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Abstract: In order to research the conical spiral groove aerodynamic bearings, the lubrication mathematical model of the 
bearings was established. The Reynolds equation of the laminar flow condition is used to calculate the partial differential 
equation of the perturbation pressure with the local finite difference method. Through calculating the stiffness and 
damping coefficient, the influence of the speed of law and eccentricity ratio on the dynamic characteristic coefficients has 
been gained. The mathematical model for the stability of the bearing-rotor system is established to study the influence law 
of speed influence of the law of speed and eccentricity ratio on the stability. The results show that the influence of the 
bearing's speed and eccentricity on the dynamic characteristics is significant. A reasonable choice of the bearing's speed 
and eccentricity contributes to improve the dynamic characteristics and the stability of the bearing-rotor system. 
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1. INTRODUCTION 

 Aerodynamic bearing depends on the gas dynamic 
pressure film that has formed in the bearing clearance with a 
certain stiffness to support the rotor. The advantages are that 
it does not require external air feeder, with low friction, high 
speed and long service life, etc. Based on the above 
advantages, the aerodynamic bearings are widely used in 
precision mechanic, space technology, medical equipment 
and other fields [1, 2]. The major disadvantages are low load 
capacity, small stiffness and poor stability. 
 With the development of high speed and ultra-high speed 
technology, aerodynamic bearings are widely used in high 
speed rotating machinery. Due to the high rotation speed of 
the bearing that can reaches up to hundreds of thousands of 
revolutions per minute, the gas film pressure changes is a 
very complicated nonlinear stochastic process [3,4]. When 
subjected to the influence of external factors, the rotor will 
perform random movement with the load variation. The 
behavior of the rotor and the stability of the bearing-rotor 
system are affected directly by the bearing's dynamic 
characteristics [5,6]. If the bearing-rotor system is not stable, 
the rotor bearing capacity will not be stable which would 
cause the rotor to deviate from the steady-state position, 
potentially resulting in increased friction and/or collision to 
damage the bearing. 
 Therefore, studying the bearing's static characteristics 
alone is not sufficient to meet the requirements for the 
practical application of the bearing. It is necessary to  
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research the bearing's dynamic characteristics in-depth, and 
to analyze the stability of the bearing-rotor system. 

2. THEORETICAL ANALYSIS 

2.1. Fundamental Bearing Layout 

 The cone spiral groove aerodynamic bearing is mainly 
composed of rotor and stator. The surface of the rotor is 
machined on a certain number of spiral grooves. The spiral 
groove consists of a ridge and a groove; the fundamental 
bearing layout is illustrated in Fig. (1). As the rotor rotates  
 

 
Fig. (1). Conical spiral groove aerodynamic bearing. 
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relative to the stator at a high speed, the viscous gas is 
brought into the wedge-shaped clearance, in which the 
dynamic pressure effect is formed. Then, the gas film 
pressure is produced and the dynamic pressure suspension is 
formed. The spiral groove not only forms the staircase effect 
in the bearing clearance, but also enhances the pumping 
effect and promotes the dynamic pressure effect. 

2.2. Mathematical Modeling 

 Based on the computational fluid dynamics, the gas 
lubrication theory, the fluid motion equation, the continuity 
equation and the ideal gas equation have been established [7-
9]. The nonlinear dimensionless Reynolds equation of 
conical spiral groove aerodynamic bearings under the state 
of laminar flow is established in the transient state. Using the 
conformal transformation, the solution domain is turned into 
a standard rectangular [10-12]. The conversion formula can 
be expressed as: 
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where, α  is the cone angle, 0h  is the bearing clearance,ω  is 

the rotational speed,  p  is the gas film pressure,φ  is the 
circumferential direction coordinate,   R = r / r1  is the 

dimensionless radial radius,  H = h / h0  is the dimensionless 

film thickness,   P = p / pa  is the dimensionless gas film 

pressure,  !1 = e1 / h0  is the dimensionless radial eccentricity,

022 / he=ε  is the dimensionless axial eccentricity, 'θ  is the 
dimensionless rotational speed, !  is the position angle, 

  ! = 6µ"r1
2 / Pah0

2 ,  d! = dR / (Rsin") . 

3. SOLUTION OF DYNAMIC CHARACTERISTIC 
COEFFICIENTS 

3.1. The Stiffness and Damping Equations 

 If the rotor deviates from the steady-state position   O1  in 
the ! , !  and  z  directions, as shown in Fig (2), the gas 
pressure of the steady-state position can be expressed as: 

  p0 = p(!," ,Z;e,# ,z;0,0,0)  

 The gas pressure of the transient state position can be 
expressed as: 

  p = p(!," ,Z;e,# ,z;e' ,e# ' ,z ' )  

 The transient pressure p can be expanded into Taylor 
series that the rotor deviates from the steady-state position 
(omitted the second order term).  
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where,   (!e = (e" e0 ),e!# = e# " e#0 ,!z = z " z0 )  are transient 

displacement;   (!e' ,e!" ' ,!z ' ) are transient speed;
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z ' )  are the variation rate that the p 

changes with   (!e,e!" ,!z,!e' ,e!" ' ,!z ' )  which is called the 
perturbation pressure. 

  
Fig. (2) Force analysis. 
 The gas force for whirling slightly can be derived: 
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 The gas film force derivative of the transient displace-
ment is known as the gas film stiffness coefficient

 
kij .  i  is 

the direction of the force increment and  j  is the direction of 
the displacement increment. 
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 The gas film force derivative of the transient speed is 
known as the gas film damping coefficient

 
bij .  i  is the 

direction of the force increment and  j is the direction of the 
displacement increment. 
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 The derivative of Eq. (3) is solved, then the 

dimensionless stiffness coefficient )/( 2
1,, rpkK ajiji =  and the 

non-dimensional damping coefficients )/( 2
1,, rpbB ajiji =  can 

be derived: 
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3.2. Solution of Perturbation Pressure 

 The difference expression of the governing equation Eq. 
(1) is established in the oblique coordinate system. The grids 
are meshed in the oblique coordinate system  
(  x = ! "# / tg$ ,  y =! / sin" ), its line should coincide with 
the boundary of the groove and ridge. The solution domain is 
meshed in the direction of X and Y, as shown in Fig. (3). 
The range of  0 ~ 2! is divided into  m grids in the X 
direction, the net width is 

  
f( A!B)ij

;  i grids are divided in the 

Y direction, the net width is 
 
l j . Furthermore, the grid nodes 

are numbered. 
  
s( A!B)ij

 is the node number in the X direction, 

 i is the node number in the Y direction. 

 
Fig. (3). Mesh generation. 

 The boundary conditions of the numerical calculation are 
given as follows: 
 Pressure boundary condition: 

  P(r1) = P(r2 ) =1  

 Symmetrical boundary condition: 
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 The governing difference equation can be solved by 
Successive Over Relaxation. The convergence criterion is 
given by: 
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where, !  is 0.003. 

 The perturbation pressure can be obtained by 
calculating the derivatives of Eq. (1) on the 

 (!1," ,!2 ,!1
' ," ' ,!2

' ) . 
  
(P! , P"2

, P
"1

' , P
! ' , P

"2
' ) can be solved. 

 Using C++ is used to solve the differential equations and 
analyze the dynamic characteristic coefficients under 
different speed and eccentricity. The structural parameters 
and the operation parameters are shown in Table 1. 
 The flow chart of the numerical calculation is shown in 
Fig. (4): 

3.3. Numerical Analysis 

 Fig. (5) shows the variation law of the calculated values 
of the dynamic characteristic coefficients with the speed 

 (n = 5000,10000r / min) and the eccentricity  

 (!2 = 0.1,0.2,0.3,0.4,0.5,0.6) . 

 Fig. (5a-c) shows the variation law of the calculated 
values of the bearing stiffness coefficients: 
1) Due to the increase of the speed n, the dynamic 

pressure effect of the bearing increases gradually. It is 
found that the stiffness coefficients increase with the 
increase of the speed n. 

2) In addition to the stiffness coefficient  Ke! , the 
stiffness coefficients of aerodynamic bearing 
increase with the increase of the eccentricity !2 . 

3) As the main support directions   ! ,z  of the load 
capacity, the value of the direct stiffness coefficients 

 Kee  and   Kzz  increases. While the value of the direct 

stiffness coefficient  K!!  is as small as the !  is the 
secondary support direction, and differs from the 
main support directions by an order of magnitude. 
The cross-coupled stiffness coefficients  Ke! ,  K!e , 

 Kz! and  K!z relate to the secondary support directions 
a little less than the cross-coupled stiffness 
coefficients Kez  and  Kze . 

 Fig. (5d-f) shows the variation law of the calculated 
values of the bearing damping coefficients: 
1) Due to the increase of the speed n, the dynamic 

pressure effect of the bearing increases gradually. It is 
found that the damping coefficients increase with the 
increase of the speed n. 

2) The damping coefficients of aerodynamic bearing 
increase with the increase of the eccentricity  !2 . 
While compared with the variation of the stiffness 
coefficients, the damping coefficients increase eases 
up. 
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3) As the main support directions   ! ,z  of the load 
capacity, the value of the direct damping coefficients 

 Bee  and   Bzz  are large. While the value of the direct 

damping coefficient  B!! is small as the !  is the 
secondary support direction. The cross-coupled 
damping coefficients Be! , B!e ,  Bz!  and  B!z  relate to 
the secondary support directions a little less than the 
cross-coupled damping coefficients  Bez  and  Bze . 

3.4. Experimental Analysis 

 The dynamic characteristic coefficients, stiffness and 
damping are collected in the axial and radial directions. Then 
the experimental data is compared with the theoretical result. 
Based on the theoretical analysis and numerical analysis, the 
dynamic characteristic of the conical spiral groove 
aerodynamic bearings are experimented under the condition 
of different rotating speed and eccentricity. The dynamic 
characteristic coefficients of bearing in three main directions 
are obtained under the experimental conditions, which can 

provide the realistic foundation to improve the design and 
increase the performance and the capacity of gas bearings. 
Fig. (6) shows the variation law of the experimental values 
of the direct coefficients with the speed

min)/10000,5000( =n  and the eccentricity
)6.0,5.0,4.0,3.0,2.0,1.0( 2 =ε  

1) The direct stiffness and damping coefficients increase 
with the increase of the speed and the eccentricity. 

2) As the main support directions   ! ,z  of the load 
capacity, the value of the direct stiffness coefficients 

 Kee  and   Kzz , and the direct damping coefficients  Bee , 

and   Bzz , increase. While the value of the direct 

stiffness coefficient  K!!  and the direct damping 

coefficient  B!!  is small as the !  is the non-main 
support direction. 

3) The variations of the fitting curve are consistent. By 
comparing the values with the experimental values, 
the order of magnitude of the values is same. The 

 
Fig. (4). Flow chart of numerical calculation. 
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calculated values coincide with the experimental 
values, which validates the theoretical analysis and 
calculation. 

 

 

4. ANALYSIS OF SYSTEM STABILITY 

4.1. The Stability Criterion 

 Based on the assumption of small perturbation, the rotor 
deviates from the steady-state position by whirling lightly. 
The dynamic characteristic coefficients are the constants 

    (a) Kee, Kθe, Kze       (b) Keθ, Kθθ, K zθ 

          
    (c) Kez, Kθz, Kzz       (d) Bee, Bθe, Bze 

        
    (c) Beθ, Bθθ, Bzθ       (d) Bez, Bθz, Bzz 

       
Fig. (5). Variation law of the calculated values of dynamic characteristic coefficients with speed n and eccentricity m. 
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related to the structural parameters and the operation 
parameters. 
 The motion equation of the rotor can be derived: 

  

me'' +!F" = 0
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             (a) Kee      (b) Kθθ 

 

               (c) Kzz          (d) Be 

 
               (e) Bθθ                        (f) Bzz 

 
Fig. (6). Variation law of experimental values of dynamic characteristic coefficients with speed n

 
and eccentricity ε2. !

!
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 The functions of the gas film force increment and the 
operation parameters can be expressed as (by Taylor 
expansion): 
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 Eq. (7) can be simplified as: 
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 The general form of the solution can be expressed as: 
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where, 0ξ 、 0η and 0z are complex amplitude, s is 

eigenvalue( ius ω+= ). 
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 The matrix form can be written as: 
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 Due to the whirling of the bearing, the complex 
amplitude is not equivalent to 0. The coefficient determinant 
of Eq. (10) can be expressed as: 
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 The characteristic equation is obtained by the determinate 
expansion: 
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 Based on the stability theory, the stability of the system 
depends on the distribution of the s in the complex plane. 
When   u < 0 , the system is in the steady-state. If the rotor 
deviates from the steady-state position due to external 
perturbation, the amplitude of free oscillations decreases 

gradually with time. When  u = 0 , the system is in the critical 
state. If the rotor deviates from the steady-state position, it 
will have sustained oscillation in the steady-state position. Its 
amplitude is determined by the initial conditions. When
  u > 0 , the system is in the unstable state. If the rotor deviates 
from the steady-state position, the trajectory will be 
divergent and the amplitude will increase gradually with 
time [13]. 

4.2. Stability Analysis 

 By programming the dynamic simulation and solving the 
real part u of the eigenvalue s, the influence law of the speed 
and eccentricity on the system stability is studied. The 
bearing parameters and the operation parameters are shown 
in Table 1. 

 Fig. (7) shows the variation law of the real partu with the 
speed min)/250003000( rn << and the eccentricity 

)6.01.0( 2 << ε : 

1) The real partu of the eigenvalue s approaches zero 
with the increase of the speed n  and the stability of 
the bearing is close to the critical state. The system 
stability in the low speed range is better than the 
stability in the high speed range. The stability 
decreases gradually with the increase of the speed n . 

2) The real partu of the eigenvalue s decreases with the 

increase of the eccentricity 2ε . Therefore, the system 

stability is better in the large eccentricity 2ε , and the 
operation of the bearing-rotor system is more stable. 

 
Fig. (7). Variation of the real part u with speed n and eccentricity

 !2 . 

CONCLUSION 

1) The dynamic Reynolds equation is the basic equation 
for solving the dynamic characteristic coefficients. 
The correct solution of the equation is the basis for 
analyzing the bearing's dynamic characteristics and 
stability. Using the finite difference method, the 
lubrication problems can be solved accurately within 
less computing time and with more simplicity and it 
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contributes to analyzing the law of the bearing's 
dynamic characteristics and stability. 

2) The increase of the bearing's speed contributes to 
improve the dynamic characteristic coefficients while 
the system stability approaches the critical state. The 
system stability in the low speed range is better than 
the stability in the high speed range. 

3) With the increase of the eccentricity, the stiffness 
coefficients increase, while the damping coefficients 
increase eases up. The system stability approaches the 
steady-state with the increase of the eccentricity. 

4)  The influence of the dynamic characteristic 
coefficients on the stability of the bearing-rotor 
system depends on the comprehensive effect of 
stiffness and damping. Improving the speed and 
eccentricity contributes to the increase of the damping 
coefficients. The damping coefficients is an inhibitive 
factor for the whirling; it can consume the whirl 
energy and improve the system stability. But the 
stability of the bearing-rotor system approaches a 
critical state with the increase of the speed, which is a 
factor for the system instability. The eccentricity 
contributes to inhibit the whirling, but it can generate 
collision and friction to damage the bearing. 
Therefore, a reasonable choice of design parameters 
contributes to improving the bearing's comprehensive 
properties. 
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Table 1. Structure parameters. 
 

  r1
' (mm)  

  
rg

' (mm)  
  r2

' (mm)    h0(µm)  !  !   Ng  !   b   !1  

10 13 20 10 15 80 5 3 0.6 0.2 


