note 

that owing to the difference in the last terms of eq. (21a, b) 

one can conclude that the magnitude of ground excitation in 

Fig. (2a) is significantly large (much larger to that corre-

sponding to Fig. 2b). 

 Regardless of the form of ground excitation there are two 

possible modes for overturning: (a) overturning without im-

pact and (b) overturning with one impact. Referring to the 

case of Fig. (2a) the block may overturn under very large 

ground excitation with <0 without impact (mode 1). How-

ever, for a ground acceleration slightly smaller than the pre-

vious one, the block rotates in the reverse direction and im-

pacts on point O  before overturning with >0. The minimum 

acceleration amplitude corresponds to the unstable static 

equilibrium for which  = , 
 = 0 and 

 = 0 , implying 

 
ug = 0  due to eq. (21a); namely, we have overturning insta-

bility after one impact. Now referring to the case of Fig. (2b) 

the block may overturn (on the basis of minimum accelera-

tion amplitude) through the unstable equilibrium position for 

which = , 
 = 0 and 

 = 0 , implying 
 
ug = 0  due to eq. 

(21b). Namely, in this case overturning instability occurs 

without impact; otherwise for a smaller magnitude of excita-

tion the block returns to its initial vertical equilibrium posi-

tion. 

 The total energy E = K +U = K +V +  corresponding to 

eq. (21a) and (21b) is 

 

E =
1

2
Jo

2
+
1

2
mug

2
+mRug cos +( ) +mgR cos +( ) cos , 

(t) < 0          (22a) 

 

E =
1

2
Jo

2
+
1

2
mug

2
+mRug cos ( ) +mgR cos ( ) cos ,

(t) > 0.         (22b) 

Clearly, replacing  by -  in eq. (22a) we obtain eq. (22b). 

Condition for Initiation of Rocking Motion 

 Consider the rigid block shown in Fig. (4a) with 

stockiness   which can oscillate about the centers of rota-

tion O and O  when it is set to rocking motion. As assumed 

above the coefficient of friction is large enough so that there 

is no sliding. Fig. (4b) shows the moment-rotation relation 

during the rocking motion of a freely-standing rectangular 

block. The system has infinite stiffness until the magnitude 

 

 

 

 

 

 

 

  

Fig. (3). a. Free body diagram of the block related to Fig. (2a), b. Free body diagram of the block related to Fig. (2b). 
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of the applied moment reaches mgRsin , and once the block 

is rocking its stiffness decreases gradually becoming zero 

when = . During the oscillatory rocking motion, the mo-

ment-rotation relationship follows the above diagram with-

out losing energy (i.e. enclosing any area). Energy is lost 

only due to friction (this case has been excluded because it 

has been assumed that there is no sliding) or during impact, 

when the angle of rotation reverses. The last case of loss of 

energy due to impact will be discussed in the next section. 

 When the block is in vertical equilibrium position the 

horizontal force H which is needed to initiate rocking motion 

is obtained from the condition  

HR cos mgR sin .         (23) 

 Since 
 
H = mug = m p  ( p is the maximum amplitude), 

then initiation of rocking yields 

p g tan   

and p,min = g tan .         (24) 

 This is the minimum amplitude of ground acceleration for 

the initiation of rocking motion. 

 Dynamic equilibrium (in horizontal and vertical direc-

tion) at the instant t=0, where (0)=0, gives (Fig. 5)  

 
H 0( ) = m ug + R (0)cos( ) = m + h 0( )( )        (25) 

 
V 0( ) = m(g R (0)sin ) = m g b (0)( )        (26) 

and moments about C 

 
H 0( )h V 0( )b + Jc 0( ) = 0          (27) 

where Jc = mR
2 3  and 1 g tan p . 

 Substituting eq. (25) and eq. (26) into eq. (27) we get the 

angular acceleration at the instant t=0, i.e. 

 

0( ) = p2sin 1 p

gtan
, p2 =

3g

4R
        (28)  

when rocking initiates. 

 To avoid sliding at t=0 we must have 

μV(0) H(0)           (29) 

 

 

 

 

 

 

 

 

 

Fig. (5). Dynamic reactions acting on the point O  at the initiation 

of rocking motion (t=0). 

 

or μ
H(0)

V(0)
.           (30) 

 Inserting 
 
(0)  from eq. (28) into eqs. (25) and (26), ine-

quality (30) becomes [1, 2] 

μ

3

4
g cos sin

g tan
1

g +
3

4
g sin2

g tan
1

.        (31) 

 This is the condition required for a block to enter the 

rocking motion without sliding. 

 According to previous work [1, 2], inequality (31) shows 
that, under some ground excitations with amplitude p, the 
condition for a block to enter rocking motion without sliding 
depends on the value p. However, for pulses in which accel-
eration increases gradually from zero (like one-sine pulse) 
the value of  at the initiation of rocking motion is equal to 
g tan  and eq. (31) reduces to the expression defined from 
static equilibrium, i.e. 

μ
b

h
= tan .           (32) 

 Once the block enters rocking motion, both dynamic re-

actions H(t) and V(t) fluctuate with time. Hence, to avoid 

sliding during the entire rocking motion we must have at all 

times 

 

 

 

 

 

 

 

 

  
Fig. (4). a. Free body diagram of the block.     b. Moment M versus rotation . 
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μ >
H(t)

V(t)
 .           (33) 

 In Fig. (6) one can see acceleration, velocity and dis-

placement histories of one-sine pulse (left) and one-cosine 

pulse (right) [4]. In the first case (Type A) the ground accel-

eration is zero at the starting of motion and increases gradu-

ally. In contrast, in the second case (Type B) the ground ac-

celeration assumes its maximum at the initiation of motion. 

Under other pulses, e.g. type-Cn pulses [3], the ground accel-

eration is finite at the initiation of rocking motion but as-

sumes a value that is smaller than its maximum amplitude  

p.  

2. Loss of Energy During Impact 

 When the angle of rotation reverses we assume that such 
a rotation continues smoothly from point O to point O (Fig. 
7). We consider an impact without bouncing so that the 
block switches pivot points (from O to O ), while the angular 
momentum is conserved. If the coefficient of restitution is e 
the ratio of the angular speed of the block immediately after 
impact 

 +
, to the angular speed immediately before impact 

 
 according to [11] is 

 

e = + .            (34) 

 Clearly 
 

>
+

. The energy lost is EL, i.e. 

 

EL =
1

2
Jo

2 1

2
Jo +

2
=
2

3
mR2 2

+

2( )  

or 
 

EL =
2

3
mR2 2 1 e2( ) .         (35) 

 

 

 

 

 

 

 

 

Fig. (7). Rectangular block under rocking motion just before it 

impacts on point O . 

 

 Fig. (7) shows the rectangular block of uniform density , 

[ (2hx2b)]=m, that is rotating about O and is about to impact 

at point O . Consider firstly the angular momentum of the 

block about O  before impact. A mass element dm located at 

a distance r from point O has a velocity v
 
= r ey . The 

position of the mass element is u = 2bEx + rex , and hence 

the angular momentum of the block B about O  before the 

impact is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Acceleration, velocity and displacement histories of one-sine (left) and one-cosine (right) pulse.  
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HO'
= uxv dm

B

.          (36) 

 Taking into account that 

exxey = ex ey sin 2
ez = ez , 

Exxey = ex ey sin ez = sin ez  

eq. (36) becomes 

 

HO'
= r2 2brsin( )dm

B

ez .         (37) 

Since dm = dxdy , r sin = 2b x         (38) 

then 

 

HO'
= r2 2b 2b x( ) dxdy

0

2h

0

2b

ez .       (39) 

 Given that 

r2 = y2 + 2b x( )
2

, r2 2b 2b x( ) = x2 + y2 2bx       (40) 

then 

x2 + y2 2bx
0

2h

dxdy = 4hb
4

3
h2

2

3
b2

0

2b

.       (41) 

 Since b = Rsin  

and 4hb
4

3
h2

2

3
b2 = 4hb

4

3
R2 2R2 sin2        (42) 

by virtue of relations (41) and (42), eq(39) becomes 

 

HO
= r2 2b 2b x( ) dxdy

0

2b

0

2b

ez  

or 

 

HO'
= mR2 4

3
2 sin2 ez .         (43) 

 The position of the infinitesimal mass element dm imme-

diately after impact is u = re x ,  and its velocity v+
 
= r

+
ey . 

Thus, the angular momentum of the block B about O after 

impact is 

H
+

O
= uxv

+
dm

B

           (44) 

or 

 

H
+

O
= r2dm

B

+
ez =

4

3
mR2

+
ez .       (45) 

 Conservation of angular momentum, HO
= H

+

O
, due to 

relations (42) and (45), yields 

 

 

1
3

2
sin2 =

+
 

or 

 

e = +
= 1

3

2
sin2 .         (46) 

 This value of e (depending only on the geometry of the 

block) is the maximum value of the coefficient of restitution  

 

for which a block of stockiness  will undergo rocking mo-

tion [4]. Since emax <1 the impact is inelastic. Since the angu-

lar momentum is not actually conserved during impact the 

value of e can only be thought of as a rough approximation 

because it's precise value depends on the contact region and 

the corresponding material properties. The value of e can be 

obtained experimentally. For the stockiness =tan
-1

(b/h) = 

tan
-1

(0.11) of the statues in the cademy of Athens, eq. (46) 

gives e=0.982 [9].  

Condition for Rocking Motion 

 When the block is rocking the horizontal and vertical 

reactions at point O and O  are varying with time. Dynamic 

equilibrium in both directions yields (Figs. 3a and 5) 

 
H(t) = m ug t( ) xc t( ) , 

 
V(t) = m g yc (t)[ ]          (47) 

 Since for (t)<0, xc = b Rsin( + ) , 
 
xc = R cos( + )   

and 
 
xc = Rcos( + ) + 2Rsin( + )        (48) 

 Similarly 

yc = R cos +( ) cos , 
 
yc = R sin +( )   

and 
 
yc = Rsin( + ) 2Rcos( + )         (49) 

where 
 
(t) is the angular velocity of the block and 

 
(t) is the 

angular acceleration of the block given by eq. (21a) [2]. 

 Substituting eqs. (47) into inequality (33) and using eqs. 

(11), (48) and (49) allows us to establish the condition for 

excluding sliding during the entire rocking motion, i.e. 

 

H(t)

V(t)
=

ug p2R
ug
g
cos2 +( )

1

2
sin2 +( ) +

2

p2
sin( + )

g p2R
ug
g
sin2 +( ) sin2 +( )

2

p2
cos( + )

μ

            (50) 

 At the initiation (t=0) of rocking, 
 
(0) = (0) = 0 , while 

– as shown above – the minimum acceleration must be 

 
ug = g tan . Clearly at t=0, eq. (50) gives 

 

H(0)

V(0)
=
ug
g

= tan μ .          (51) 

3. Linear Approximation Under One-Sine Pulse  

 On the basis of the type A of one- sine pulse (Fig. 6, left) 

one can write the following ground acceleration 

 
ug (t) = psin pt +( ) , / p t 2( ) / p ,       (52) 

otherwise, 
 
ug (t) = 0 . 

 Clearly 

 
ug (0) = psin = p or = sin 1

.        (53) 

 Since p = gtan , then 
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= sin 1 gtan

p

.          (54) 

 According to eq. (32) the block enters into pure rocking 

when  

tan =
b

h
< μ .          (55) 

 For slender blocks with b/h 0.25, eqs. (21a,b) can be 

linearized as follows 

 

p2 = p2 p2 p

g
sin pt +( )       ( (t)<0)     (56a) 

 

p2 = p2 p2 p

g
sin pt +( )     ( (t)>0).     (56b) 

 Integration of eqs. (56a,b) gives 

for (t) < 0

= A1sinhpt + A2coshpt +
1

1+ p
2 /p2

p

g
sin pt +( )

    
(57a)

 

for (t) > 0

= A3sinhpt + A4coshpt +
1

1+ p
2 /p2

p

g
sin pt +( ) + . (57b)

 

 For the initial condition (0) = 0  and 
 
(0) = o we get 

 

A1 =
0

p
p p

1+ p
2 p2

cot , A2 = 0 + 1+ p
2 p2

, 

 

A3 =
0

p
p p

1+ p
2 p2

cot , A4 = 0 1+ p
2 p2

 (58) 

 The derivatives of eqs. (57a,b) are  

 
p
= A1coshpt + A2sinhpt +

p p

1+ p
2 p2

cos pt +( )
sin

 (59a) 

 
p
= A3coshpt + A4sinhpt +

p p

1+ p
2 p2

cos pt +( )
sin

. (59b) 

 Using eqs. (57a,b) and (59a,b) one can determine the 

minimum amplitude acceleration provided that one can es-

tablish a condition for overturning instability. 

Condition for Overturning Instability  

 Attention is focused on the minimum amplitude accelera-

tion leading to overturning instability. Regardless of the type 

of ground motion such a critical state may occur at some 

time t=t* only through the unstable equilibrium posi-

tion (t* ) = . Given that we are searching for the minimum 

amplitude acceleration which leads to overturning, the condi-

tions for overturning instability are defined by 

(t* ) = , 
 
(t* ) = 0 .          (60) 

 This is so because in such a critical case we may assume 

that the block can oscillate for a short period of time with an 

average amplitude (t)=  (e.g. about the unstable equilib-

rium position) and thus when 
 
(t* ) =  also (t* ) = 0 . Ap-

parently for t t*  the block is subjected to free vibrations 

with initial conditions at t=to either the end conditions of the 

forced motion or the impact conditions. 

Free Vibration 

 In this case eqs. (56a, b) become 

 
p2 = p2          (61a) 

 
p2 = p2          (61b) 

which upon integration yield 

= A1sinhp(t to ) + A2coshp(t to )       (62a) 

= A3sinhp(t to ) + A4coshp(t to ) +      (62b) 

with corresponding angular velocities  

 
(to ) p = A1coshp(t to ) + A2sinhp(t to )       (63a) 

 
to( ) p = A3coshp(t to ) + A4sinhp(t to )       (63b) 

where  

 
A1 = (to ) p , A2 = t0( ) + , 

 
A3 = (t0 ) p , A4 = (t0 ) .  

            (64) 

 Subsequently, the particular case of overturning under 

the type A of a one-sine pulse ground acceleration is consid-

ered. Two modes of overturning instability are examined: 

Mode 1 with no impact and mode 2 with one impact. 

Mode 1 (no impact) 

 Both cases shown in Fig. (2a,b) with their corresponding 

equations of free vibration motion occurring at 

t to = Tex = 2( ) / p are considered. 

 Application of the overturning instability criterion, eqs. 
(60), for the case of Fig. (2a) related to eqs. (62a & 63a), 
yields 

(t) = = A1sinhp(t Tex ) + A2coshp(t Tex )      (65a) 

 
(t) p = 0 = A1coshp(t Tex ) + A2sinhp(t Tex )      (65b) 

where according to relations (64) 

 
A1 = Tex( ) p , A2 = Tex( ) + .         (66) 

 Eqs. (65a,b) have the nontrivial solution 

A1 = A2            (67) 

if tanhp t Tex( ) = 1which may occur at large time. Eq. (67) 

due to relation (66) yields 

 
 
Tex( ) + p Tex( ) +( ) = 0          (68) 

where 
 
Tex( )  and Tex( ) are determined from eqs. (57a) and 

(59a) which give 

(Tex ) = A1sinhpTex + A2coshpTex       (69a) 

 

(Tex ) p = A1coshpTex + A2sinhpTex +
p p

1+ p
2 p

2

1

sin
  (69b) 
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where A1 and A2 are taken from relations (58) after setting 

(0) = o = 0  and 
 
(0) = o = 0 , being equal to  

A1 =
p p

1+ p
2 p2

cot , A2 =
p
2 p2

1+ p
2 p2

.        (70) 

 Introducing expressions (69a, b) into eq(68) and using 

relations (70) we obtain [Zhang and Makris (2001)] 

cos p

p
sin = e

2( )

p p .         (71) 

 Eq. (71) yields the minimum amplitude acceleration 

p /g = 1/sin  for overturning instability for the case of 

Fig. (2a), a solution compatible with eq. (65a) implying 

(t)<0 from the beginning of the motion (as anticipated).  

 Similarly one can proceed for the case of Fig. (2b) re-

lated to eqs. (62b) and (63b). Application of the overturning 

instability criterion (60) leads to 

(t) = = A3sinhp(t Tex ) + A4coshp(t Tex ) +     (72a) 

 
(t) p = 0 = A3coshp(t Tex ) + A4sinhp(t Tex )     (72b) 

where according to relation (64) 

 
A3 = Tex( ) p , A4 = Tex( ) .         (73) 

 Eqs. (72a,b) have the non-trivial solution 

A3 = A4            (74) 

provided that tanhp t Tex( ) = 1  occurring at large time. Eq. 

(74) due to relations (73) yields 

 
 
Tex( ) + p Tex( )( ) = 0         (75) 

where 
 
Tex( )  and Tex( ) are determined from eqs. (57b) and 

(59b) which give 

(Tex ) = A3sinhpTex + A4coshpTex +       (76a) 

 

(Tex ) p = A3coshpTex + A4sinhpTex +
p p

1+ p
2 p

2

1

sin
  (76b) 

where A3 and A4 are taken from relations (58) after setting 

(0) = o = 0  and 
 
(0) = o = 0 , i.e.  

A3 =
p p

1+ p
2 p2

cot , A4 =
2 + p

2 p2( )
1+ p

2 p2
.       (77) 

 Introducing expressions (76a,b) into eq(75) and using 

relations (77) we obtain the following result presented for 

the first time in the relevant literature,  

p

p
+
2p

p

sin + cos = e
2( )

p p .        (78) 

 Eq. (78) yields the minimum amplitude ground accelera-

tion, p /g = 1/sin , for overturning instability for the case 

of Fig. (2b). However, such a solution is not physically ac-

ceptable as it implies that Eq.72a is not valid yielding (t)<0 

instead of (t)>0 according to case corresponding to Fig. 

(2b).  

 From both the above two cases it is concluded that for the 

one-sine ground excitation form only the case corresponding 

to Fig. (2a) is possible (i.e. eq. (71)) while that correspond-

ing to Fig. (2b) (i.e. eq. (78)) is physically unacceptable. 

Note also that if the ground acceleration in eq. (52) is nega-

tive (i.e. 
 
ug = psin( pt + ) ) then eq. (71) is again valid 

(due to the symmetry of the block’s in connection with the 

direction of the ground excitation). However, the important 

question which now arises is whether the case shown in Fig. 

(2b) may occur with a suddenly applied positive acceleration 

 
ug  which decreases for t > 0. This case will be discussed at 

the end of this section in connection with the effect of initial 

conditions on the minimum amplitude acceleration.  

Mode 2 (one impact) 

 Two cases are examined: in the 1
st
 case impact occurs 

before the ground excitation expires (i.e. at ti < Tex ) and in 

the 2
nd

 case impact occurs after the excitation expires (i.e. at 

ti > Tex ). However, in both cases the conditions of overturn-

ing instability (60) (occurring under the free vibrations re-

gime) are still valid. Since we are looking for the minimum 

excitation amplitude, eq. (75) is also valid. 

Case 1 ( ti < Tex ) 

 After one impact occurring before the excitation expires 

the block is rotating with (t) > 0 . Hence, the equation of 

motion for ti t Tex  can be derived from equation (57b) 

and (59b), i.e. 

t( ) = A3sinhp(t ti ) + A4coshp(t ti ) +

1+ p
2 /p2

sin pt +( )
sin

+
      (79a) 

 

(t)

p
= A3coshp t ti( ) + A4sinhp t ti( ) +

p p

1+ p
2 p2

cos pt +( )
sin

.      (79b) 

 For t = Tex  eqs. (79a,b) become 

 Tex( ) = A3sinhp(Tex ti ) + A4coshp(Tex ti ) +      (80a) 

 

(Tex )

p
= A3coshp(Tex ti ) + A4sinhp(Tex ti ) +

p p

1+ p
2 p2

1

sin

     (80b) 

where A3 and A4 are determined from the conditions occur-

ring at the instant, t = ti , which implies (ti ) = 0  and 

 

after (ti ) = e
before (ti ) , where 

 

after (ti ) = +
, 

 

before (ti ) =  

and e is the coefficient of restitution. The last two initial con-

ditions yield  
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A4 = 1+ p
2 p2

sin pti +( )
sin

        (81) 

and 

 

A3 =
e before ti( )

p
p p

1+ p
2 p2

cos pti +( )
sin

      (82) 

 Subsequently, the expressions Tex( )  and 
 
Tex( ) /p  

taken from eqs. (80a,b) are introduced into eq. (75) which 

lead to 

A3 + A4( )ep Tex ti( )
=

p p

1+ p
2 p2

1

sin
        (83) 

where A3 and A4 are given in relations (81 & 82) as func-
tions of 

 

before (ti )  and ti  (impact time) both of which will be 
determined from the previous forced motion regime for 
t ti associated with eqs. (57a) and (59a) from which for 
(t)<0 we obtain 

(ti ) = A1sinhpti + A2coshpti +
1+ p

2 /p2
sin pti +( )

sin
 (84)  

 

before (ti )

p
= A1coshpti + A2sinhpti +

p /p

1+ p
2 /p2

cos pti +( )
sin

   (85) 

where A1 and A2 are given in relation (70). 

 At the instant of impact, (ti ) = 0 , which due to eq. (84) 

implies [4] 

tan =

sin pti
p

p
sinhpti

1+ p
2

p2
p
2

p2
coshpti cos pti

.       (86) 

 Eq. (83) by virtue of relations (81) and (82) is written as 

follows 

 

1+ p
2

p2
e before (ti )

p
1 sin p

p
cos pti +( )

sin pti +( ) = p

p
e p Tex ti( )

     (87a) 

 From eq. (85) after substituting A1 and A2, taken from 

relation (70), we obtain 

 

before (ti )

p
=

p

p

1+ p
2

p2

cos pti coshpti
tan

+
p

p
sinhpti sin pti  

          (87b) 

 Substituting the expression of 
 

before (ti )  from eq. (87b) 

into eq. (87a) we get 

e coshpti cos pti( )cos +

e sin pti
p

p
sinhpti +

p

p

+
p

p
sin +

 

+cos pt +( ) +
p

p

sin pt +( ) = e p Tex ti( )
.      (88) 

 Solving eqs. (86&88) with respect to ti and , we deter-

mine the minimum amplitude acceleration p /g = 1/sin . 

As it will be shown numerically eqs. (86&88) yield accept-

able solutions for ti<Tex and 0< p/p<4.8. For p/p >4.8 eqs. 

(86&88) lead to physically unacceptable solutions corre-

sponding to values of ti>Tex which contradict the initial as-

sumption (ti<Tex) used for their derivation.  

Case 2 ( ti > Tex ) 

 Impact will occur during the free-vibration regime at 
some time t=ti. Hence for ti t 2( ) / p  due to eqs. 
(65a,b) valid for (t)<0 one can write the following equa-
tions 

 

(t) =
(Tex )

p
sinhp(t Tex ) + (Tex ) +( )coshp(t Tex )  (89a)  

 

before (t)/p =
(Tex )

p
coshp(t Tex ) + (Tex ) +( )sinhp(t Tex )  (89b) 

where 
 
(Tex )  and (Tex ) are evaluated form eqs. (57a) and 

(59a) at t=Tex. The resulting expressions after setting due to 

eq. (70) 

A1 =
p p

1+ p
2 p

2 cot , A2 =
p
2 p

2

1+ p
2 p

2         (90) 

are given by 

(Tex ) =
p p

1+ p
2 p

2 cot sinh pTex +
p
2 p

2

1+ p
2 p

2 coshpTex   

          (91a) 

 

(Tex )/p =
p p

1+ p
2 p

2 cot cosh pTex

+
p
2 p

2

1+ p
2 p

2 sinhpTex +
p p

1+ p
2 p

2

1

sin
.

.      (91b) 

 At the time of impact ti, after taking into account that 

(ti ) = 0 , eqs. (89a,b) by virtue of eqs. (91a,b) become 

p /p

1+ p
2 /p2

coshpTex
tan

p

p
sinhpTex

1

sin
sinhp ti Tex( ) +  

sinhpTex
tan

p

p
coshpTex coshp ti Tex( ) = 1      (92a) 

and  
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before (ti ) =
p

1+ p
2 p

2
p

p
sinhpTex  

 

coshpTex
tan

+
1

sin
coshp ti Tex( ) +  

+
p

p
coshpTex

sinhpTex
tan

sinhp ti Tex( )      (92b) 

 The governing equation after the impact (i.e. for t ti  

where (t) > 0 ) is 

(t) = c1sinhp t ti( ) + c2coshp t ti( ) +       (93a) 

 and 

 

(t)

p
= c1coshp t ti( ) + c2sinhp t ti( ) .      (93b) 

 From the initial condition (ti ) = 0  we get c2 = , 

while 
 
c1 =

after (ti )/p = e
before (ti )/p . Introduction of the ex-

pressions of c1 and c2 into eqs. (93a,b) and application of the 

overturning conditions (60) at time t
*
 implying (t* ) = , 

 
(t* ) = 0 , we obtain 

 

(ti )

p
sinhp t* ti( ) coshp t* ti( ) = 0       (94a) 

 

(ti )

p
coshp t* ti( ) sinhp t* ti( ) = 0 .     (94b) 

 Elimination of sinhp t* ti( )  and coshp t* ti( )  yields 

 

after (ti ) p = 0  

and 
 
e before (ti ) p = 0           (95) 

where 
 

before (ti )  is taken from eq. (92b). 

 Combining eqs. (92b) and (95) we obtain 

e p /p

1+ p
2 p

2
p

p
sinhpTex

coshpTex
tan

+
1

sin
coshp ti Tex( ) +  

+
p

p
coshpTex

sinhpTex
tan

sinhp ti Tex( ) = 1        (96) 

 Eqs. (92a) and (96) can be solved with respect to  and 

ti  leading to the minimum amplitude acceleration for over-

turning instability, i.e. p/ g=1/sin . Note that although in 

the above four cases the dimensional amplitude p depends 

on the angle , the corresponding curves p/ g versus p/p 

are independent of . 

The Effect of Initial Conditions (Fig. 2b) 

 The occurrence of the case shown in Fig. (2b) will be 

discussed for a suddenly applied positive but decreasing 

ground acceleration, 
 
ug (t) , in connection with the effect of 

initial (nontrivial) conditions (0) = 0 0 , 
 
(0) = 0 0 . 

For instance, one may assume the ground acceleration form 

 
ug (t) = psin( pt+ /2+ ) = pcos( pt+ ) which for t=0 

yields: 
 
ug (0) = pcos = p  where =cos

-1
,, p=gtan / 

cos  and p/gtan =1/cos . Then eq(56b) becomes:  

 

p2 = p2 p2
cos pt +( )

cos
        (97) 

whose integral is  

(t) = A3sinhpt + A4coshpt + 1+ p
2 /p2

cos( pt + )

cos
+   (98) 

and 

 

(t)

p
= A3coshpt + A4sinhpt

p /p

1+ p
2 /p2

sin( pt + )

cos
  (99) 

where  

 

A3 =
0

p
+

p p

1+ p
2 p2

tan , A4 = 0

2 + p
2 /p2

1+ p
2 /p2

   (100) 

 By virtue of eqs. (98&99) and taking into account that 

Tex=(3 /2- )/ p we obtain 

(Tex ) = A3sinhpTex + A4coshpTex +     (101a) 

and 

 

(Tex )

p
= A3coshpTex + A4sinhpTex +

p /p

1+ p
2 /p2

1

cos
  (101b) 

 Introducing the above expressions of 
 
(Tex ) and (Tex )  

into the condition of overturning instability, eq. (75), we get  

A3 + A4 =
p /p

1+ p
2 /p2

1

cos
e pTex        (102) 

Eq. (102) using relations (100) yields 

 

2
p

p

+
p

p

1
o +

o

p

p

p

+
p

p
cos sin = e pTex  (103) 

 Eq. (103) can be solved with respect to  as function of 

p/p for given values of  and 
 o . 

 For the sake of comparison of eq. (103) with eq. (71) the 

last one, in order to take into account non-trivial initial con-

dition
 
( o 0 and o 0) , is written as follows  

 

cos p

p
+
1

o +
o

p

p

p

+
p

p
sin = e pTex    (104) 

 In case that  and 
 o are negative eq. (104) leads to a 

lower curve in the versus p/p (than that of trivial initial 

conditions) which represents the detrimental effect of nega-

tive initial conditions as is shown below. 

4. NUMERICAL RESULTS 

 Numerical results are presented in both tabular and 
graphical form in time series and phase plane portraits [12]. 
Linearized dynamic solutions are compared with their corre-
sponding non-linear solutions. First we consider mode 1 (no 
impact) based on eq.(71) for a one-sinus pulse (either posi-
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tive or negative). In this respect Figs. (8a and 8b) show time 
series (  and 

 
 versus  = pt, where  s dimensionless time) 

for a block with p=2.14, =0.25 and p/p=2. Fig. (8c) pre-
sents more clearly the conditions for overturning instability 
( = , 

 
=0) for the same block in terms of the phase-plane 

portrait. The continuous curve depicted in Figs. (8a to 8c) 
corresponds to p = 2.35766g  (no overturning), whereas the 
discontinuous curve corresponds to overturning instability 
with p=2.35771g . Similar results are shown in Figs. (9a) to 
9c for this block when p/p =4. Apparently, the block returns 
to its initial equilibrium position for p=5.3230g , while 
overturning instability occurs for p=5.32303g . Fig. (10) 
shows that the minimum amplitude acceleration for overturn-

ing instability for 0< p/p<10 corresponds to mode 2 (one 
impact) associated with eqs(86&88) when 0< p/p<4.8 and 
eqs(92a&96) for 4.8< p/p<6.7. Such a diagram coincides 
with that presented by Zhang and Makris (2001). Note that 
in Fig. (10) two physically unacceptable curves are also de-
picted based on eq. (78) (no impact) and eqs(86&88) (one 
impact) which although analytically derived in earlier work 
[4] have not been presented in graphical form. Eq. (78) is 
physically unacceptable since – as explained in Section 3 – 
yields (t)<0 instead of (t)>0 according to the case under 
discussion corresponding to Fig. (2b). Eqs(86&88) (one im-
pact) lead to the above unacceptable solutions presented in 
graphical form for (ti>Tex) which contradict the initial as-
sumption (i.e. ti<Tex).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Linearized solutions predicting the response of a rigid 

block (with p=2.14, =0.25 and p/p=4 ) under one-sine pulse 

ground excitation presented as: (a)  versus =pt, (b) 
 

 versus =pt 

(where  s dimensionless time) and (c) phase-plane portrait 
 

 

versus . 

 In Fig. (11) the linearized solutions of Fig. (10) (mini-

mum p / g  versus p/p) are compared with the nonlinear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Linearized solutions predicting the response of a rigid 

block (with p=2.14, =0.25 and p/p=2 ) under one-sine pulse 

ground excitation presented as: (a)  versus =pt, (b) 
 

 versus =pt 

(where  s dimensionless time) and (c) phase-plane portrait 
 

 

versus . 
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ones based on eqs. (21a,b) (solved numerically using 

Mathematica 6) being in good agreement. 

 Figs. (12a,b,c) show in terms of times series ( ( ) and 

 
( ) versus ) and phase-plane portrait ( ( ) versus 

 
( )) 

the overturning instability corresponds to Mode 2 (one im-

pact) for the same rigid block with p/p=3 [eqs(86&88), 

ti<Tex]. Fig. (12c) illustrates the satisfaction of the overturn-

ing instability condition (i.e. = , 
 = 0 ). Note that the 

minimum amplitude acceleration leading to overturning in-

stability is p/ g =0.71157, while for p/ g = 0.71156 the 

block does not overturn but returns to its initial stable equi-

librium position. Similar predictions to those presented in 

Fig. (12) are presented in Fig. (13) for the same rigid block 

but for p/p=5.5 [eqs. (92a&96), ti>Tex]. 

 Overturning instability associated with the response 

shown in Fig. (2b) is not possible to occur in the case of a 

suddenly applied positive (either increasing or decreasing) 

one-sinus or one-cosinus pulse in connection with trivial 

initial conditions. owever, such a type of overturning insta-

bility may occur in cases of non-trivial initial conditions 

( =0.01, 
 o 0.2 ) in connection with a suddenly applied 

positive but decreasing one-cosine pulse. Thus, one may 

assume a small initial imperfection <0.01rad and a small 

initial angular velocity 
 o 0.2 rad/sec. Fig. (14) provides 

the minimum amplitude acceleration ( p/ g=1/cos  versus 

p/p) corresponding to Fig. (2b) for the case of a ground 

acceleration 
 
ug (t) = pcos pt +( ) . In such a case (Mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). The predicted values of minimum amplitude acceleration for overturning instability, p/ g versus p/p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Comparison of predicted values of minimum amplitude acceleration for overturning instability as obtained from the linearized 
solution and nonlinear analysis. 
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1, no impact) eq. (103) is more unfavorable compared to the 

predictions of eq. (71) and eq. (104) associated with 

 
ug (t) = psin pt +( ) .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Linearized solutions predicting the response of a rigid 

block (with p=2.14, =0.25 and p/p=3) under one-sine pulse 

ground excitation presented as: (a)  versus =pt, (b) 
 

 versus =pt 

(where  s dimensionless time) and (c) phase-plane portrait 
 

 

versus . 

 

 From all the above numerical results the most unfavor-

able (smallest) minimum amplitude ground acceleration 

(corresponding to p/p=1) is equal to p= g and (since 

1/sin =1) hence for =0.25, p = 0.25g. his corresponds to 

a period of ground acceleration Tex=T=(2 - )/ p= 2.201sec. 

For p/p=4 we get p=2 g=0.5g with corresponding period 

T=(2 - )/ p=0.672sec. Both cases indicate in general safety 

against earthquake according to typical acceleration response 

spectra. he various curves shown in Fig. (14) can also be 

presented in terms of p/g versus the period of forcing excita-

tion, Tex=T. The corresponding curves p/g versus T are 

shown in Fig. (15). In order to investigate whether the 

maximum amplitude of ground acceleration are safe against 

regional earthquake hazard we will compare the lower 

curves of Fig. (15) with those of standard design codes for 

two types of soil foundation, type and A (

) and B (

). From Figs. 

(16a, b) one can see that depicted values of minimum ampli-

tude acceleration are higher than the corresponding values 

obtained from the response spectra of EC8 for soil founda-

tion Type A and both cases of damping, =3% and =5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). Linearized solutions predicting the response of a rigid 

block with p=2.14, =0.25 and p/p=5.5 ) under one-sine pulse 

ground excitation presented as: (a)  versus =pt, (b) 
 

 versus =pt 

(where  s dimensionless time) and (c) phase-plane portrait 
 

 

versus . 
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Fig. (14). The predicted values of minimum amplitude acceleration for overturning instability, p/ g versus p/p, for the trivial initial condi-

tions =
 o  =0 and the nontrivial ones: =±0.01 rad, ±

 o =0.1 rad/sec. 

 
 

 

 

 

 

 

 

 

 

 

Fig. (15). Curves of minimum amplitude ground acceleration p/g versus T (period of forcing function). 

 

Fig. (16). Comparison of minimum amplitude acceleration p/g versus T (period of forcing function) with the corresponding predictions of 

EC8 for two types of soil foundation (A and B) and damping: (a) =3% and (b) =5%. 

 

 

 

     
    (a)       (b) 

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

ωp / p

α
p

 /α
g

Linearized  solution

Nonlinear solution

αp/αg=1/sinψ, eq.(104) 
init. cond. θο=-0.01rad,    

Oθ =-0.1rad/sec  

αp/αg=1/sinψ, eq.(71) 
init. cond. θο=0 rad,  

Oθ  =0 rad/sec  

αp/αg=1/cosψ, eq.(103) 
init. cond. θο=0.01 rad, 

Oθ =0.1 rad/sec  

0.1 0.2 0.3 0.4 0.5 0.6

- 0.6

- 0.4

- 0.2

0.2

0.2 0.4 0.6 0.8 1 1.2

-0.3

-0.2

-0.1

0.1

0.2

0.3

Ground acceleration 

gu (t)=αpcos(ωpt+ψ) 

gu (t)=αpsin(ωpt+ψ) 

Ground acceleration 

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4

T

α
p
/g

 

Eq.(104) 

Eq.(71) 

Eq.(103) 

Eqs (86&88) for ti<Tex 
Eqs (92a&96) for ti>Tex 

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5

T

α
p
/g

Eq.(104) 

Eqs (86&88) for ti<Tex 
Eqs (92a&96) for ti>Tex 

Eq.(103) 

ξ=3% 
Soil type B

Soil type A

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5

T

α
p
/g

Eq.(104) 

Eqs (86&88) for ti<Tex 
Eqs (92a&96) for ti>Tex 

Eq.(103) 

ξ=5% 

Soil type B

Soil type A



On the Overturning Instability of a Rectangular Rigid Block The Open Mechanics Journal, 2010, Volume 4    57 

CONCLUSIONS 

 In this study dealing with the overturning instability of a 
free-standing rigid block under ground excitation and assum-
ing that there is no sliding due to large friction, the following 
conclusions are worth mentioning: 

1. The governing equations of rocking motion of the 
rigid block are comprehensively derived using energy 
considerations. 

2. The condition of overturning instability occurring via 
the unstable equilibrium of the block is properly es-
tablished by considering that such a critical state is re-
lated to the minimum amplitude ground acceleration. 
If this is so, one can assume that the block oscillates 
for a short time about the unstable equilibrium imply-
ing, thus, zero angular velocity. 

3. A detailed linearized analysis under a one-sine pulse 
ground excitation either without impact or with one 
impact (occurring either before or after the ground 
acceleration expires) facilitates to understand the 
mechanism of such a type of instability. The compari-
son of the above results with those obtained by non-
linear dynamic analyses shows the regions of agree-
ment and disagreement between linearized and non-
linear analyses. 

4. New interesting, for structural design purposes, ana-
lytical and graphical results yielding the minimum 
amplitude ground acceleration are assessed covering 
various cases of overturning instability under a one-
sine pulse. According to these results the safe area in 
the diagram p/g  versus p/p for the case shown in 
Fig. (2a) [either with mode 1 (no impact) or with 
mode 2 (one impact)] coincides with that presented in 
previous work [6]. The solution for overturning insta-
bility according to Fig. (2b) is physically unaccept-
able for a suddenly applied positive acceleration ei-
ther of one-sine or one-cosine pulse. However, such a 
type of overturning instability may occur in case of 
non trivial initial conditions under a suddenly applied 
positive but decreasing one-cosine pulse.  

5. Time series and mainly phase-plane portraits illustrate 
the rocking response and the subsequent overturning 
instability criterion of the block.  

6. The effect of initial conditions on the minimum am-
plitude of ground acceleration in connection with a 
one-cosine pulse is discussed. Such a case may lead 
the block to overturning instability according to Fig. 
(2b).  

7. The detrimental effect of initial conditions on the 
minimum amplitude acceleration in connection with a 
one-sine pulse is also assessed. 

8. From a comparison of the last two cases one can con-
clude that the one cosine pulse leads to much more 
unfavorable results than those of the one-sinus pulse.  

9. From all the above numerical results, the most unfa-
vorable regarding the minimum amplitude ground ac-
celeration indicate safety against earthquakes accord-
ing to the predictions of the response spectra of Stan-
dard EC8 for both damping cases  = 3% and 5% for 
type A of soil foundation. However, this magnitude of 

p should be substantially reduced if the rigid block 
were supported on the top surface of a multi-drum 
column yielding loss of energy due to sliding and im-
pact between drums. This implies seismic protection 
excluding overturning instability for the above types 
of ground excitation and both types of soil foundation 
and damping. 

ACKNOWLEDGEMENT 

 The author is indebted to Dr. D.M. Cotsovos for the com-
putation of the numerical results and their presentation in 
graphical form.  

REFERENCES  

[1] Shenton HW. Criteria for initiation of slide, rock, and slide-rock 
rigid-body modes. J Eng Mech ASCE 1996; 122(7): 690-3. 

[2] Pompei A, Scalia A, Sumbatyan MA. Dynamics of rigid block due 
to horizontal ground motion. J Eng Mech 1998; 124 (7): 713-7. 

[3] Makris N, Roussos YS. Rocking response of rigid blocks under 
near-source ground motions. Geotechnique 2000; 50: 243-62.  

[4] Zhang J, Makris N. Rocking response of free-standing blocks under 
cycloid pulses. J Eng Mech 2001; 127: 473-83. 

[5] Makris N, Konstantinidis D. The rocking spectrum and the limita-
tions of practical design methodologies. Earthquake Eng Struct 

Dyn 2003; 32(12): 265-89. 
[6] Konstantinidis D, Makris N. Seismic response analysis of 

multidrum classical columns. Earthquake Eng Struct Dyn 2005; 
(submitted for publication). 

[7] Kounadis AN. Dynamics of continuous elastic systems. 2nd ed. 
NTUA: Athens, 1989. 

[8] Kounadis AN. Nonlinear theory of elastic stability with elements of 
catastrophy theory. Athens: Simeon 1998. 

[9] Kounadis AN, Makris N. Restoration-preservation and seismic 
stability of the statues of athena and apollo on the forefront of the 

academy of athens. (Submitted in Special issue of Springer-
Verlag). 

[10] Housner GW. The behavior of inverted pendulum structure during 
earthquakes. Bull Seismol Soc Am 1963; 53(2): 403-17.  

[11] Konstantinidis D, Makris N. Experimental and analytical studies on 
the seismic response of free-standing and anchored laboratory 

equipment. Pacific earthquake engineering research centre, College 
of Engineering, University of California, Berkeley Report No. 

PEER 2005/07, January 2005. 
[12] Kounadis AN. Flutter and other singularity phenomena in symmet-

ric systems via combination of mass distribution and weak damp-
ing. Int J Nonlinear Mech 2007; 42: 24-35. 

 

 

Received: December 17, 2009 Revised: January 19, 2010 Accepted: February 01, 2010 

 

© Anthony N. Kounadis; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 


