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Abstract: The technique of metal magnetic memory (MMM) has great advantages in detecting early failures such as 
stress concentration and fatigue damage of ferromagnetic components, which has been widely applied due to its high 
efficiency, low requirements for surface preparation and ease of operation. However, research into the quantitative 
description of defect characteristics is still far from adequate. To promote relative study in this area, in this paper, a 
regression model is employed to analyze the sizes of surface cracks in pipelines. Three nonlinear functions are obtained to 
predict the length, width and depth of cracks respectively based on a regression model. Length prediction is convenient 
and accurate, with the average coefficient of determination of training samples up to 0.994 and that of testing samples 
0.962. Moreover, as the width and depth are small (less than 2 mm), the accuracy of size prediction is very high. The 
obtained functions provide a useful method of predicting the crack sizes of pipelines according to MMM signals. 
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1. INTRODUCTION 

 Some methods such as low-plasticity ball burnishing can 
improve the fatigue strength of steel components [1], but faults 
are frequent in metal pipelines because of long term usage or 
high pressure, so it is necessary to examine the pipelines 
regularly by nondestructive testing (NDT) methods. 
Nondestructive testing means the use of noninvasive techniques 
to determine the integrity of a material, component or structure 
or quantitatively measure some characteristic of an object. The 
most often used NDT methods include ultrasonic testing, 
radiographic testing, penetrant testing, eddy current testing and 
magnetic particle testing [2]. Among various NDT techniques, 
lots of nondestructive magnetic techniques have been 
extensively adopted to ensure the operating safety of ferroma-
gnetic structures and components in engineering such as 
magnetic particle testing (MPT), eddy current testing (ECT), 
magnetic flux leakage (MFL), magnetic Barkhausen noise 
(MBN), magneto acoustic emission (MAE) and recently 
developed metal magnetic memory (MMM). These techniques 
utilize the inherent ferromagnetic properties of the steels for 
nondestructive evaluation of a wide range of material 
mechanical properties [3]. As we all know, MFL, MBN and 
MMM are three kinds of popular magnetic NDT technologies. 
Among them, MFL and MBN techniques may be ascribed to 
active magnetic test methods which require applying a strong 
artificial field to magnetize the tested objects. Thus, the two 
techniques are usually time-consuming and even impractical for 
some irregular structures. For the purpose of developing 
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a more simple and effective NDT magnetic technique to 
meet the requirements in engineering, the passive magnetic 
technique has been paid attention to in the recent years. 

 As a new kind of passive magnetic flux leakage 
nondestructive testing technique, MMM testing technology was 
first put forward by a Russian expert in 1997 which is based on 
the mechanism of the cooperative action of the magneto-
elasticity and magneto-mechanical effect. MMM testing can be 
used to detect not only the stress concentration area for the 
ferromagnetic metal material but also all kinds of microscopic 
and macroscopic cracks which are caused by stress 
concentration. Unlike traditional magnetic testing methods such 
as MFL, the geomagnetic field instead of an external magnetic 
field is applied in MMM as the stimulus source. In MMM 
techniques, what is measured are the self-magnetic flux leakage 
signals of ferromagnetic. Under the joint effect of the 
geomagnetic field and the applied load, ferromagnetic signals 
are generated in the stress concentration zones. According to 
experimental studies, the tangential component of MMM 
testing, Hp(x), reaches to maximum value, as well as the normal 
component of MMM testing, Hp(y), passes through zero and 
changes its polarity in the stress concentration zones. This 
magnetic state is retained even if the applied load is removed. 
Therefore, MMM techniques are normally used to detect the 
stress concentration zones, to predict the residual lifetime of 
ferromagnetic components and to diagnose the early damages, 
etc.. MMM technique displays a lot of attractive advantages as 
follows: (1) MMM testing technology is effective in 
characterizing the early damages of ferromagnets, especially the 
micro-damage due to local stress concentration. (2) It is easy-
operation, high-efficiency, simple criteria and has faster 
measuring velocity than other NDT methods. (3) The MMM 
technique is suitable for many engineering inspection, 
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evaluation and diagnosis of faults in the gas or oil pipelines, 
turbines, wheels, pressure vessels, rails and so on [4-10]. But as 
a novel magnetic testing method, there are still many important 
problems about MMM testing which need to be studied, such as 
the further theoretical study of the magnetic memory 
phenomenon mechanism, the best defect size range of MMM 
testing, the quantitative relationship between defect sizes and 
MMM signals. At present, MMM testing is unable to directly 
determine defect sizes [11-13]. That is to say, the sizes of 
defects need to be predicted accurately. Some researchers have 
reported the qualitative relationship between defect sizes and 
MMM testing signals [14, 15]. K. Yao et al. defined and 
analyzed some parameters on the defect width, depth, location, 
testing position and direction. They promoted the development 
of MMM from a qualitative technique to a quantitative NDT 
technique [16]. Dong et al. found an approximate linear 
relationship according to their MMM signals and crack length 
[17]. 

 Generally, cracks are common defects in oil and gas 
pipelines. This paper presents a mathematical model to 
predict the sizes of cracks according to their signals of 
MMM. As is known, different cracks have different MMM 
signals. The crack profile and its parameters can be 
determined by the information contained in the MMM 
signals [18]. Therefore, the sizes of cracks can be predicted 
according to MMM signals by appropriate methods. 
Actually, rectangular cracks are common in the cracks of 
pipelines. Hence, rectangular cracks are taken as the research 
object. In short, this paper aims to present a useful 
quantitative model about rectangular crack sizes such as 
length, depth and width based on MMM signals by linear 
and nonlinear regression. Consequently, the forecasting 
fitting functions of the sizes of pipeline cracks are obtained. 

2. EXPERIMENTS AND DATASETS 

2.1. Experimental details 

 UGY-94 oil pipelines were used as the basic detected 
objects in the experiments, while different cracks with 
different sizes were made artificially. UGY-94 pipeline is 
made of material for X60JY strip steel, whose chemical 
composition and mechanical properties are shown in Tables 
1 and 2. 

 First, the pipeline sections were split into experiment test 
pieces, using a pipe cutter, and a series of different cracks 
with different size were made, as much as possible close to 
the actual situation in a pipeline. To control the precision and 

machining precisions of the cracks, the electric spark 
machining technology was used. These artificial cracks were 
simulated as the real cracks in the pipelines. Fig. (1) presents 
one of the schematic diagrams and photos of test pieces with 
pre-made cracks. Then, aging treatment was then carried out 
on the test pieces to eliminate residual stress generated in 
machining process. Finally, the signals of the test pieces 
were detected by MMM testing, one by one, on the 
experimental platform. Three scanning lines were selected 
with a length of 290 mm, indicated by a, b and c. 

 The static tension tests were carried out on a RGM-4100 
electronic tensile testing machine, whose static load error is 
0.5% to 1% and the maximum test force is 100 kN. The 
experiment test piece was loaded at approximately 0.5kN/s 
until reached to the designed load value. Then the test piece 
was taken from the tensile machine and laid on the detection 
platform. The MMM signals were detected along scanning 
lines by the MFL-4032A, a magnetic flux leakage/magnetic 
memory detector, which was a joint venture by Logistic 
Engineering University and Xiamen Eddysun Electronic 
Company. MFL-4032A is suitable for 150 mm diameter 
pipeline, which includes the magnetic flux leakage detection 
module, the magnetic memory detection module, the signal 
processing module, driver module and battery power supply 
module. After detection, the test piece reloaded to a higher 
value, and the above procedure was repeated. 
(a) Schematic diagram of test piece with pre-made cracks 

 
(b) Photo of test piece with pre-made cracks 

 
Fig. (1). Schematic diagram and photo of test piece with pre-made 
cracks. 

2.2. Dataset 

 50 cracks in test pieces were designed in total. There are 
five kinds of crack length containing 5 samples of 5 mm, 10 

Table 1. Chemical Composition of X60 Pipeline Steel 
 

Steel C S Mn V Si P Nb Ti 

X60 pipeline steel 0.040-0.060 ≤ 0.010 1.240-1.300 0.015-0.030 ≤ 0.400 ≤ 0.020 0.040-0.050 0.006-0.008 

 
Table 2. Mechanical Properties of X60 Pipeline Steel 
 

Steel Elastic Modulus (GPa) Tensile Strength (Mpa) Compressive Strength (MPa) Yield Strength (MPa) Poisson Ratio 

X60 pipeline steel 200 520 496 420 0.260 
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mm, 15 mm respectively, 6 samples of 20 mm and 29 
samples of 25 mm. Five kinds of crack width were designed 
including 5 samples of 0.5 mm, 1.5 mm and 2 mm 
respectively, 31 samples of 1 mm and 4 samples of 2.5 mm. 
Crack depth included 10 samples of 0.5 mm, 1 mm, 1.5 mm, 
2 mm and 2.5 mm respectively. 

 By MMM testing, original MMM signals were obtained 
for every crack. Then, to facilitate analysis and modeling, the 
signal was used to derive 11 new indices to predict the sizes 
of the cracks, as explained below. 

x1: The peak value of MMM original signals in x axis; 

x2: The peak-to-peak value of MMM original signal in x 
axis; 

x3: The peak value of MMM original signals in y axis; 

x4: The peak-to-peak value of MMM original signal in y 
axis; 

x5: The peak value of differential gradient of detection 
original signal in x axis; 

x6: The peak-to-peak value of differential gradient of 
detection original signal in x axis; 

x7: The peak-to-peak value of differential gradient of 
detection original signal in y axis; 

x8: The energy of MMM original signal in x axis; 

x9: The energy of MMM original signal in y axis; 

x10: The differential gradient energy of detection original 
signal in x axis; 

x11: The differential gradient energy of detection original 
signal in y axis. 

3. MODELING AND ANALYSIS 

3.1. The Predicting Model of the Length 

 x2, x3, x4, x5, x6, x7, x10 are selected by stepwise regression 
as the variables to predict the length of cracks. All samples 
are randomly divided into training set and testing set for 100 
times to simulate with regression, where there are 4 samples 
with the length of cracks of 5 mm, 10 mm, 15 mm, 20 mm 
separately and 20 samples with the length of 25 mm. The 
rest of the 14 samples are classified as testing set. 

 By running linear regression simulation one hundred 
times, 100 coefficients of determination can be obtained for 
training samples, in which the maximum is 0.982, the 
minimum is 0.958, and the average is 0.968. As to testing 
samples, the maximum coefficient of determination is 0.984, 
the minimum is 0.680 and the average is 0.938 (Fig. 2a). 

 In order to improve the accuracy of length prediction, 
some nonlinear terms are included to regress. First, to 
establish the relation between the length of cracks and the 
indices, indices with crack length of 5 mm, 10 mm, 15 mm, 
20 mm and 25 mm respectively are averaged. Then, by curve 
fitting, it is found that the length corresponds to the square of 
x7 and the cube of the other variables (Fig. 3). Therefore, the 
length of cracks could be determined by some of the  
 

(a) Linear model 

 
(b) Nonlinear model 

 
Fig. (2). The coefficients of determination in the 100 regression 
simulations to the length of cracks. 

variables x2, x3, x4, x5, x6, x7, x10, x2
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2, x10
2, 
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3, x3

3, x4
3, x5

3, x6
3 and x10

3. So, finally, stepwise regression 
is used to screen them and the variables x2, x3, x4, x5, x6, x7, 
x2

2, x3
2, x5

3 are screened out. These indices are used to make 
the regression. Accordingly, the maximum coefficient of 
determination of training samples is 0.997, the minimum is 
0.991 and the average is 0.994. With regard to the testing 
samples, the maximum coefficient of determination is 0.993, 
the minimum is 0.750, and the average is 0.962 (Fig. 2b). 

 Fig. (2) shows that the result of nonlinear model is better 
than that of linear model. Furthermore, the difference of 
coefficients of determination of the training samples between 
linear model and nonlinear model is tested by independent 
sample t test, t=-51.631, p=0. The same result of testing 
samples is t=-4.916, p=1.853× 10-6. For Both training 
samples and testing samples, the nonlinear model is 
significantly better than the linear model. Therefore, one of 
the good results, which is neither the best nor the worst, in 
the 100 simulations is chosen as the length prediction model 
of cracks. The fitting function is 

  

L = −0.002x5
3 +19.527x3

2 −5.643x2
2 + 234.300x7 + 487.990x6

−315.030x5 + 2685.600x4 − 2828.800x3 − 254.340x2 + 22.585
  (1) 

where F=504.020, p=0. The coefficient of determination of 
training samples is 0.995 and that of testing samples is 
0.971. 
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3.2. The Predicting Model of the Width 

 Stepwise regression selected x4, x6 and x7 as the variables 
to predict the width of cracks. 4 samples with crack width of 
0.5 mm, 1.5 mm and 2 mm separately, 26 samples with 
crack width of 1 mm and 3 samples with crack width of 2.5 
mm are randomly divided into training sample set and the 
rest of 9 samples are divided into testing sample set. After 
100 linear regression simulations, 100 coefficients of 
determination can be gained, in which the maximum is 
0.674, the minimum is 0.286 and the average is 0.459 in 
training samples, and the maximum, minimum and average 
in testing samples are 0.686, 0.148 and 0.422 respectively 
(Fig. 4a). 

 Fig. (4a) shows that the result of linear model is 
unsatisfactory. Therefore, in an attempt to improve prediction 
accuracy, nonlinear terms are joined. The results of curve fitting 
reflect the relation between the width of the cracks and the 
indices x4, x6 and x7 (Fig. 5). Obviously, all or some of the 
biquadratic, cubic, quadratic and linear terms of these indices 
could be the determinant of the width of cracks, which should 
be screened by stepwise regression. The terms x4

4, x6
4, x7

4, x6
3, 

x7
3, x7

2, x4, x6 and x7 are selected. Finally, they are used to make 
a regression simulation. In the 100 times of simulations, the 
maximum, minimum and average coefficients of determination 
of training samples are 0.919, 0.723 and 0.778, and those of 
testing samples are 0.831, 0.113 and 0.492 separately (Fig. 4b). 

 

 

 

 
Fig. (3). The fitting curves between the length of cracks and the indices. 
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(a) Linear model 

 
(b) Nonlinear model 

 
Fig. (4). The coefficients of determination in the 100 regression 
simulations to the width of cracks. 

 The difference of coefficients of determination between 
linear model and nonlinear model is tested. Concerning 
training samples, t=-29.091, p=0. Regarding the testing 

samples, t=-3.080, p=0.002. The coefficient of determination 
of nonlinear model is higher than that of linear model, so that 
one result is chosen to predict the width of cracks. Its fitting 
function is 

  

W = −0.029x4
4 + 0.0002x6

4 − 0.388x7
4 − 0.007x6

3 + 7.367x7
3

−33.115x7
2 − 34.961x4 − 0.261x6 + 62.136x7 −11.956

   (2) 

where F=8.407, p=1.960 × 10-6. The coefficients of 
determination of training samples and testing samples are 
0.783 and 0.727. 

3.3. The Predicting Model of the Depth 

 Stepwise regression is used to screen the important indices 
of depth of cracks and the indices are x7, x8, x10 and x11. There 
are five kinds of depth of cracks. 8 samples of each kind of 
depth of cracks are randomly divided into training set, while the 
other 10 samples are divided into testing set. In the 100 linear 
regression simulations, the maximum, minimum and average 
coefficients of determination of training samples are 0.826, 
0.728 and 0.771, and those of testing samples are 0.928, 0.364 
and 0.715 (Fig. 6a). 

 In order to improve the prediction accuracy, nonlinear 
terms can be added. By curve fitting, the relation between the 
depth of the cracks and the indices can be obtained (Fig. 7). 
So, some of the indices x7, x8, x10, x11, x8

2, x10
2, x11

2, x7x8, 
x7x10, x7x11, x8x10, x8x11, x10x11 and x10

3 could determine the 
depth of cracks. Stepwise regression is used to screen them 
and x7, x8, x10 and x7x11 are screened out. Eventually, the four 
selected indices are used to make regression simulation. 

 For the 100 simulations, the maximum, minimum and 
average coefficients of determination of training samples are 
0.970, 0.878 and 0.903, and those of testing samples are 0.968, 
0.339 and 0.781 respectively. The results are shown in Fig. (6b). 
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Fig. (5). The fitting curves between the width of cracks and the indices. 
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(a) Linear model 

 
(b) Nonlinear model 

 
Fig. (6). The coefficients of determination in the 100 regression 
simulations to the depth of cracks. 

 In the end, the difference of coefficients of determination 
between linear model and nonlinear model is tested:  
t=-44.309, p=0 in training samples and t=-3.870, p=0.0002 in 
testing samples. The coefficient of determination of 

nonlinear model is significantly higher than that of linear 
model. Therefore, we can choose one of the good results as 
the depth predicting model, whose fitting function is 

  D=0.007x7x11+0.072x7 -0.255x8+2.996x10-1.821  (3) 

where F=16.210, p=3.627 × 10-9. The coefficients of 
determination of training samples and testing samples are 
0.901 and 0.966. 

3.4. Error analysis 

 Functions (1), (2) and (3) can be used to predict the sizes 
of cracks. To all of the 50 samples, the coefficients of 
determination of length, width and depth are 0.989, 0.753 
and 0.857 respectively. Their residuals are shown in Fig. (8). 
The average relative errors of length, width and depth are 
3.582%, 16.012% and 17.897% respectively. The relative 
errors of length are very small. The average relative errors of 
width and depth are greater than those of length: the errors 
are great when the width is 2.5 mm and the depth is more 
than 2 mm. 

4. CONCLUSIONS 

a. In this paper, firstly, we simply reviewed the three 
kinds of representative magnetic NDT techniques 
MFL, MBN and MMM, and summarized the 
advantages or research status of MMM. Then, using 
the MMM signals to predict the length, width and 
depth of cracks in oil pipelines. The results reveal that 
in the quantitative prediction of pipeline cracks, a 
nonlinear model is significantly better than a linear 
model. 

b. The accuracy of length prediction is very high. As the 
width of crack is less than 2.5 mm, the width can be 
predicted accurately. When the depth of a crack is 
greater than 2 mm, the predicted results are relatively 
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Fig. (7). The fitting curves between the depth of cracks and the indices. 
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unreliable. The reason is that when the depth of a 
crack is too great (larger than 2 mm), the pipe surface 
will shield the magnetic signal of cracks, so that the 
intensities of MMM signals decrease and predicted 
errors increase. Therefore, there is an effective range 
of cracks detected by MMM. 

(a) Length 

 
(b) Width 

 
(c) Depth 

 
Fig. (8). The residuals of crack sizes prediction. 

c. Here presented work provides useful information for 
predicting the sizes of cracks by MMM signals. 
However, some factors, such as the external magnetic 
fields, machining processes of ferromagnetic 
components, types of applied load, heat treatment of 
ferromagnetic components, will seriously affect the 
MMM signals. Therefore, means of excluding 

disturbing factors is of great importance to the 
accuracy of the quantitative study. 

d. If more MMM testing data about pipelines' cracks 
become available in future studies, some new indices 
could be obtained according to original signals, which 
are closely related to the sizes of cracks, more 
accurate fitting regression functions would be 
obtained and this study would get more widely used 
in practical projects. 
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