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Abstract: The present paper concludes via an analytical method to reduced formulae for determining the eigenfrequencies 
and eigenmodes of multi-span continuous beams with spans of different lengths and bending rigidities in a very easy and 
efficient way. The rigorous determination of eigenfrequencies and eigenmodes allows us to focus on the derivation of the 
time function for the forced vibrating beam subjected to the action of moving loads. The dynamic response of such beams 
subjected to a load moving with constant velocity is thoroughly studied. The analysis is carried out by the modal superpo-
sition method. Numerical examples are presented to verify the applicability of the presented formulae. 
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INTRODUCTION  

 The dynamic behavior of beams such as railway bridges 
subjected to moving loads or moving masses has been inves-
tigated in detail over the past century. An extensive bibliog-
raphy on this area is available in the well-known work of 
Frýba [1]. 

 Despite the above-mentioned extensive bibliography on 
the vibrations of single-span beams, the dynamic behavior of 
continuous (multi-span) beams has not been thoroughly stud-
ied since the solution of the problem becomes evidently 
more cumbersome as the number of beam spans increases.  

 There are two commonly used approaches for computing 
the eigenfrequencies of continuous beams, i.e. the analytical 
method and the finite element method. 

 In the finite element method, a large number of dynamic 
elements is required in order to sufficiently model a continu-
ous beam and generate the full frequency spectrum by solv-
ing the obtained linear eigenvalue matrix equation. The pre-
cision depends on the number of finite elements used in the 
model and a parametric analysis requires the constructions of 
several finite element models. 

 In the analytical method, each span of the continuous 
beam is considered as an individual one and both the solu-
tion of a fourth-order differential equation and its corre-
sponding modal shape is a priori known. By using the com-
patibility and equilibrium conditions at each junction be-
tween adjacent spans, a homogeneous linear system of equa-
tions is obtained, which provides the eigenvalues problem of 
the beam and thus, the spectrum of eigenfrequencies. 

 Special attention should be paid to Inglis [2] study, who 
employed harmonic analysis for the solution of all  
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practically important cases of railway bridge subjected to 
loads resulting from the passage of steam moving trains. 
Hillerborg [3], by employing the Fourier method and other 
differential methods, provided a first solution to the problem 
of one load moving with constant speed on a system sup-
ported by elastic springs. Further progress to this direction 
became possible with the use of computers. Biggs et al. [4] 
solved the problem using the method by Inglis and the ob-
tained solutions were applied to bridge dynamics. 

 Regarding relative experimental research, AASHO [5, 6] 
Road Test was an extensive experimental program conducted 
by the Highway Research Board (HRB). The main goal of 
the experiments was the investigation of behavior of paving 
and bridges under the action of a large number of dynamic 
loads, the conduct of measurements and the drawn of con-
clusions. These experiments on dynamic investigation of 
bridges were carried out at the University of Illinois. Oehler 
[7] published the results of experiments in 15 road bridges, 
where always the same experimental vehicle, a 3-axes track, 
was used.  

 Today, with the advanced development of technology, 
one can deal more easily with such problems, as Bily [8] in 
Prague and Hymay in Ottawa, who employed three-
dimensional models. Research on moving loads is still car-
ried out in the Universities of Illinois (Urbana), Michigan 
State (East Lansing), Northwestern (Evanston), Standard, 
M.I.T. and elsewhere. In Europe, similar research is carried 
out in Poland and Switzerland, mainly on railway bridges, in 
France on road bridges, while in Germany they are dealing 
with both types. 

 The corresponding bibliography on continuous beams is 
rather poor though. There are a lot of investigations for the 
study of the dynamic behavior of continuous beams with two 
or three spans. The following studies on the dynamics of 
continuous beams are worth mentioning. Dmitriev [9] pre-
sented a method for determining the dynamic deflections of 
multi-span beams but with equal spans. Kong & Cheung [10] 
studied the free vibration of a continuous beam using the 
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Ritz method within the context of the Euler beam theory. 
Luo [11] studied the lateral vibration of an axially loaded 
infinite continuous beam. Munirudrappa & Dhruvaraja Iyen-
gar [12] presented a computer program for the solution of the 
equations governing the motion of a continuous-span high-
way bridge. Ichikawa et al. [13] presented a method for the 
direct determination of the natural modes by using the 
method of eigenfunctions expansion. Greco & Santini [14] 
studied the dynamic analysis of a continuous beam using an 
extension of the complex mode superposition method. 
Samaan et al. [15] studied curved continuous multiple-box 
girder bridges. Mehri et al. [16] studied the problem of a 
continuous beam and presented a solution employing the 
Green’s functions. 

 The present work concludes through an analytical 
method to reduced formulae for determining the eigenfre-
quencies and eigenfunctions of multi-span continuous beams 
with spans of different lengths and rigidities. The presented 
approach is called “Reduced Formulae” since the expres-
sions for a ν-span continuous beam are reduced to the ex-
pressions corresponding to a (ν-1)-span continuous beam and 
so on. 

 The dynamic response of a continuous beam subjected to 
a load moving with constant velocity is thoroughly studied. 
A model of moving load (although non-realistic for some 
cases met in common praxis) is employed to show the rigor-
ous handing of the proposed formulae. The analysis is car-
ried out by the modal superposition method. Numerical ex-
amples are presented to illustrate the applicability of the pre-
sented formulae.  

MATHEMATICAL FORMULATION 

 Let us consider the multi-span beam of Fig. (1) made 
from a homogeneous, isotropic and linearly elastic material 
with modulus of elasticity E. The continuous beam consists 
of ν spans with lengths , cross-section areas Ai, moments 

of inertia Ii and masses per unit length mi, with i=1, 2, …, ν 
and is resting on pinned supports. 

i

The Free Vibrating Beam 

 Neglecting the influence of longitudinal motion, the 
equations of motion of the freely vibrating beam are: 

0)t,x(wm)t,x(w)t,x(wEI iiiiiiiii    (1) 

where i=1, 2, …, ν, and the prime indicates differentiation 
with respect to x, the dot indicates differentiation with re-
spect to time t, and η is the damping coefficient. 

 The factor i  is the damping coefficient of the variant 

Kelvin-Voigt model. Theoretically, it is )x(ii  , but 

practically one can consider that .  along x, de-

pending only on the material of the beam. 

consti 

 We are searching for a solution in the form of separate 
variables: 
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 Introducing eq(2) into eq(1), we obtain 

2i

i

ii

ii

T

T
m

T

Xm

''''XEI









 

 The above leads to the following two equations: 

0)x(Xm)x(''''XEI ii
2

iiii   (3a) 

0)t(T)t(T2)t(T 2
i    (3b) 

where: 

),,2,1i(,
m2 i

i
i 


   (3c) 

 The solution of equation (3a) is given by the following 
relation: 

iiiiii

iiiiiiii

xkcoshDxksinhC

xkcosBxksinA)x(X




 (4) 

 By setting: 

),,2,1ifor(
I

I
d,kk

,kck,
mI

Im
c,

EI

m
k

1

i
i1

ii
1i

1i4
i

i

2
i4

i










 (5) 

 eq(4) becomes: 

iiiiii

iiiiiiii

xkccoshDxkcsinhC

xkccosBxkcsinA)x(X




 (6) 

 The corresponding boundary conditions for each span 
are: 
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Fig. (1). Geometry and sign convention of a -span continuous 
beam. 
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 The above conditions provide the following linear homo-
geneous system of equations: 
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 In order for the system to have non-trivial solutions, the 
determinant of the coefficients of the unknowns must be set 
equal to zero, thus the following condition must be satisfied: 

0  (9) 

where the sub-matrices in eq(8) are: 
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Reduced Formulae for Eigenfrequencies 

 Expanding the matrix of eq(9), we determine the follow-
ing conversion formulae: 
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Reduced Formulae for Shape Functions 

 Let us consider now the equations related to the ith-span 

1iiiii GCcAc   (13a) 

0kccoshDkcsinhCkccosBkcsinA iiiiiiiiiiii    (13b) 

)BD(cdkccoshDcd

kcsinhCcdkccosBcdkcsinAcd

1i1i
2

1i1iiii
2
ii

iii
2
iiiii

2
iiiii

2
ii

 





  (13c) 

0DB ii   (13d) 

for i=2 to (-1), and Gi is given by 
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Therefore, eqs(16) are written: 
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




 (21) 

 Introducing eqs(21) into eqs(14), we get: 
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and: 
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with 
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2
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 Finally, from the system 
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we determine the coefficients Aν and Βν as follows: 




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BD
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



 (24) 

 Hence, every coefficient is expressed as a function of Βν. 
Constant Βν is a random number that can take any value. 
Usually, we set Βν=1. Thus, we get the following relations: 

Span 1: 
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 Span i (for i=2 to ν-1): 
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 Span ν: 
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


 (25c) 

Orthogonality Conditions 

 From eq(3a), we consider firstly the mode n of the ith 
span, which we multiply by Xik. We next consider the mode 
k of the ith span, which we multiply by Xin. Integrating the 
outcome from 0 to i  taking into account the boundary con-
ditions and adding the results, we determine the following 
orthogonality conditions: 



)knfor(0)dxXXm(
1i 0

ikini

i

 






 (26) 

The Forced Vibration of Continuous Beams 

 The complete equation of motion of a beam under the 
action of a moving mass M is: 
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 Given that the influence of the mass M of a moving load 
is negligible [17] for values, 

3.0m/M
1i

ii 



  

we will study the continuous beam crossed by a moving 
force with constant speed. 

 Let us consider now a load P=Mg crossing the bridge 
with a constant velocity υ. The load enters the beam from its 
left end at the time instant t=0. When the load crosses the ith 
span, in time interval 


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 i
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i
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i t


, the following equa-
tions are valid: 
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where: 


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1i

1

i
i tt
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and  is the Dirac unit function. 

 We are searching for a solution under the form: 

 
n

nniii ),,2,1i()TX()t,x(w   (28) 

where the index n shows the number of the used eigen-
modes.  

Thus, eqs(27) become: 
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and j=1,2,…,. 

 Taking into account that eq(3a) is valid, eq(29) become: 
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 Multiplying the corresponding equation j by Xjk, integrat-
ing the outcome from 0 to , adding the resulting expres-

sions and using the orthogonality conditions, we get: 
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with 
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 The solution of eq(30a) is given by the Duhamel’s inte-
gral: 
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where: 

2
i

2
nn

~   

Numerical Examples and Discussion 

 Let us consider the multi-span beam of Fig. (1) made 
from a homogeneous, isotropic material with Young’s 
modulus E=2.1x1010 kN/m2. 

 The beam with total length ℓ=138m consists of five spans 
with lengths ℓ1=24m, ℓ2=ℓ3=ℓ4=30m, and ℓ5=24m, respec-
tively, moment of inertia Ib=0.05m4, mass per unit length 
mb=500 kg/m and damping parameter =0.02. Since the 
beam properties are constant all over the length of the beam, 
the parameters ci, and di in eq(5) are ci=di=1 and by formu-
lating and solving the eigenfrequency equation (9), the first 
five eigenfrequencies are determined: 1=17.5324, 
2=21.9206, 3=28.0297, 4=34.6396, 5=37.1087. Then, 
the corresponding eigenshapes are obtained using the rela-
tions (25a,b,c). In Figs. (2 to 6) one can see in graphical form 
the first five eigenshapes for free vibration of the 5-span 
beam. 

 In the following Figs. (7, 8 and 9) one can see the dy-
namic influence lines referring to the midpoints of the first 
three spans, i.e. w1(ℓ1/2, t), w2(ℓ2/2, t) and w3(ℓ3/2, t). The 
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Fig. (6). The fifth eigenshape of the free vibrating beam 
(5=37.1087sec-1). 

 

Fig. (7). Influence lines at w1(ℓ1/2,t) for forced vibration of the 
beam. 

 

Fig. (8). Influence lines at w2(ℓ2/2,t) for forced vibration of the 
beam. 

 

Fig. (9). Influence lines at w3(ℓ3/2,t) for forced vibration of the 
beam. 

 

Fig. (2). The fundamental eigenshape of the free vibrating beam 
(1=17.5324 sec-1). 

 

Fig. (3). The second eigenshape of the free vibrating beam 
(2=21.9206sec-1). 

 

Fig. (4). The third eigenshape of the free vibrating beam 
(3=28.0297sec-1). 

 

Fig. (5). The fourth eigenshape of the free vibrating beam 
(4=34.6396sec-1). 

continuous influence line refers to velocity v=20m/s, while 
the dotted influence line refers to velocity v=40m/s. 

 From Figs (7) through 9 one can see that the influence 
lines take maximum values with similar magnitude occurring 
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though at different times depending on the moving force 
velocity. 

CONCLUSIONS  

 A simple but very easy and efficient analytical method 
for obtaining reduced formulae in order to determine the 
eigenfrequencies and eigenmodes of multi-span continuous 
beams with spans of different lengths and bending rigidities 
is presented. The results can be readily employed for study-
ing the dynamic response of multi-span beams subjected to 
any type of dynamic actions. From the examples studied, it is 
obvious that an optimum design of multi-span beams and 
subsequently a better overall dynamic behavior of continu-
ous beams can be very easily achieved by employing the 
reduced formulae presented herein. 
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