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Abstract: MRI quantification of the cardiac ventricles is time-consuming, especially for the right ventricle due to its 

complex geometry. Using a short axis MRI protocol, we tested if briefly coaching persons inexperienced in cardiac MRI 

provides reliable right and left ventricular quantification.  

22 healthy subjects (mean age 26 ± 4.2 years) underwent short-axis breath-hold SSFP sequence cardiac MRI. Two per-

sons inexperienced in cardiac MRI independently traced endocardial and epicardial contours of both ventricles with a pre-

defined contour tracing protocol. Measurements were repeated after visual correction of each two most basal slices of the 

endocardial contours and epicardial contours in the learning curve. Five random short-axis cines were retraced for intra-

observer variability. Measurements were performed blinded within 4 months. Agreement was assessed with the Bland-

Altman method. 

No systematic bias was observed and measurements were within acceptable limits of agreement after brief coaching. Re-

peat measurements following visual correction significantly improved inter-observer differences, especially for mass cal-

culations. Maximum interobserver and intraobserver disagreement of the final protocol were respectively  8% and  5%.  

Brief coaching of persons inexperienced in cardiac MRI, using the short axis MRI protocol, provides reliable volume, 

function and mass quantification of both ventricles. 

INTRODUCTION 

Cardiac MRI (CMR) is increasingly requested by clini-
cians worldwide in the workup of patients with suspicion of 
or established diagnosis of cardiovascular disease. The accu-
racy and reproducibility of CMR is well known [1-5]. 

Quantitative volume, mass and function measurements 
are often mandatory for making an accurate diagnosis [1]. 
Left ventricle (LV) quantification is an established clinical 
tool, but accurate right ventricle (RV) dimensions and func-
tion are also increasingly used for the workup and follow-up 
in congenital heart disease and cardiomyopathies such as 
arrhythmogenic RV cardiomyopathy (ARVC) [6, 7]. The 
short-axis multi-slice acquisition is an important part of 
standardized clinical cardiac MRI protocols and shows good 
correlation with in vivo standards and radionuclide angiogra-
phy, making it well suited for the determination of quantita-
tive ventricular parameters [2, 8].  

Automatic segmentation is often insufficient if more ac-
curate quantification is required due to varying inclusion of 
trabeculae and papillary muscles of the LV, and varying in-
closure of the most basal slice and the LV outflow tract 
(LVOT). The non-geometrical shape and asymmetric basal 
appearance of the RV outflow tract (RVOT) and tricuspid 
valve (TV) makes RV tracing difficult [2, 9-12]. 
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A robust and reproducible contour tracing protocol is 
needed to measure LV and RV volume, function and mass 

quantitatively [9, 10, 13, 14]. No clear instructions are avail-

able for defining how to quantify volumes and wall mass by 
contour tracing the LV and RV. Existing RV protocols show 

high intra- and interobserver variability (up to 60%) for the 

two most basal endocardial and epicardial contours and RV 
wall mass is especially difficult to reproduce (R

2
 equalling 

0.85) [2, 5, 9-11, 15-17]. 

In this study we aimed to establish a robust short axis 
cine-based contour tracing protocol for both LV and RV 

which can be used to train persons inexperienced in cardiac 

MRI.  

METHODS 

Study Population 

22 healthy subjects (mean age 26 ± 4.2 years) underwent 
MRI imaging. No cardiac disease or valvular pathology was 

visualized during the MRI scan in any of the subjects. The 

absence of pathology was also confirmed by an elaborate 
questionnaire, blood pressure measurement, electrocardio-

graphy, and echocardiography. This study complies with the 

Declaration of Helsinki. The research protocol was approved 
by the Institutional Ethics Committee University Medical 

Center Utrecht, and written informed consent has been ob-

tained from all subjects.  
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Acquisition Protocol 

Cardiac MRI images were obtained with a 1.5-T Achieva 
MRI scanner (Philips, Best, the Netherlands) with a phased-
array cardiac coil. An ECG-gated breathhold vertical long 
axis (2 chamber) LV and horizontal long axis (4 chamber) 
image were used to identify the cardiac short axis. The 
whole heart was imaged in the short axis plane, from ven-
tricular apex to base including both atria, using 14 to 20, 10-
mm slice steady-state free precession (SSFP) cines without 
interslice gap, of 50 frames per cardiac cycle, matrix 
256x256, and FOV 350-400 [18]. 

All images were acquired during 10- to 15-second 
breathholds and stored digitally for offline analysis of car-
diac volumes, mass and function. All CMR scans were per-
formed by the same experienced operator. 

Image Analysis 

Analysis was performed on a clinical workstation with 
semi- automated contour tracing software (View Forum car-
diac package version R5.1V1L1 2006, Philips, Best, the 
Netherlands). Two persons inexperienced in cardiac MRI 
(medical students) independently traced endocardial (for 
volume measurement) and epicardial (for wall mass defined 
as ventricular wall enclosed by endocardial and epicardial 
contours) contours of both ventricles with the predefined 
contour tracing protocol in 22 subjects. Measurements were 
repeated after visual correction of the endocontours of each 
two most basal ventricular slices and all epicardial contours 
as a learning curve. For inter-observer variability measure-
ment, all 22 subjects were retraced. Each observer subse-
quently retraced 5 random short-axis cines for intra-observer 
variability. All measurements were performed blinded and at 
random over a period of 4 months. The level of agreement 
was assessed utilizing the statistical regression model and the 
Bland-Altman method [1, 2, 19-21]. 

Contour Tracing Protocols  

We adapted a contour tracing protocol to calculate left 
and right ventricular volumes and wall mass based on one 
already used in the Radiology department [19, 22]. In this 

protocol both LV and RV were traced from the most apical 
short-axis slice to the most basal slice on the ventricular side 
of respectively the tricuspid valve and mitral valve. The LV 
and RV end-diastolic (EDV) and end-systolic (ESV) vol-
umes, derived ejection fractions (EF), stroke volumes (SV) 
cardiac outputs (CO), and end-diastolic masses (EDM) were 
calculated by adding the areas for each slice per ventricle, 
multiplied by the slice thickness using the Simpson’s rule [3, 
5]. No inter-slice gaps are present in our short-axis protocol. 

The quantitative analysis included two steps for both left 
and right ventricle: 1. tracing the endocardial contour in end-
diastolic and end-systolic phase for volume and function; 2. 
the epicardial border in end-diastolic phase for wall mass.  

Left Ventricle 

First, the LV endocardial contours were traced, starting 
with the determination of the end diastolic phase (mitral 
valve has just closed). The endocardial contours were traced 
from the most apical to the most basal slice excluding the 
papillary muscles and trabeculae. The papillary muscles and 
trabeculae were excluded from the endocardial contour and 
therefore included in the blood volume.  

The endocardial contour forms a smooth ellipsoid line 
between the trabeculae and the endocardial border (Fig. 1). 
The most basal LV slice had to show at least 50% visible 
myocardial circumference at mitral valve level to be in-
cluded (Fig. 2). The LV outflow tract is also included in the 
endocardial contour, with the lateral border of the aortic 
valve as a straight line alongside the aortic valve plane (Fig. 
1F, 2B). 

Second, the epicontours were traced at end diastole, in-
cluding ventricular septum for LV mass measurement and 
overlapping the endocontour at valve planes (Fig. 1ABC). 

Right Ventricle 

The RV endocardial contours were traced with instruc-
tions to accommodate for the difficulties encountered in 
drawing contours for the most basal two slices.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Basal slices in end-diastole (A, B, C, D); and end-systole (E, F, G, H) in one subject. Because the ventricle shortens during contrac-

tion the most basal end-diastolic ventricular slice (C) is not at the same level as the most basal end-systolic slice (F).  
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Instructions for Tricuspid Valve (TV) Tracing 

1. As the TV opens into the RV in diastole, the TV can 
be visible in more than one basal slice. The TV can 
only be excluded once on the most basal slice at end-
diastole where it is at least 50% visible in the RV 
(Fig. 3). 

2. If the upper TV border is clear, the TV is fully ex-
cluded from the most basal slice at end-diastole (Fig. 
3A). 

3. When the upper half of the TV border is unclear, the 
lower half is drawn in with a straight cut-off line be-
tween lateral border and septum (Fig. 4C). 

4. In the most basal end-diastolic slice, a RV contour 
can only be drawn if visible for at least 3 phases in 
diastole (Figs. 3, 4). 

5. In the most basal end-systolic slice, the visible RV 
contour is always traced because, at this point in the 
cardiac cycle, the heart is in maximum longitudinal 
contraction (Fig. 4E). 

Instructions for Tracing the Pulmonary Valve (PV) 

The PV can only be left out the 2 most basal slices that 
are used for drawing the endocardial contour. 

The border of the valve (PV plane) forms a straight line. 
This level is determined as where the muscular ventricle 
border is no longer visible and a bulge appears from the 
valve annulus. No contractions are visible above the PV 
plane (Fig. 3A, 4C). 

The papillary muscles, trabeculae and moderator band 
are excluded from the endocontour and included in the blood 
volume. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Determining the amount of visible LV myocardial circumference. A: in this subject’s end-diastolic phase, less than 50% myocardial 

circumference is visible, therefore no endocontour is drawn here; B: in this subject’s end-diastolic phase, over 50% myocardial circumfer-

ence is visible, and therefore included in the endocardial contour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). ABCD: in this subject the first four phases (A: phase 1; B: phase 2; C: phase 3; D: phase 4) starting with the end-diastolic phase (A) 

are shown. Since the RV trabecularisation around the TV stayed visible for more than the required 3 phases, it was included in the endocar-

dial contour together with the RV outflowtract. Anatomical borders of the TV and PV were clear. EFGH: four phases (E: phase 1; F: phase 

2; G: phase 3; H: phase 4) starting in end-diastolic phase (E) of another subject are shown here. Since the RV trabecularisation around the 

TV stayed visible for less than 3 phases, it was left out the endocardial contour. 
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The RV epicontours are traced at end-diastole (phase 1). 
The epicontour overlaps both the septal part of the endocon-
tour, and the endocontour borders at valve planes. Visible 
RV myocardium should be included in the epicontour. How-
ever, the RV wall is usually so thin that the lateral border of 
the RV consists mostly of an artefact (dashed black-and-grey 
line) in normal healthy subjects, and the epicontour has to be 
traced just outside this artefact (Fig. 5).  

The above described instructions solved most issues of 
how to trace the two most basal RV short axis slices. How-
ever, in a few cases anatomical borders remained unclear and 
the “Linking” tool on the View Forum station was used. 
With this tool the vertical long axis (2 chamber) LV, hori-
zontal long axis (4 chamber), vertical long axis (2 chamber) 

RV, LVOT, and RVOT cines were phase and slice linked to 
the short axis cines (Fig. 6). Ventricular “cut-off” lines were 
drawn between the most lateral and most medial point on 
each annular ring of each valve in every view. This way the 
observer determined if a certain point at end-diastole or at 
end-systole on a short-axis slice fell within one of the “cut-
off” lines on one or more of the other linked cine views. If 
the point was located at the ventricular side of the “cut-off” 
line, this part was taken inside the endocontour. To illustrate 
this, four points in space and time are shown on the short 
axis series (marked A through D). Each crosshair corre-
sponds with the same point in space and time on one or more 
of the other series (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Basal slices in end-diastole (A, B, C, D); and end-systole (E, F, G, H) in one subject. A straight cut-off line is used for the TV be-

cause the upper border of the TV with the RV is unclear (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Delineation of the RV epicontour. 
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Statistical Analysis 

All ventricular volumes, functions and masses were ex-
pressed as mean ± standard deviation (mean±SD). The levels 
of agreement in measured values were evaluated with the 
Bland-Altman analysis by calculating the bias (mean differ-

ence) and the 95% limits of agreement (2 SD around the 
mean difference). The difference between observer values 
was plotted against their mean to avoid artificial trends. The 
relationship between the two independent observers was 
evaluated with linear regression analysis with Pearson’s cor-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Using the linking tool to link the short axis cine to the LVOT, RVOT, 2 chamber left and right, and 4 chamber cines to visualize the 

anatomical borders of the ventricles. From left to right upper row: vertical long axis (2 chamber) left ventricle; horizontal long axis (4 cham-

ber); vertical long axis (2 chamber) right ventricle; LVOT; RVOT- cines with predefined delineations in black by using the linking tool. 

Crosshairs A through D: each crosshair demarcates a point in space on the short axis cine (lower row) which corresponds with the crosshair 

on one or more of the other views.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Final protocol inter-observer Bland Altman Analysis. 



Cardiac MRI  The Open Magnetic Resonance Journal, 2008, Volume 1    109 

relation coefficient. The significance of biases was tested 
through the use of paired t-tests with a 2-sided alternative. 
Values of P < 0.05 were considered significant. Measure-
ment of reproducibility was evaluated by calculating the in-
traobserver and interobserver variability of each technique, 
defined as the absolute difference between the corresponding 
repeated measurements expressed in percent of their mean. 

RESULTS  

No systematic bias was observed and measurements were 
within acceptable limits of agreement after brief coaching. 
Interobserver differences improved significantly, especially 
for mass calculations, after adjustment of the initial protocol 
(Fig. 7, Table 1). Maximum inter and intraobserver dis-
agreement in all cases of the final protocol was respectively 

 8% and  5%, with R
2
-Linear regression coefficients equal 

to or greater than 0.933 for inter observer correlation. LV 
versus RV stroke volume had a R

2
-Linear interobserver cor-

relation of 0.908 and R
2
-Linear intraobserver correlation of 

0.933, showing good correlation of LV and RV stroke vol-
umes. 

DISCUSSION  

 No clear instructions are available for defining how to 
quantify volumes and wall mass by contour tracing the LV 
and RV. We adapted a widely used short axis contour tracing 
protocol with a specific set of instructions for the most basal 
planes to obtain good reproducibility and correlation of LV 
and RV results that can be used not only for coaching, but 
also for the standardization of automatic or semi-automatic 
segmentation, particularly for the RV [23]. 

Following brief coaching how to perform the measure-
ments, persons inexperienced in cardiac MRI can achieve 
reliable results. 

Our protocol can be especially beneficial in quantifica-
tion of RV volumes and mass for possible cardiomyopathy 

with RV involvement, like ARVC, and follow-up of con-
genital heart disease such as tetralogy of Fallot [24-28]. 

Steen et al. (2007) studied factors influencing volume 
and mass measurement and stated that objective criteria for 
defining the precise blood-pool myocardial tissue interface 
are needed [29]. Previous studies reported large variability in 
inter- and intraobserver differences for endocardial and 
epicardial contours in the two most basal planes [2, 5, 9-11, 
15-17]. In addition, exact instructions on what to include in 
the most basal planes to calculate volumes and wall mass are 
often unclear [12, 20, 30]. 

The LVOT is included in the endocardial contour in most 
reported LV protocols [20, 30]. We also chose to include the 
LVOT and RVOT as the outflow tract is part of the ventri-
cles and these clear anatomical landmarks increase repro-
ducibility. Including the outflow tracts will increase the ven-
tricular volumes. This will not affect SV (EDV-ESV) but 
may reduce EF (ESV divided by EDV) [31-33]. 

The amount of papillary muscle or trabeculae which can 
be drawn in for mass varies substantially and can make up to 
20% difference in wall mass [12, 20, 34-37]. We therefore 
chose not to include papillary muscles in the wall mass. In-
stead, we included papillary muscles and trabeculae in the 
blood volume for efficiency and reproducibility [29]. 

We used the short axis cine as it is part of the standard 
MRI scan protocol in most clinical laboratories, and pub-
lished articles routinely calculate ventricular volumes by 
applying the method of disks to stacks of short-axis images 
(Simpson’s rule) [1] Some authors claim that the radial long 
axis has better reproducibility as the anatomical landmarks 
are clearer on those views. [9, 15]. In subjects in which we 
encountered difficulties due to lack of anatomical landmarks, 
especially for the TV, we established “cut-off” lines that 
correspond with the valve planes on the RVOT, LVOT, 4 
chamber and 2 chamber left and right cines. We used SSFP 
because it shows better blood-to-myocardium contrast and 

Table 1. Reproducibility of Results with Maximum Disagreement Values 

  Inter-OITP (n = 22) Inter-OATP (n = 22) Intra-OATP (n = 10) 

Parameter MD % MD % Mn-D (sd) R
2
 – Linear  Mn-D (sd) MD % 

LV EF 8 5 -0.69 (0.99) 0.954 0.29 (0.92) 4 

LV SV 8 8 -2.6 (3.36) 0.974 0.42 (3.46) 5 

LV EDV 6 3 -2.1 (3.56) 0.990 -0.71 (4.81) 4 

LV ESV 7 5 0.52 (2.06) 0.990 -1.16 (3.01) 5 

LV EDM 35 8 0.67 (3.42) 0.988 1.14 (2.95) 5 

RV EF 8 5 0.09 (1.57) 0.933 -0.28 (1.15) 3 

RV SV 8 7 -1.35 (4.92) 0.943 0.00 (0.00) 5 

RV EDV 6 4 -2.95 (4.10) 0.991 0.14 (3.51) 3 

RV ESV 17 8 -1.6 (3.85) 0.983 0.90 (2.87) 4 

RV EDM 71 8 -0.2 (0.89) 0.958 -0.14 (0.42) 3 

OITP = observer in training period; OATP = observer after training period; MD % = maximum disagreement percentage; Mn-D = mean difference; LV = left ventricle; RV = right 
ventricle; EF = ejection fraction; SV = stroke volume; EDV = end-diastolic volume; ESV = end-systolic volume; EDM = end-diastolic mass. 
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higher reproducibility of RV in comparison to Turbo Gradi-
ent Echo. A limitation of our study is that reproducibility 
was not tested in a different set of patients after the initial 
coaching. It remains important that the reporting physician 
checks results of the persons performing quantification. 

CONCLUSIONS  

Brief coaching using an adapted short axis cardiac MRI 
protocol with specific instructions, provides reproducible 
volume, function and mass quantification of the RV and LV 
to facilitate cardiac MRI reporting. 
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