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Abstract:

Background:

During  operation,  cylindrical  gearset  experiences  tangential,  radial,  and  axial  (helical  gears  only)  force  components  that  induce  bending,
compressive, and shear stresses at the root area of the gear tooth. Accurate estimation of the effective bending stress at the gear root is a challenge.
Lewis was the first person who attempted estimating the root bending stress of spur gears with some reasonable accuracy. Various gear standards
and codes in use today are modifications and improvements of the Lewis model.

Objective:

This research aims at revising the Lewis model by making adjustments for dynamic loads, shear stresses, axial bending stress for helical gears, and
stress concentration factor that is independent on the moment arm of tangential or axial force component.

Methods:

An analytical approach is used in formulating a modified formula for the root bending stress in cylindrical gears starting with the original Lewis
model. Intermediate expressions are developed in the process and works from many previous authors are reviewed and summarized. The new
model developed is used to estimate the root bending stress in four example gearsets of 0o to 41.41o helix angle and the results are compared with
those of AGMA (American Gear Manufacturers Association) formula.

Results:

Analysis from the examples shows that neglecting the radial compressive stress over-estimated the root bending stress by 5.27% on average. When
shear  stresses  are  ignored,  the  root  bending  stress  is  under-estimated  by  7.49%  on  average.  It  is  important,  therefore,  to  account  for  both
compressive and shear stresses in cylindrical gear root bending stress. When the root bending stress estimates from the revised Lewis model were
compared with AGMA results, deviations in the range of -4.86% to 26.61% were observed. The stress estimates from the revised Lewis formulae
were mostly higher than those of AGMA.

Conclusion:

The new root bending stress model uses stress concentration factors (normal and shear) that are independent of the point of load application on the
gear tooth. This decoupling of stress concentration factor from the load moment arm distinguishes the new model from AGMA formula and brings
bending stress analysis in gear design in line with classical bending stress analysis of straight and curved beams. The model can be used for both
normal contact ratio and high contact ratio cylindrical gears.
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1. INTRODUCTION

A gear is a toothed disk used to transmit power and motion
when mounted on a rotating shaft. Cylindrical gears have teeth-
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cut on a cylinder and are typically divided into spur and helical
gear  types.  Spur  gears  have  teeth  projecting  radially  and
parallel to the axis of the shaft and they have been used since
ancient times [1]. A helical gear has teeth wrapped like a screw
on its pitch cylinder though the pitch surface is cylindrical as in
spur gears [2]. The helix may be right-handed or left-handed
and  its  inclination  to  the  axial  direction  is  called  the  helix
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angle. A spur gear may be treated as a helical gear with a zero-
helix angle [3]. The helix allows more gradual engagement of
meshing  teeth,  which  results  in  a  smoother  transfer  of  load
from the  driving  teeth  to  the  driven  teeth.  Therefore,  helical
gears  are  increasingly  being  used  because  of  their  relatively
smooth and quiet operation, large load carrying capacity, and
higher operating speed [4, 5].

The resistance of gear teeth to failure in bending is called
beam strength and gear failure in bending fatigue is a common
problem [6 - 8]. In 1892, Lewis modeled a gear tooth as a short
cantilever  beam  on  a  rigid  base  with  the  transmitted  load
applied  near  the  tip  of  the  gear  tooth  [9,  10].  The  maximum
tensile stress occurs at the root radius on the loaded or active
side of  the  gear  tooth.  Due to  the  repeated loading of  a  gear
tooth, this region becomes the preferential site for the initiation
of a fatigue crack. Fatigue failure is due to crack formation and
propagation  induced  by  repeated  loading.  A  crack  normally
initiates  at  a  discontinuity  where  there  is  a  cyclic  maximum
stress  [9,  10].  Cracks  grow  along  planes  normal  to  the
maximum  tensile  stress  [9]  and  when  the  growth  becomes
unstable, brittle fracture rapidly follows. Thru-hardened gears
most often fail in bending fatigue due to a crack initiated at the
surface in the root area. Because the surface hardness of case-
hardened  gears  is  higher  than  the  core  value,  the  bending
fatigue strength of the gear root surface can be higher than that
of the core. Case-hardened gears generally fail in fatigue at the
boundary of case-core hardness, except when there is a sharp
stress raiser at the surface [11].

Case-hardening  processes,  such  as  induction  hardening,
flame  hardening,  carburizing,  nitriding,  and  some  other
processes like shot-peening, hammering, and cold rolling, can
increase the fatigue resistance of gears because they generate
surface  compressive  residual  stresses  [12  -  16].  The  surface
stresses  tend  to  weaken  the  effects  of  stress  raisers  reducing
fatigue  damage.  Finishing  processes,  such  as  grinding  or
skiving,  tend  to  develop  tensile  residual  stresses,  thereby
reducing  the  benefits  of  compressive  residual  stress  in  case-
hardening  processes,  but  some  compressive  surface  residual
stresses usually persist.

2. MOTIVATIONS AND OBJECTIVE OF THE STUDY

The tangential load in spur gears induces both bending and
direct  shear  stresses  on  the  gear  tooth,  while  the  radial  load
produces  only  compressive  stress.  In  helical  gears,  an  axial
load exists and it introduces both bending and shear stresses, in
addition to those experienced by spur gears. The bending stress
capacity models of American Gear Manufacturers Association
(AGMA),  International  Standardization  Organization  (ISO),
and Japanese Industrial Standards (JIS) account for the bending
stress  from the  tangential  force,  compressive  stress  from the
radial  load  and  the  effect  of  stress  concentration,  but  not
explicitly,  for  the  shear  stresses  which  are  considered
negligible.  Accounting  for  shear  stresses  will  improve  the
estimation  of  gear  root  bending  stress.

The AGMA model is based on the load point being at the
worst position, which corresponds to the highest point of single
tooth contact (HPSTC) in a gear mesh for normal contact ratio
gears. In normal contact ratio gear meshes, the contact ratio is

less than 2. Gear meshes with a contact ratio of at least 2 are
described as high contact ratio gears and multiple gear pairs are
always  in  contact  during  operation.  In  normal  contact  ratio
gears,  one  pair  of  gear  teeth  carries  the  transmitted  load  at
HPSTC in the AGMA model, but near the tip of the gear, two
pairs  carry  the  transmitted  load,  indicating  that  load  sharing
occurs.  The  main  issue  in  high  contact  ratio  gears  is  the
identification  of  the  point  of  contact  that  results  in  the
maximum bending stress for each tooth and whether that point
occurs simultaneously for all the teeth in the mesh [17]. Hence
the  concept  of  “HPSTC”  seems  inapplicable  when  multiple
pairs of teeth are in contact in a mesh. AGMA, therefore, has
two bending stress capacity models for cylindrical gears, based
on  contact  ratio.  Also,  the  computation  of  the  J-value  in  the
AGMA formula is evaluated for HPSTC, which is complicated,
especially for addendum corrected gearsets.

The AGMA bending stress concentration factor model is
based on the work of Dolan and Broghamer, who experimented
on photoelastic plastic gear materials. The stress concentration
factor is related to the bending moment arm, which makes it to
be dependent on the point of load application on the gear tooth.
In classical stress concentration analysis of straight and curved
beams, the location of the bending load on the beam does not
affect the stress concentration factor. In these cases, the stress
concentration factor is dependent on the local geometry and the
notch sensitivity of the component material. This appears to be
an obvious weakness of the AGMA bending capacity models.
Another issue is that tests on metal gears suggest that the stress
concentration  factor  obtained  is  not  the  same  as  that  for
photoelastic plastic gears [17]. The actual stress concentration
value depends on the presence of deep tool marks and scratches
(surface  roughness),  surface  hardness,  surface  residual
compressive  stress,  and  load  cycles  [17,  18].  Stress
concentration  arises  from  changes  in  the  cross-sectional
dimensions  of  components  that  are  under  stress  [19].

As mentioned earlier, contact of two gear pairs occurs even
in  normal  contact  ratio  meshes  near  the  gear  tips.  Hence,  in
general, multiple pairs of gear teeth contacts exist in all gear
meshes, but it is perhaps impossible to locate HPSTC for high
contact ratio gear meshes. Because load sharing occurs near the
gear tip in all gear meshes and the Lewis model assumes a load
point near the gear tip, the model appears to hold promise in
estimating gear bending stress for both normal and high contact
ratio gear meshes. The Lewis model is also attractive due to the
computational simplicity of the bending stress form factor. The
objective of this study is to modify Lewis bending stress model
such  that  it  accommodates  stress  concentration  factor  that  is
independent  of  load application point  and accounts  for  shear
stresses in the root bending stress of cylindrical gears.

3. FORCES IN CYLINDRICAL GEARS

The power transmitted by a gearset  generates torque and
force  loads  that  must  be  safely  carried  by the  gears.  Fig.  (1)
shows  the  forces  generated  during  power  transmission  in
helical  gears.  The  torque  and  tangential  force  on  the  pinion
tooth are:
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Fig. (1). Forces in helical gear.

Equation (1) has two entries and should be interpreted as
Eq. (1a) and Eq. (1b) from left to right. The same rule should
be applied to other equations of similar nature. The subscript 1
in Eq. (1) applies to the pinion in a gearset. Similar equations
can be deduced for the gear by using Eq.2 as a subscript.

The radial and axial forces in Fig. (1) are given in Eq. (2).

(2)

The normal forces in the gear mesh Fig. (1) are given by
Eq. (3).

(3)

The influence of the helix angle in gear performance can
be  summarized  by  two  parameters:  the  transverse  pressure
angle, and the base helix angle ѱb. The relationships of these
parameters with the helix angle are given in Eq. (4).

(4)

At low helix angles, ѱ ≤ 20o [20], the base helix angle is
approximately equal to the helix angle. At high values of helix

angle,  a  significant  difference  arises  between  the  base  helix
angle and the helix angle.

4. SERVICE LOAD FACTOR (Ks)

Experience shows that the forces acting on equipment in
service are generally higher than the rated or nominal values in
gear  drives.  Practically,  the  design  or  service  load  is  often
estimated  by  multiplying  the  rated  load  with  a  service  load
factor,  which  is  used  to  account  for  load  increases  during
normal operations of gearsets. It is a load magnification factor
and  in  gear  design,  it  may  be  evaluated  by  a  multiplicative
model as was done in a previous study [21]:

(5)

Readers  are  referred  to  Osakue  [21],  AGMA  documents
[22],  Osakue  and  Anetor  [23]  for  the  selection  of  Ka  and
evaluation of KvKm  and Kr.  However,  a brief summary of the
parameters is given in Appendix B.

5. LEWIS BENDING CAPACITY MODEL

Gear  failure  in  bending  fatigue  is  one  of  the  common
modes of failure. The bending capacity of gear teeth was first
calculated to a reasonable degree of accuracy by Wilfred Lewis
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in 1892 [9]. He considered a gear tooth as a cantilever beam on
a  rigid  base  with  a  maximum  parabola  inscribed  inside  the
tooth shape. A parabolic shaped cross-sectional beam develops
constant  bending  stress  at  the  surface.  For  a  gear  loaded  in
bending, the maximum tensile stress occurs at the root radius
on the loaded or active side of the gear tooth.

The assumptions made or implied in the derivation of the
Lewis formula are [24, 25]:

1. The applied load is assumed to be static. In practice, it is
dynamic  and  depends  on  several  factors,  therefore  this
assumption is not conservative. The internal dynamic overload
factor  component  in  the  service  load  factor  in  Eq.  (5)  was
introduced in gear design to remedy this problem.

2. The tangential or transmitted load is applied to the tip of
a single tooth. This assumption is conservative because when
gears  mesh  at  the  tip,  more  than  one  pair  is  usually  in
engagement.  This  means  load  sharing  is  ignored.

3. The transmitted load is distributed uniformly across the
full face width. This is a non-conservative assumption and can
be  instrumental  in  gear  failures  involving  wide  teeth  and
misaligned  or  deflecting  shafts.  The  mesh  or  mounting
overload factor component of the service load factor in Eq. (5)
is used to account for gear mesh misalignment, which leads to
non-uniform load distribution over the gear face width.

4.  The  radial  force  component  is  negligible.  This  is  a
conservative  assumption  because  it  produces  a  compressive
stress  that  subtracts  from  the  tensile  stress  at  the  point  of
maximum  stress.

5. Forces due to tooth sliding friction are negligible. This is
reasonable  since  the  sliding  friction  coefficient  in  properly
lubricated  gearsets  is  small.  However,  considering  mesh
friction  improves  the  estimation  of  the  bending  stress  at  the
gear root.

6. Shear stress from the transmitted load is ignored because
it  is  considered  negligible.  This  is  a  non-conservative
assumption, though it seems reasonable. But considering them
makes the bending stress estimate more realistic.

7.  Stress  concentration  in  the  tooth  fillet  is  negligible.
Stress concentration effects were unknown in the time of Lewis
but  are  now  known  to  be  important  [19].  Therefore,  stress
concentration can no longer be ignored.

The Lewis formula may be expressed as:

(6)

Eq. (6) is evaluated separately for the pinion and gear in
gear design. The pinion is usually more vulnerable to bending
stress failure, being of a smaller root tooth thickness. Eq. (7a)
gives  the  expression  for  the  modified  Lewis  bending  stress
form factor  when the radial  compressive stress  is  considered
[26, 27]. Thus if the radial compressive force is neglected as
assumed by Lewis, the Eq. (7b) is obtained.

(7a)

(7b)

It  is  clear  that  Eq.  (7a)  will  always  give  higher  values
compared  to  Eq.  (7b)  because  of  the  compressive  stress
considered in Eq. (7a) resulting in lower bending stresses. This
explains  why  the  value  of  Y  for  modern  gear  standards  that
account for the compressive radial force is slightly higher than
Y/.  Note  that  Y  or  Y/  values  for  the  pinion  and  gear  can  be
estimated  from  a  single  curve.  This  makes  its  use  relatively
easier than the AGMA-J values, which are evaluated at HPSTC
and leads to the use of two separate curves, one for the pinion
and the other for the gear. The AGMA-J value incorporates a
stress concentration factor.

6. MODIFICATIONS OF LEWIS FORMULA

In  general,  when  multiple  teeth  pairs  are  in  contact  in  a
mesh, then load shearing should be accounted for as in Eq. (8):

(8)

By incorporating the load sharing parameter  in Eq. (8),
the bending stress in both normal and high contact ratio gears
can be estimated using a single expression.

6.1. Tangential and Axial Bending Stresses

For helical gears, Eq. (8a) neglects the bending stress from
the axial force and also the shear stresses from the transverse
and axial forces. To account for these stresses, a fictitious spur
gear is considered that has an axial load component in addition
to  a  tangential  load  component,  as  depicted  in  Fig.  (2).  The
gear  tooth  is  modeled  as  a  cantilever  beam  loaded  in  two
planes in the Fig. (2a) is on the y-x or transverse plane of Fig.
1, while Fig. (2a) is on the y-z or axial plane of Fig. (1) The
influence  of  the  helix  angle  in  actual  helical  gears  will  be
considered later.

From Fig. (1a), the bending stress from the transverse load
is:

(9)

From Fig. (1b), the bending stress from the axial load is:

(10a)

(10b)

Substituting Eq. (9) in Eq. (10), we have:
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Fig. (2). Cantilever models of gear tooth in bending.

6.2. Direct Compressive Stress

The  radial  force  induces  a  compressive  stress,  which  is
given in Eq. (12a). Eq. (12b) is obtained by combining Eq. (8)
and Eq. (12a).

(12)

6.3. Combined Bending and Compressive Stresses

Considering the left diagram of Fig. 3, where a beam of a
rectangular  cross-section  is  loaded  in  two  planes.  The  two
perpendicular  forces  produce  bending  moments  about  two
axes:  the  vertical  force  about  the  horizontal  axis  and  the
horizontal  force about  the vertical  axis  at  the centroid of  the
beam.

The distribution of the bending stresses from the forces at
the cross-section is shown to the right of the loaded beam. At
point A, the two bending stresses have positive values and they
add up to give the maximum tensile stress. At point D, the two
bending stresses have negative values and they added to give
the maximum compressive stress. At point B or C, one bending
stress  is  positive  while  the  other  is  negative,  therefore,  the
resultant stress in magnitude will be less than that for A or D.
Since tensile stresses are responsible for fatigue failure, point A
is the critical point in this figure. Applied to a gear tooth, one
of the corner points at the root will experience additive tensile
stresses.

By applying the above analysis to the gear tooth of Fig.(2);
the  maximum  resultant  bending  tensile  stress  at  one  of  the
corners  is  given  by  Eq.  (13a).  Eq.  (13b)  is  obtained  by
substituting Eq. (8), Eq. (11), and Eq. (12b) into Eq. (13a).

Eq. (13b) gives the estimate of the bending root stress from
the  bending  influence  of  the  tangential  and  axial  forces  in
combination with the compressive radial force. But the shear
stresses  from  both  the  tangential  and  axial  forces  are  not
accounted  for.  This  is  done  in  the  next  section.

(13a)

(13b)

6.4. Direct Shear Stresses

The  transverse  and  axial  forces  also  induce  direct  shear
stresses  on  the  equivalent  spur  gear.  The  direct  shear  stress
from the transverse load is:

(14)

The direct shear stress from the axial load is:

(15)

The tangential and axial shear stresses act on perpendicular
planes, so the resultant shear stress is given in Eq. (16a). Eq.
(16b) is obtained by substituting Eq. (8) into Eq. (16a).
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Fig. (3). Bending stress distribution in rectangular section.

6.5. Equivalent Root Tensile Stress

The equivalent tensile stress at the gear root may be based
on the distortion energy theory or maximum shear stress theory
depending on whether the material is ductile or brittle [12, 28].
Most gears are made from ductile materials, so the equivalent
tensile stress at the tooth root may be estimated by applying the
distortion  energy  theory.  For  a  plane  stress  situation,  the
equivalent tensile stress based on the distortion energy theory
is:

(17)

7. REVISED LEWIS FORMULA

The  dedendum  circle  is  generally  connected  with  the
involute profile of a gear tooth with a fillet. This introduces a
geometric  discontinuity  at  the  gear  root  resulting  in  stress
concentration.  The locations of size changes or discontinuity
are  sites  of  stress  concentration  where  the  maximum  stress
values  are  considerably  higher  than  the  nominal  or  average
values. The ratio of the maximum stress to the nominal stress is
generally  called  the  stress  concentration  factor.  Stress
concentration  was  not  known  in  the  days  of  Lewis;  but  it  is
very  important  today  because  experimental  and  simulated
results indicate that it can significantly increase local stresses
[19].  Therefore,  a  stress  concentration  factor  should  be
included in the Lewis formula for it to be more realistic. Since
there  are  both  normal  and  shear  stresses,  Eq.  (17)  may  be
modified as:

(18)

Substitute  Eq.  (13b)  and  Eq.  (16b)  into  Eq.  (18)  and
simplify  to  obtain:

(19)

where:

(20)

From Eq. (8) and Eq. (9), it is easy to prove Eq. (21). Eq.
(21b) is assumed for simplicity.

(21)

Eq. (21a) may be expressed as in Eq. (22a) and Eq. (22b)
can be deduced.

(22)

In Appendix A, a method for estimating λa, using the rack
tooth profile is described. It allows a single moment arm factor
to be used for a gear profile standard. This is a new concept in
gear design.
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When Eq. (22a) is substituted in Eq. (20), then Eq. (23) is
obtained.

(23)

Eq. (19) is true for a fictitious spur gear with tangential and
axial loads, which are considered as static forces. It needs to be
corrected  for  dynamic  load  effects.  Also,  to  apply  it  to  an
actual  helical  gear,  it  must  account  for  the  influence  of  the
helix angle.

7.1. Accounting for Helix Angle of Helical Gears

The transfer of power between gears in a mesh takes place
by means of contact between the active teeth. In helical gears,
contact of active teeth occurs in the normal plane. Therefore,
the design analysis of helical gears should be preferably done
on  the  normal  plane.  The  normal  plane  of  a  helical  gear
intercepts  the  pitch  cylinder  so  that  the  gear  tooth  profile
generated in it has the same properties as the actual helical gear
[29].  The  normal  plane,  therefore,  may  be  used  to  define  an
equivalent  spur  gear  for  a  helical  gear.  The  diameter  of  the
equivalent spur gear depends on the base helix angle because it
gives  an  accurate  estimate  of  the  radius  of  curvature  of  the
equivalent  spur  gear  on  the  normal  plane  of  contact  [28].  In
helical gears, the normal bending force, acts perpendicular to
the tooth similar to the transverse force Ft  in spur gears. The
analogous  bending  stress  from  this  force  may  be  expressed
using normal plane parameters as was done in a previous work
[30]:

(24)

(25a)

Substitute  Eqs.  (24b),  (24c),  and  (25a)  in  Eq.  (24a)  to
obtain:

(25b)

Substitute Ft  from Eq. (1b) in Eq. (25) and introduce the
stress concentration parameters in Eq. (19) to obtain:

(26)

where:

(27)

Y/
n  depends  on  the  equivalent  number  of  teeth  of  a  spur

gear in the normal plane of a helical gear, as indicated in Eq.
(28a) and zn is given by Eq. (28b).

(28a)

(28b)

Note  that  ѱ  and  ѱb  are  zero,  respectively,  for  spur  gears
and mn = mt.

Eq.  (27)  may  be  used  to  understand  the  influence  of  the
radial force component and shear stresses, as indicated in Eq.
(29).  Eq.  (29a)  is  used  when  the  radial  force  component  is
ignored. Eq. (29b) applies when shear stresses are ignored.

(29a)

(29b)

7.2.  Corrections  for  Dynamic  Load,  Mesh  Misalignment,
and Effective Contact Length

Eq.  (26)  makes  a  correction  for  the  helix  angle,  but  the
loading  is  still  considered  static  and  ignores  friction  load
effects.  Introducing  the  service  load  factor  into  the  Lewis
model will account for dynamic load and mesh misalignment
effects.

Surface roughness seems to have a great influence on the
actual  contact  area  when  two  bodies  are  in  relative  sliding
motion  [31].  Factors,  such  as  thermal  gradient,  centrifugal
forces, work hardening, residual stresses [12], etc., can distort
pinion  or  gear  shape  and  lead  to  teeth  mismatch  so  that  full
contact does not occur over the nominal face width of meshing
gears. In general, the effective face width factor is assumed to
account for surface roughness, surface treatment quality, and
miscellaneous effects that make contact over the full nominal
face width of a gear impossible. AGMA [22] suggests a value
of 0.95 for the effective face width factor of helical gears; this
value is adopted here for spur gears also.

Taking  account  of  the  service  load  factor,Ks  and  the
effective facewidth factor λe; the revised Lewis capacity model
for the gear root bending stress of cylindrical gears is:

(30)

The parameters T,  b,  d  and Y/
n  in equations (25b) to (30)

apply to either the pinion or gear in a mesh. Separate equations
for the pinion or gear may be obtained by appending subscript
1 or 2, respectively, to these parameters. It is important to note
that  the  Lewis  form  factor  Y/

n  is  applicable  only  to  standard
gears; that is, gears with no profile shift or modification.
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7.3. Stress Concentration Factors

Stress concentration gives rise to unusually high stresses
near  a  stress  raiser,  while  much  lower  values  exist  on  the
remainder of the cross-section. Practically, some factors tend to
limit stress concentration effects, and these include local plastic
deformation,  residual  stresses,  notch  radius,  component  size,
and  load  type.  To  account  for  these  influences,  the  ideas  of
notch  sensitivity  and  effective  stress  concentration  were
introduced [19].  Notch sensitivity  is  a  material’s  response to
stress concentration, and it is assessed by the notch sensitivity
factor that has values between 0 for complete insensitivity and
1 for perfect sensitivity.

Due  to  the  notch  sensitivity  of  materials,  the  effective
stress concentration factor is less than the theoretical value. Eq.
(31) defines the relationship between these parameters.

(31)

According  to  Zahavi  [32],  the  theoretical  bending  stress
concentration factor in (steel) gears is in the range from 1.5 to
1.7. For steel gear materials, it is reasonable to expect normal
notch  sensitivity  values  in  the  range  of  0.80  for  normalized
materials  to  0.95  for  quenched  and  tempered  materials.
Applying  Eq.  (31)  to  Zahavi’s  findings  [32],  the  effective
bending or normal stress concentrator factor would be in the
range  of  1.4  to  1.67  for  steel  gears.  A  bending  stress
concentration factor of 1.4 is used in a Japanese standard [33]
for  steel  gear  materials.  MITCal  [34]  used  a  bending  stress
concentration  factor  of  1.5  in  some  gear  design  examples.
According  to  Dobrovolsky  et  al.  [11],  the  normal  stress
concentration factor is approximately 1.1 to 1.7 for steel gears
and  1.2  for  cast  iron  gears.  Therefore,  the  estimates  of  the
effective normal stress concentration factor in the range from
1.4 to 1.67 seem reasonable for steel gears.

The effective shear stress concentration is taken as 1.7 to
2.2 for  flexible  spline or  harmonic gear  teeth generated with
pinion  cutter  and  1.6  to  2.0  when  the  teeth  are  hobbed  [35].
Harmonic gear teeth are produced with hobbing and shaping
methods,  similar  to  those  of  cylindrical  gears.  Based  on  the
above information and using engineering judgment, Table 1 is
suggested  for  use  in  gear  bending  stress  estimation  during
initial sizing. The values of the stress concentration factors in
the table have no relationship with the point of load application
on a gear tooth. The entries for case-hardened steel gears are
for  surface  root  bending  stress  and  are  informed  by  the
beneficial effects of compressive surface residual stresses they
generate. For subsurface root stress, values for quenched and
tempered steels may be used.

Table 1. Stress Concentration Factors for Gear Design

Gear Material Type Kδ KT

Cast iron and non-ferrous materials 1.40 1.75
Normalized steels (≤ 300 HVN) 1.50 1.85

Quenched & tempered steels (≤ 450 HVN) 1.60 2.00
Case-hardened steels (> 450 HVN) 1.50 1.85

When values of stress concentration factors in Table 3 are
used  in  Eq.  (27),  Eq.  (29),  and  Eq.  (30),  the  stress

concentration  factor  is  independent  of  the  point  of  load
application on the gear tooth. This eliminates the weaknesses
highlighted  about  the  AGMA  model,  whose  stress
concentration factor depends on the point of load application
on the gear tooth.

8. DESIGN EXAMPLES

The  new  design  formulas  presented  in  the  previous
sections are  applied in  four  design examples,  taken from the
indicated  references.  The  problem  statements  in  the  design
cases have been paraphrased and the design parameters have
been converted to metric units where necessary by the authors.
The  equations  presented  were  coded  in  Microsoft  Excel  for
computational  efficiency.  The  goal  is  to  estimate  the  root
bending  stresses  using  the  new  formulae  and  make
comparisons  with  those  from  AGMA.  AGMA  standards  are
perhaps the most popular gear standards in use and have a good
reputation amongst gear designers and manufacturers.

8.1. Design Problems

The four of the design problems are considered below. The
solutions  to  the  problems  are  available  from  the  stated
references  and  comparisons  will  be  made  with  the  estimates
from  the  formulae  presented  in  the  sections  above.  The
problems cover a wide range of helix angles, which span from
0 to 41.41. Note that the 0 helical gear is actually a spur gear.

8.1.1. Example 1

A gearset of steel and ductile cast iron transmits a torque of
1694.8 nm at the pinion at 406 rpm. The gearset basic size data
are: z1 = z2 = 20, d1 = d2 = 127 mm, b = 25.4 mm. The gearset
has  a  normal  pressure  angle  of  20°  and  a  helix  angle  of  0°.
What  is  the expected root  bending stress? This  example was
presented in a previous study [21].

8.1.2. Example 2

A  helical  steel  gearset  for  a  milling  machine  drive  is  to
transmit 48.5 kW from an electric motor with a pinion speed of
3450  rpm  and  a  gear  speed  of  1100  rpm.  The  gearset  has  a
normal  pressure  angle  of  20o  and  a  helix  angle  of  15o.  The
pinion has  24 teeth,  gear  has  75  teeth,  the  normal  module  is
2.17 mm and the face width is 57.15 mm. Determine the root
bending stress on the pinion [6, pp. 461 - 462].

8.1.3. Example 3

A  17-tooth  helical  steel  pinion  with  a  right-hand  helix
angle of 30o rotates at 1800 rpm when transmitting 3 kW to a
52-tooth helical steel gear. The gearset has a normal pressure
angle of 20o, normal module of 2.54 mm, and a face width of
38.1 mm. Determine the root bending stress on the pinion [12
pp. 771 – 773].

8.1.4. Example 4

A  15-tooth  helical  steel  pinion  with  a  right-hand  helix
angle of 41.41o rotates at 2500 rpm when transmitting 3.75 kW
to  a  24-tooth  helical  steel  gear.  The  gearset  has  a  normal
pressure angle of 20o, normal module of 2.54 mm, and a face

)1(1 /   kqk  )1(1 /   kqk  
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width of 29.21 mm. Determine the root bending stress on the
pinion [3, pp. 658 – 662].

8.2. Solutions to Problems

Table 2 summarizes the basic gearset dimensions and load
data,  for  example,  1  to  4.  The  service  load  factors  were
evaluated and used for root bending stress estimation. Table 3
gives the results for the problems for the revised Lewis model.
The entries in the “A” column are obtained from Eq. (27) and
Eq. (30). The entries in the “B” column are obtained from Eq.
29a and Eq. (30). The entries in the “C” column are obtained
from Eq. 29b) and Eq. (30). Table 4 shows the AGMA bending
stress solutions being compared with the revised Lewis model.
The  stress  concentration  values  used  in  the  bending  stress
estimations  were  taken  from  Table  3.

Table  2.  Input  Parameters  for  Bending  Stress  for
Examples.

Parameters
Examples

1 2 3 4
Transmitted power (kW) 72.06 48.5 3 3.75

Pinion speed (rpm) 406 3450 1800 2500
Pinion torque (Nm) 1694.8 134.24 15.92 14.32

Speed ratio 1.0 3.136 3.0 1.60
Normal pressure angle (o) 20 20 20 20

Helix angle (o) 0 15 30 41.41
Normal module (mm) 6.35 2.12 2.54 2.54
Pinion teeth number 20 24 17 15
Gear teeth number 20 75 51 24

Pinion pitch diameter (mm) 127 53.92 49.86 50.8
Gear pitch diameter (mm) 127 168.49 149.58 81.28

Face width (mm) 25.4 24.13 57.15 38.1
Service load factor 1.610 1.853 2.495 1.663

Table 3.  Solutions for Examples  1  to  4  Based on Eq.  (36)
and Eq. (34).

Example Helix
Angle
(Deg.)

A B C B-DEV(%) C-DEV(%)

1 0 881.90 929.40 823.07 5.39 -6.67
2 15 276.91 292.78 256.82 5.73 -7.25
3 30 26.79 28.21 24.68 5.31 -7.86
4 41.41 38.63 40.43 35.48 4.66 -8.16

Average 5.27 -7.49

Table 4. AGMA and Solutions Comparisons.

Example Helix Angle (Deg.) AGMA NEW DEV(%)
1 0 805.32 881.90 9.51
2 15 218.71 276.91 26.61
3 30 25.94 26.79 3.27
4 41.41 40.59 38.63 -4.83

9. DISCUSSION

The examples cover a wide range of helix angles from 0o to

41.41o.  This  range  essentially  covers  values  in  the  common
practice  of  cylindrical  gear  design  and  manufacture.  The
influence  of  the  helix  angle  is  directly  indicated  in  equation
(30)  through  the  base  helix  angle.  However,  the  stress
correction factor kt also indicates a secondary influence of the
helix  as  revealed  in  (Eq.  (27).  The  solution  of  Eq.  (30)  is
unique when compared with current gear design standards. For
instance,  a  different  chart  is  not  required  for  the  helix  angle
factor, as is done in the AGMA approach.

Table 3 gives the results for the new revised Lewis model.
Column“A”  entries  are  the  new  accepted  solutions  that  take
account of both the radial load and shear stresses. Column “B”
entries  ignore  the  radial  load  but  account  for  shear  stresses.
Column “C” entries account for the radial load but ignore shear
stresses. The “B-DEV” column shows the percentage deviation
of the “B” column from the “A” column. This column shows
that the root bending stress is over-estimated by 4.66 to 5.73%,
with  an  average  of  5.27%.  The  “C-DEV” column shows  the
percentage deviation of the “C” column from the “A” column.
This  column  shows  that  the  root  bending  stress  is  under-
estimated by 6.67 to 8.16%, with an average of 7.49%. Clearly
the influence of shear stresses is important if a more accurate
model is desired in root bending stress estimation.

Table  4  shows  the  bending  stresses  for  comparison
purposes.  The  AGMA  values  are  given  in  column  3  and
column 4 gives values for the revised Lewis formula. Column
5 shows the percentage deviations of the new solutions form
the AGMA values in the range of -4.83% to 26.61%. It should
be  noted  that  getting  accurate  values  of  AGMA-J  factor  for
helical  gears  is  somewhat  challenging.  The  new  model
solutions  are  thus,  somewhat  conservative  compared  with
AGMA  results  but  indicate  good  comparison.

CONCLUSION

A  new  revised  Lewis  bending  stress  capacity  model  is
formulated and provides a single expression (Eq. (30)) for both
spur  and  helical  gears  and  normal  and  high  contact  ratio
cylindrical gears. It accounts for both radial compressive stress
and shear stresses in cylindrical gearsets. Also, the helix angle
is expressly taken into account in Eq. (30) and Eq. (27). Note
that  a  spur  gear  is  a  special  case  of  a  helical  gear  when  the
helix  angle  is  0o.  Eq.  (27)  and  Eq.  (30)  eliminate  the  use  of
multiple  charts  or  tables  in  estimating root  bending stress  of
thecylindrical  gears.  The  equations  use  stress  concentration
factors that are independent of the point of load application on
the  gear  tooth.  This  brings  bending  stress  analysis  in  gear
design in agreement with classical bending stress analysis of
straight and curved beams. Also, the need to identify HPSTC is
eliminated and the estimation of Lewis form factor is  easier.
Load  shearing  is  uniformly  applied  to  both  spur  and  helical
gears through the parameter . The use of the rack profile for
a gear profile standard in the determination of the moment arm
is  a  new concept  introduced  in  this  study.  It  allows  a  single
moment arm factor to be used for all modules in a gear profile
standard.  These  features  make  the  new  model  unique  from
those of AGMA and ISO.

Four design examples of  bending stress  evaluations with
helix angles from 0 to 41.41 were considered. The torque range
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is 14 to 1695 nm and the estimated root bending stress range is
from  27  to  882  MPa.  Though  higher  torques  may  occur  in
practice,  the  stress  of  882  MPa  is  too  high  and  likely
unacceptable,  since  most  steel  gears  would  not  be  able  to
sustain such a stress value for long. The study results from the
new model show that ignoring the radial load led to an over-
estimation of 5.27% in the root bending on the average. When
shear stresses are ignored, an under-estimation of 7.49% in the
root  bending  on  the  average  was  obtained.  Accounting  for
shear stresses is, thus, very important. The root bending stress
estimates from the new model for four gearsets were compared
with  the  AGMA  results.  The  differences  between  the  two
estimates  are  in  the  range  of  -4.83  to  26.61%.  Because  gear
design  is  complicated,  the  design  procedures  are  usually  not
precise  [36].  Hopefully,  this  study  should  help  improve  the
accuracy of root bending stress estimation for cylindrical gears.

NOMENCLATURE

1, 2 = subscript for pinion and gear, respectively

A1 = non-elastic misalignment constant

A2 = first order non-elastic misalignment coefficient

A3 = second order non-elastic misalignment coefficient

α1 = internal overload exponent

α2 = internal overload coefficient

b = nominal facewidth of pinion or gear (mm)

b1 = facewidth of pinion (mm)

b2 = facewidth of gear (mm)

bn = nominal gear facewidth in normal plane (mm)

Cmn = non-elastic deformation coefficient

Cmc = gear crowning coefficient

Cmg = gear profile compatibility coefficient

Cme = elastic deformation coefficient

Cmp = gear position location coefficient

d = pitch diameter of pinion or gear (mm)

d1 = pitch diameter of pinion or gear (mm)

d2 = pitch diameter of gear (mm)

d/ = pitch diameter of basic spur pinion or gear (mm)

dn = pitch diameter of equivalent spur pinion or gear (mm)

Fr = nominal radial force (N)

Ft = nominal tangential force (N)

Fa = nominal axial force (N)

Fn = nominal normal contact force (N)

FN = normal plane nominal bending force (N)

FN = normal plane nominal bending force (N)

Kδ = effective normal stress concentration factors

K/
δ = effective normal stress concentration factors

K/
T = theoretical shear stress concentration factor

Kt = stress correction factor for root tensile stress

KS = service load factor

Ka = application or external overload factor

Kv = internal overload or dynamic factor

Kvs = basic internal overload or dynamic factor

Km = mounting or mesh overload factor

Kms = basic mounting or mesh overload factor

Kr = rim backup factor.

KO = frictional load factor

L = shaft span (mm)

K1 = half-length of shaft span (mm)

K2 = gearset distance form shaft mid-span (mm)

la = bending moment arm (mm)

mn = gear normal module (mm)

mt = transverse module (mm)

N = rotational speed of pinion or gear (rpm)

N1 = rotational speed of pinion (rpm)

P1 = power at pinion (kW)

qδ = material normal stress notch sensitivity factor

qT = material shear stress notch sensitivity factor

qn = AGMA/ISO gear profile quality number

t = gear root thickness (mm)

T = torque load on pinion or gear (Nm)

T1 = torque load on pinion (Nm)

T2 = torque load on gear (Nm)

Vt = pitch point tangential velocity (m/s)

VS = sliding velocity (m/s)

Y/ = Lewis bending stress form factor

Y = modified Lewis bending stress form factor

Y/
n = Lewis bending stress form factor in normal plane

Zt = section modulus of gear tooth for transverse plane

Za = section modulus of gear tooth for axial plane

z1 = number of teeth on pinion

z2 = number of teeth on gear

zn = number of teeth on pinion or gear in normal plane

λa = bending moment arm factor

λb = gaer facewidth factor or gear aspect ratio

K = root thickness factor

φα = contact angle at tip of gear (deg.)

φn = normal pressure angle (deg.)

φt = transverse pressure angle (deg.)

ѱ = helix angle (deg.)

ѱb = base helix angle (deg.)

δbt = root bending stress from tangential force (MPa)

δba = bending stress from axial force (MPa)

δcr = compressive stress from radial force (MPa)

δb = compressive stress from radial force (MPa)

δbN = bending stress in normal plane (MPa)

δt = equivalent tensile stress at root of gear (MPa)
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Tst = direct shear stress from tangential force (MPa)

Tsa = direct shear stress from axial force (MPa)

Ts = combined direct shear stress at gear root (MPa)

= contact ratio in normal plane

= contact ratio in transverse

ℓt = effective gear mesh friction coefficient
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APPENDIX A: BENDING MOMENT ARM FACTOR

A diagram of the bending stress form factor curves [33] for
different addendum correction factors converge to one point for
a rack tooth. This indicates that the bending stress form factor
for a rack is independent of the amount of addendum correction
applied to the gear tooth. Now the rack tooth profile envelops
all possible involute gear tooth shapes for a tooth standard and
hence has a fixed tooth width at the root where the maximum
tensile  stress  occurs.  These  reasons  suggest  that  the  bending
moment arm factor λa may be estimated reliably by considering
the basic rack profile of a gear tooth system.

Fig.  (A1)  shows  the  basic  rack  profile  for  20  and  25
involute gear tooth standards. The fillet radius factor of 0.35 is
a  popular  value  in  AGMA  recommendations  [13].  The  root
thickness is defined at the intersection of the fillet radius and
the straight flank line of the rack tooth. A direct measurement
of the root thickness which is equal to K for a module of 1 mm
(Eq. 22a), can be made from these diagrams. Note that the fillet
is  tangential  to  both  the  straight  flank  line  and  the  root  or
deddendum  circle  horizontal  line  shown  as  hidden  line.  Eq.
(A1) is obtained from Eq. (22b).

(A1)

The value of Y/ for a rack tooth is required in Eq. (A1). In
Table A1, column 2 shows Y/ values for some popular involute
gear  tooth  standards.  The  values  of  K  in  the  same  table  are
obtained from Fig. (A1). The forth column in the table gives
the values of λa for 20° and 25° involute gear tooth standards
based on Eq. (A1).

Fig. (A1). Basic rack profile for 20° and 25° involute gear tooth standards.
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Table A1. Basic rack parameters for bending stress.

Tooth Standard Y/* K λa

20° std 0.47897 2.313 1.862
20° stub 0.54406 2.313 1.639
25° std 0.57139 2.553 1.901

*Values from [24].

APPENDIX B: SERVICE LOAD FACTOR ESTIMATION

The  service  load  factor  accounts  for  the  fact  the  forces
acting  on  equipment  in  service  are  generally  higher  than  the
rated  or  nominal  values  in  gear  drives.  It  is  a  load
magnification factor and may be estimated [11, 12, 21, 22, 23,
33, 37] as:

(A2)

Application Overload Factor, Ka

The application overload factor accounts for load increases
caused  by  the  power  source  device  and  the  driven  or  load
device on gear drives. It is indicative of the influences of the
accelerations and decelerations of external masses connected to
the gear drive. Table A2 is an example of values for this factor
for 8 to10 hrs of daily operation of a gear drive.

Table A2. Application Overload Factor (Ka), [6].

Power Source
Driven Device

Uniform Light
Shock

Moderate
Shock

Heavy
Shock

Uniform 1.0 1.25 1.50 1.75
Light Shock 1.2 1.40 1.75 2.25

Moderate Shock 1.3 1.70 2.00 2.75

Internal Overload Factor, Kv

The  internal  overload  factor,  KV  accounts  for  load
excitations caused by non-conjugate action, backlash, profile
error, pitch error, dynamic imbalance, etc. of meshing gears

The  internal  overlad  factor  may  be  estimated  using  Eq.
(A3a) for spur gears and Eq. (A3b) for helical gears.

(A3)

According to AGMA recommendation [ 22]:

(A4)

Parameters  a1  and  a2  depend  on  AGMA  gear  quality
numbers that range from 0 to 12, and are similar to ISO quality
numbers.  Gear  hobbing  can  produce  7  to  10  gear  quality
numbers, shaved gears may have 6 to 8 quality numbers, and
ground  gear  can  have  2  to  7  quality  numbers.  Careful
production  practice  can  improve  on  quality  numbers.  Lower
numbers  represent  higher  gear  quality.  For  AGMA/ISO gear
quality numbers in the range of 6 ≤ qn ≤ 12:

(A5)

An  estimate  of  Kv  above  1.5  should  be  considered  as

probably unacceptable [23]. For uni-directional loading and as
a  guide  for  gear  tooth  profile  quality  selection,  commercial
quality gears may have 1.25, < Kv <1.5 premium quality gears
may have 1.15 ≤ Kv <1.5, and precision quality gears may have
Kv <1.15. For high speed applications, especially those above
20 m/s, methods that account for gear material properties, mass
and inertia of the gears, and actual tooth profile errors should
be used to estimate Kv.

Mesh Overload Factor, Km

The  mesh  or  mounting  overload  factor  Km  takes  care  of
non-uniform load distribution along the tooth facewidth. The
AGMA  method  presented  here  is  recommended  for  normal,
relatively stiff gear assemblies. It is limited to straddle mounted
gears, gear aspect ratio of λb ≤ 2.0, gear face width, b ≤ 1000
mm  (40”),  and  assumes  full  mesh  contact  over  the  face  of
narrowest gear.

The  mesh  overload  factor  may  be  estimated  using  Eq.
(A6a) for spur gears and Eq. (A6b) for helical gears.

(A6)

Based on AGMA recommendation [12, 22]:

(A7)

Cmn accounts for misalignment of gear pitch cylinders due
to  non-elastic  deformations,  principally  influenced  by  the
quality  of  gear  mounting.  It  is  evaluated  as:

(A8)

Table A3 gives the values of the coefficients A 1 , A 2 , and
A 3 .

Table  A3.  Table  A3  :  Mounting  Face-Width  Factor
Coefficients,  [  12].

Gear Manufacturing Categories
Coefficients for C ma

A 1 A 2 A 3

Open drives /Form cut gears 0.247 0.657 0.119
Commercial quality (enclosed) 0.127 0.622 0.01442

Precision quality (enclosed) 0.0675 0.504 0.144
High precision quality (enclosed) 0.0036 0.402 0.127

Cme accounts for misalignment of gear pitch cylinders due
to elastic deformation of shaft, housing, etc. It is a function of
the gear aspect ratio and gear face width. Eq. (9) and Eq. (A10)
are for λb and Cme, respectively.

(A9)

Based on the range of values for the gear facewidth, then:

(A10a)

(A10b)
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(A10c)

Eq. (A10) assumes λb = 0.5 when λb < 0.5.

Cmp makes correction for the location of a gearset on a shaft
relative to the mid-span. It’s value is based on λP and Fig. (A2)
indicates how it is evaluated. That is:

(A11)

Other coefficients in Eq. (A7) are given in Table A4 .

Table A4. Table A4 : Other Mesh Overload Factor Coeffi-
cients, [ 12 ].

Coefficient Value Application

Cmp

1.00 For low asymmetric mounting of gearset on
shaft: λP < 0.35

1.10 For high asymmetric mounting of gearset on
shaft: λP ≥ 0.35

Cmc

0.80 Gears with crowing
1.00 Gears without crowing

Cmg

0.80 Gears with skimmed support or with
compatibility adjustment after trial assembly

1.00 Gears without skimmed support or compatibility
adjustment after trial assembly

Eq.  (A7)  does  not  apply  to  cantilever  mounted  gears.
Based on limited data [11, 33], a conservative estimate of Kms

for cantilever mounted gears, is:

(A12 )

Fig. (A2). Straddle mounted pinion configuration.

Rim Rigidity Factor, Kr

This factor accounts for gear tooth base flexibility which is
assumed  rigid  in  Lewis’s  formulation.  Based  on  AGMA
recommendation [ 22 ], it is evaluated as a function of the gear
rim thickness ratio and obtained as:

(A13)

(A14)

Frictional Load factor

From  [  37  ],  the  frictional  load  factor  for  enclosed  gear
drives may be approximated as:

(A15)

Where:

(A16)

and:

(A17)

Eq. (A17) is useful during design verification or validation
when the gearset is already sized. During initial sizing of gears,
the gear dimensions are unknown, hence Vt, Vs and ℓm cannot be
evaluated.  Therefore,  a  value  of  1.1  is  suggested  for  K  in
enclosed gear drives and 1.15 is suggested for open gear drives
during initial sizing of cylindrical gears.
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