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A Neural Architecture Based on Hadamard Designs
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Abstract: We describe a simple Hadamard design for neural architecture with an equal number of input and output ele-
ments that is both error-tolerant and robust to missing information. The design provides a basis for calculation using a
classification scheme based on the Chinese remainder theorem, producing an abstract representation of the physical world.
The underlying co-prime arrays can be generated in a simple manner biologically and can evolve into more complex de-
signs. The approach differs from previously described neural network constructions in that all connectivity is specified by
design, with each correctly wired array producing a single output for each subset of inputs. The wiring is consistent with
the “On-Off” schema observed for different senses because only about half the inputs can be active at any one time. The
arrays can be tuned through by varying the number of simultaneous inputs required for activation within a range specified

by the array size. The architecture is scalable.
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INTRODUCTION

Understanding how the brain works is challenging since
not enough information exists in the genome to fully specify
all the neural connections present [1]. Even if there were, a
wiring diagram of a circuit by itself does not reveal how the
circuitry functions. Approaches to reverse engineering the
brain have been so far unsuccessful; huge assemblies of mi-
cro-processors performing huge numbers of calculations per
second are unable to pass a general Turing test of equiva-
lence [2]. Amazingly, the brain has evolved to perform com-
plex calculation, classification, abstraction and adaptation
using only a simple set of parts arranged with monotonous
regularity [3,4]. It self assembles, forming most of its con-
nections with itself with as little as 3-5% neurons receiving
information directly from the environment [1,5]. Even before
development is complete and within hours of formation, the
brains of some vertebrates are capable of coordinating com-
plex behavioral responses to external stimuli. Currently we
do not understand much about these remarkable properties.

Here we propose an architecture that uses Hadamard de-
signs as the basic building block for building neural arrays in
the brain [6]. These designs are self-generating; connections
are created and pruned during development to ensure each
array has a single output regardless of how many inputs it
receives. A major feature of these designs is that the archi-
tecture is fixed prior to training, with a particular set of in-
puts always producing only a single output from the array
(Fig. 1). As described below, such arrays are and error-
tolerant and robust to missing information.

Since Hadamard designs are based on prime numbers, it
is possible to select sets of Hadamard designs where
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members of the set have a co-prime number of elements.
Such sets provide a basis for a residue number scheme use-
ful both for indexing inputs and for computation [8]. The
neural architecture that results can be viewed as the Carte-
sian product of two different types of graph: one type that
specifies each array in the set and the other that connects
them in space. Each of these graphs can change independ-
ently of the other, generating many different configurations
for selection and providing the basis for high level abstrac-
tions. The approach taken here has both similarities and dif-
ferences to previous proposals (recently reviewed in [9]). It
is highly structured and produces a single output by design
without the need for the training that is required by unsuper-
vised models to generate self-organizing maps [10]. As with
supervised learning, the input can be reconstructed from the
output. However, with Hadamard arrays, all possible inputs
capable of generating that output are mapped, rather than
those inputs that were actually present [11].

DIFFERENCES TO PREVIOUS MODELS USING
HADAMARD ARRAYS

Hadamard arrays have found wide application in signal
transmission, coding and image analysis in many fields [7].
These schemes differ from the one proposed here in the way
mapping of inputs to outputs is performed. In one previously
described method, each input signal is transformed to pro-
duce an output orthogonal to all other outputs from that ma-
trix. The outputs are thus uncorrelated [7]. This outcome is
achieved by using a different row from a Hadamard array to
encode each output. This approach maintains a one to one
mapping between inputs and outputs and allows the outputs
to be combined without loss of information. Each input vec-
tor can be recovered from the combined output by employ-
ing the same row of the Hadamard matrix used for encoding.
This method is used for communicating multiple unrelated
signals over a single channel, such as in CDMA phones and
has been applied for pattern matching as a model for mem-
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ory in the brain [18]. In another previously described
method, all rows of the Hadamard matrix are used in a
scheme where the length of input and output vectors is the
same but the mapping is many to many [12]. By discarding
outputs falling below a particular threshold, data can be
compressed and the effects of noise reduced. The input vec-
tor can be regenerated with the noise removed by using an
inverse Hadamard transform. The approach described here is
different. For each Hadamard array we use, the length of the
output vector is one regardless of the array size. Thus the
mapping of inputs to output is many to one. In this scheme, it
is not always possible to reconstruct the exact input signal
from the output as different input combinations will yield the
same output (Fig. 1). Nevertheless, as we describe below, the
scheme underlies a robust classification system and enables
functions such as calculation and abstraction.

ERROR-TOLERANT ARRAYS

The simple one-to-one mapping of inputs to outputs in a
primitive array is vulnerable to loss of signal and to signals
generated by noise. Error-tolerant arrays avoid these prob-
lems. An example of one is shown in Fig. (1a). Here, “v’=11
inputs to the upper edge of an array are mapped to 11 outputs
from the right-hand edge to produce a square array [13].
Only one output is active at a time, so the mapping is many
to one. This property is essential to the error-tolerant nature
of these arrays: while each row of the array at most receives
“k”=6 of the inputs (as indicated by a “1” in the connectivity
matrix), only four of these need be active to specify output
uniquely from that row (giving the minimum number “t” of
connections necessary to produce a unique output from the
array). When two of the 6 inputs are missing, there are thus
15 input combinations (°C,) that specify the correct output.
The system not only tolerates the lost information but also
allows its recovery through imputation of the missing data.
The array design is also resistant to noise. A spurious output

Table 1. Square Sets C (v,k,t)
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from an otherwise quiescent array requires four false inputs
while two errors are needed to generate an incorrect output
from an active array.

Inherent in the operation of these arrays is the delivery of
inputs to an output neuron when it is capable of firing.
Whether an active input is temporally encoded or rate en-
coded, it will need to arrive in the appropriate time-window.
Tuning of an output neuron to a particular time-scale, or to a
specific response frequency, is possible using feed-forward
or top-down mechanisms to alter the responsiveness of the
output neuron [14], even in the presence of noise [15].

The C(v=11k=6,t=4) system in Fig. (1a) is an example
of cyclic 2-Hadamard difference design. Here v=number of
outputs from the array, k=total number of inputs per row of
the array and t=minimum number of inputs to produce a
unique output from a particular row. The layout of the first
row is sufficient to specify the full array. The pattern of con-
nections shifts rightwards by one position at the start of each
subsequent row, until the design repeats after the 11" permu-
tation. More examples of sets in this series are listed in Table
1 and displayed in Supplementary Fig. (1), along with their
mathematical properties. The modular nature of these sets
provides a basis for the self-generating, self-organizing
number systems discussed here.

THE PROPERTIES OF SQUARE ARRAYS

Square arrays are a plausible mechanism for error-
tolerant operation of neuronal arrays within the brain due to
their inherent robustness and tolerance of noise. They have
other very important properties. First, only those arrays with
the proper number of connections will provide a single out-
put for each set of inputs; this provides a test to check that an
array is wired correctly. When fully configured, about half
the inputs (i.e. k=(vx1)/2) will be connected to an output and

a b
v k t b r v k t' b r
*+7 3 2 7 3 ++ 7 4 3 7 4
+11 5 3 11 10 ++11 6 4 11 15
*13 4 2 13 6
+15 7 4 15 35 ++15 8 5 15 56
+19 9 5 19 126 ++19 10 6 19 210
*21 5 2 21 10
+23 11 6 23 462 ++23 12 7 23 792
*31 6 2 31 15
+31 15 7 31 6435 ++31 16 8 31 12870

Square sets in which the number of points v equals the number of blocks b of size k, with t points contained in exactly one block and with r sets of t points in each block (redun-
dancy). Sets C(13,9,7) and C(21,16,13) are not shown or discussed in the text. Steiner sets are indicated by an asterisk. Square sets corresponding to cyclic set difference Hadamard
designst, k=(2t -1) or as k=(v-1)/2, v=(4t -1) are marked with a ‘+” in panel a and those corresponding to its complement (t +1), k=2t or ask=(v+1)/2, v=(4t -1) are shown with a ‘++’
in panel b. These sets can also be expressed as v=4n+3, ne {1,2,3...}, subsets of which includes the Gaussian primes, the product of twin primes and the series 2"-1.
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Fig. (1). Square Arrays with tolerance to noise and missing information. Biologically, this array is interpreted as a pattern of connections
(synapses or gap junctions) between input and output neurons. (a) In the designs used here, multiple inputs to the upper edge of an array are
mapped to a single output from the right-hand edge i.e. the mapping is many to one. This property is essential to the error-tolerant nature of
these arrays as shown in the rest of the figure. Only half of the inputs at most can be active at any one time and is consistent with the ob-
served “On-Off” arrangements observed for sensory inputs. (b) The C(11,6,4) array is constructed using by cyclic permutation of the vector
(1,0,1,1,0,1,1,1,0,0,0) in the binary representation of the array and (1,-1,1,1,-1,1,1,1,-1,-1,-1) in the Hadamard and bipolar representations
(i.e. the matrix is orthogonal) or (1,3,4,6,7,8) to index the connections in the first row of the array. The number of possible inputs (given by
the column labels) is equal to the number of possible outputs (given by the row labels). Connections between an input and an output are indi-
cated by a “1”. Here eleven input elements are physically mapped onto eleven output elements in an error-tolerant fashion. Output from a
particular rowonly occurs when at least four of the possible six inputs are active. When two of the six inputs are missing, there remain fifteen
ways of using any four inputs to uniquely specify the output from that row, allowing the array to identify objects even when complete infor-
mation is missing. The array is also resistant to noise as discussed in the text. Other mappings of inputs to outputs are possible using this
array design. For example, 11 inputs can be mapped to just 5 outputs as shown by rows 1 to 5. By connecting the vertical edges, arrays could
be formed as a cylinder [3]. (c)The 11 by 11 array is replicated to produce a sheet of like arrays, each of which can act in parallel, permitting

scaling of the design.

about a quarter (either t=(v+1)/4 or t=(v+5)/4 depending on
the design) will be sufficient to specify that output uniquely
when active. Second, square arrays do not require complete
wiring of all inputs for them to be functional. They are very
tolerant of wiring variations that arise during development or
to disruption by degenerative disease. Partial wiring only
reduces the number of input combinations that elicit a par-
ticular output. With minimal wiring, a single input set of size
t is sufficient to specify a particular response. Third, the ar-
rays can be tuned by varying the number of inputs necessary
for the output neuron to fire from k to t. This change in this
threshold may be temporary or made permanent through
learning. A higher threshold (i.e. more active input neurons
required to produce a single output) increases the specificity
of a response as more information is used. This reduces sen-
sitivity of the array to noise but renders it less tolerant to
missing data. At one extreme, only the full set of k inputs to
a row would produce an output from a row while at the other
extreme, t inputs would be sufficient to ensure a unique re-
sponse from the array. The value d=k-t specifies the dynamic
range of the array and increases with the array size v. Fourth,
if an object is identified based on partial information, then
the object’s presence can be confirmed by scanning inputs
for other subsets specifying the same output. This process
could work on the local scale by polling of the silent syn-
apses on the output neuron for input (e.g. by altering the lo-
cal conductance properties) and thereby increase the firing

probability of the output neuron. It could involve higher
level functions, such as anticipation, that scan the environ-
ment for the missing information [14]. Fifth, the smallest 7
sets in the Hadamard series have a pairwise co-prime number
of elements (i.e. the only common factor for of the set v= {7,
11, 13, 15, 19, 23, 31} is 1). Non-prime members of this
series such as the set v= {15, 35, 143, 323 and 899} can be
constructed using twin primes (3,5), (5,7), (11,13), (17,19)
and (29, 31) (Supplementary Methods). This arrangement
provides a scheme that creates an indexer for an input based
on the output from a set of co-prime arrays, each of different
size v (Fig. 2). This approach is justified by the Chinese re-
mainder theorem (CRT)(Supplementary Material). The CRT
states that the maximum number of unique indexes generated
by such an arrangement is simply the joint product of the
array sizes (i.e. vixvpxvs...). Sixth, this classification scheme
can be scaled as organisms evolve either by increasing the
number of co-prime arrays used for indexing or by selecting
a set that has larger sized arrays in it. Seventh, error-tolerant
arrays of any size can be easily generated using a strategy
based on primitive arrays as described below.

INDEXING LARGE SETS USING SQUARE ARRAYS

Applying the CRT to the v= {7, 11, 13, 15, 19, 23, 31}
set of square arrays provides over 15 million unique indexers
(7x11x13x15x19x 23x31), each specified by a vector length
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6. Use of twin-prime arrays produces many more (~1.5 bil-
lion for 35x143x323x%899) twin arrays with a vector length 4
based on (3,5), (5,7), (11,13), (17,19) and (29,31) twin prime
constructions. We propose that such error-tolerant schemes
are used to index inputs to the brain. We refer to these input
arrays as primary mod arrays. In Fig. 2, input is passed
through a set of arrays that differ in size. Only the final array
for each modulus is shown, with the number of intermediary
arrays between an input array and the final mod array repre-
senting a multiple of the modulus v. For proper indexing, the
inputs for each attribute must eventually be passed through
single array of each modulus. The output of the last array
then provides the index for that modulus. A set of indices
from the different sized arrays is referred to as an indexer.
The indexer can be matched with known objects or com-
bined with output from other arrays, generating new set of
indices. For example, the outputs of 7 mod C (7,4,3) arrays
could be used as inputs for a higher level, error-tolerant C
(7,4,3) array. The system can be scaled easily as the humber
of inputs increase by adding more primary and secondary
arrays [3]. The result is a hierarchical system [16,17] based
on co-prime arrays for processing information. This scheme
remains robust to missing information since it does not re-
quire a full set of inputs at any level to correctly classify an
object. It allows for the accurate identification of a particular
object or its class attributes under a variety of circumstances.
It is also possible that the indexer generated will be novel as
it has not been previously experienced as part of the physical
world. Even then, a subset of its indices may overlap with
known objects. The partial match may be sufficient to elicit
an appropriate response or provide the correct classification
of an object type.
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CALCULATING WITH MAP ARRAYS

The organization of square arrays provides a representa-
tion of inputs suitable for modular arithmetic. For example,
dual arrays based on the joint use of mod 7 and mod 11 wir-
ing yield a simple 7x11 representation of inputs with 77
unique values. Simple addition is then possible: the residuals
of each number mod 7 are added, as are the residuals of each
number mod 11 [8]. The new values mod 7 and mod 11
uniquely specify the sum of the numbers when this is less
than 77. Unlike the base arithmetic we are all familiar with,
no carry operation is required to perform the calculation [8].
The calculations can be performed simply using the output
of one calculation to index the output of the next. For exam-
ple, in Fig. 3, three different representations of this process
are given of the process. In Fig. (3a), the indexing of a set of
arrays is shown in grey boxes. The output of a calculation
resets the index of the next array. This recalibration is illus-
trated by the open-face arrows pointing to the new alignment
shown in the white text box. The calculation is performed by
aligning the new index with the old index to give the result
that is highlighted in red, as shown by the solid back arrow.
The index is then reset and the process repeated to give the
next result. In Fig. (3b), the process is illustrated with a sheet
of arrays similar to that drawn in Fig. (1b) and using the ap-
propriate Hadamard coding to represent the numbers. In Fig.
(3c), the process is presented using black boxes. For multi-
plication, the addition would be repeated the appropriate
number of times as specified by the multiplier, for each of
the mod arrays used to index an input. The operations can be
performed in parallel since each mod array acts independ-
ently of the others [18]. The limitations of such residue
number systems are well known: the magnitude of a number

each mod v array has (v 1)/2 inputs
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Fig. (2). Processing through different mod arrays produces an indexer for the input. The switch array uses the set of indices generated by the
Mod arrays to index the next input set to the next array in the graph. The output array may be a many to one Mod array, such as those used in
calculation as described in the text, or a one to many Mod array used in recall or in initiating an action. Some of the indexers generated by
Mod Arrays will be abstract as they have not been previously experienced as part of the physical word. Even when the indexer is novel, a
subset of its indices may overlap with indices from a previously experienced object leading to an approximate match for the novel input set
and an appropriate response. In some cases, the match will lead to a misidentification and the wrong response. The feed forward and feed-
back loops illustrated with the long arrows provide mechanisms to check input against expectation and to anticipate possible outputs.
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Fig. (3). Three representations of addition using Mod 7 Arrays. (a). The figure shows addition of 1+1+3+4 = 2 mod 7 from left to right. The
grey boxes contain the index for the arrays used in the calculation. The result from one calculation (in red box) resets the indexing of the next
array as shown with the open-face arrows; the new alignment is given in the white boxes. The next addition is performed by aligning the new
index with the old index at the position specified by the input. This is shown by the solid back arrow. The new result is highlighted in red.
The index is then reset and the process repeated to give the next result. (b) The process is illustrated with sheets of arrays similar to that
drawn in Fig 1b and using the appropriate Hadamard coding to represent the numbers. (c) The process is presented using black boxes with

the sequence of numbers to be added specified by the input array.

is difficult to estimate from the vector of indices and the
product of multiplication must be less than the maximum
specified by the CRT. In biological systems, where both
scale and magnitude of the result are constrained by physical
realities, the number of primary mod arrays needed to fully
index the initial input may be sufficient to give estimates of
size. Non-linear scales may also be used e. g., a logarithmic
scale or one based on primitive roots where exponents are
added rather than whole numbers [8].

ABSTRACTION

Calculations based on mod arrays can generate output
vectors with values not experienced as part of the physical
world. This property naturally leads to the concept of ab-
stract indices that can be classified based on their similarities
to and differences with known indices [10]. Each subset of
identical indices would identify a class of objects. Use of
different sets of shared indices would allow an object to be
classified in different ways, or one object to be mistaken for
another. Categorization is facilitated by the evolution of
higher order arrays that combine multiple primary sensory
inputs, providing additional dimensions for comparison.
While organisms could evolve using arrays based on just one
modulus, the number of different indexers would be limited
by array size; additional moduli would by the CRT greatly
increase the complexity of representations with each array
type offering a different way to index attributes.

TIMING

For sequential calculation, events require isolation in
time and space to prevent overwriting of steps initiated be-
fore or after the current one. Synchronization at a local level
can be achieved by using the output of one step to regulate
the output of the next step. Local oscillatory neurons can be
used to gatearray output with more distant connections intro-
ducing bias through feed-forward and top-down signaling
mechanisms.

RECALL, LEARNING AND SWITCH ARRAYS

The generation of a brain from reiterated design elements
produces array fields (Fig. 1b). The boundaries between ar-
rays may be static and fully specified during development, or
dynamic and changeable. With static arrays, there is precise
matching of inputs to outputs. With dynamic arrays, calibra-
tion is necessary to correctly define each array boundary,
index outputs and set the number of inputs necessary to
cause the output neuron to fire (Figs. 1b and 3b). For exam-
ple, the 7 x 7 set of inputs and outputs selected may arise
anywhere in a field of C (7,4,3) array elements shown in Fig.
(1c). The location of this array then limits the placement of
other arrays in that field. The layout could be quite variable
with the optimal mapping of inputs to outputs dependent on
stimuli from external sources, network processes such as
anticipation, or sensory scanning mechanisms such as eye
microsaccades. Over time, boundaries and thresholds may
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become fixed, and the arrays static through experiential
learning and the fine-tuning of overall performance [10].

So far, the discussion has focused only on arrays that
map many inputs to one output. It is also possible to reverse
the wiring of these arrays so a single input produces multiple
outputs. With a one-to-many array, an index derived from a
particular modulus could be expanded to recall the set of
attributes that the index encodes. In other cases, the index
could be used to generate a set of outputs that prime a sen-
sory field for particular inputs or others that initiate a set of
actions. The outcome will depend entirely on how the differ-
ence Hadamard designs are connected in space. We can thus
define two types of two graphs: one that specifies the set of
Hadamard designs and the other that specifies their connec-
tions. The Cartesian product of the two types of graph de-
fines the architecture of the brain. While the graph of Ha-
damard designs is relatively fixed, the graph describing the
set of connections is likely to change with time as a result of
learning.

We refer to the building blocks for the graph that speci-
fies connections between Hadamard arrays as switch arrays
(Fig. 2). One type of switch array is described in the section
on calculation. The addition array works by changing the
indexing of a Hadamard array to ensure the result is mapped
correctly to the next Hadamard array (Fig. 3 and Fig. 4).
More elaborate switch arrays for direct multiplication would

0 1 2 3 4 5 6 —_—
1
1
1
1
1
1
1
Primitive array
1 2 3 4 5 6 S

Hadamard array
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activate only those rows in a field that are separated by a
count equal to the multiplicand. For example, only every
third row would be used when multiplication is by 3. The
input would specify which of these selected rows would be
used to calculate the result. Even more complex switch ar-
rays would be needed for arithmetic that involves carry op-
erations because multiple switch arrays are necessary to in-
dex each exponent of the base to correctly map the result of
the calculation. Similarly, switch arrays would also underlie
the recall of associations between objects by using the output
of one array to index the elements of another. The schema
presented here involving the Cartesian product of two differ-
ent graphs is similar to approaches based on Reduced
Boltzmann Machines where weights for a lower level (corre-
sponding here to the Hadamard designs) are relatively fixed
and those to an upper level (corresponding here to the switch
arrays) are varied [9].

VARIATIONS IN ARRAY DESIGN

The complete square arrays discussed here are by way of
example. Variations of these designs may be used to con-
struct the switching arrays discussed in the previous section.
For example, the 19 inputs of the C(19,10,6) system (Sup-
plementary Fig. 1) can be mapped to only 10 outputs to pro-
duce a mod 10 indexer. The focus here has been on rows and
columns. Wiring along the diagonal of a square array is also

1 mod 7 4 mod 7 9 mod 7

0 +3 0 +5 0

ISR 1 1
2 1 2 2
3 2 3 - 8
4 3 (== 0 4
5 4 5 1 5
6 5 6 2 6
0 6 0 3 0
1 0 1 4 1
2 1 2 5 | >
& 2 3 6 8
4 3 4 0 4
5 4 5 1 5
6 5 6 2 6
0 | 6 | 0 | 3 | 0

Calculation of Q uadratic Residues
by Sequential Addition of Odd Numbers

Fig. (4). Generation of a Mod 7 Hadamard Array from a Mod 7 Primitive array. (a) A primitive array with a single connection between an
input and an output per row. (b) The array is used to sequentially add odd numbers to generate quadratic residues to specify the wiring of a
Hadamard array. The panel is labeled as in Fig. 3a with the result of each addition mod 7 shown in red. (c) The residues obtained from the
calculation (specifying positions 1,2 and 4 in the vector for the first row) are used to prune connections in a sheet of cells at those positions to
obtain a correctly wired Hadamard matrix. For each row, the pruning shifts one place to the right to generate the complete array. In general,
this approach does not require addition of any number greater than v, nor the use of any array greater than v. The first row is specified in

(v£1)/2 steps and will have (v£1)/2 elements when v is prime.
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possible so that all output elements are connected to the
same input. Connections from a single neuron could then
gate the output from an array. Other designs for one to one
mapping of inputs to outputs by cyclic permutation exist;
they do not generate square arrays [19]. The primary advan-
tage of square sets is their robust performance and their util-
ity in calculation.

EVOLUTION OF SQUARE ARRAYS

How could these systems evolve? The ability of these
arrays to tolerate noise and missing information would have
offered a selective advantage. Larger arrays would involve
fewer steps to process a particular set of inputs, allowing
faster responses that would favor their selection over time.
Lower order sets may have initially arisen by chance (e.g.
1cs = 462 possible combinations). This is less likely for
higher order arrays where the search space is large (**Cy,
=1,352,078 possibilities). An alternative solution is to di-
rectly construct the arrays. A simple process for doing so
draws on the fact that this class of Hadamard designs is fully
specified by the quadratic residues (i.e. the residue remaining
when the square of a number is taken mod v). These residues
can becalculated by the sequential addition of all odd num-
bers less than v using a mod v array to do the addition (Fig.
4). This requires k=(v-1)/2 steps to enumerate all the quad-
ratic residues using any array that will perform mod v addi-
tion, even a primitive one where each row has only one ele-
ment (Fig 4). The quadratic residues could specify either the
connections to be pruned (as in the Hadamard Array in Fig.
4) or the connections to be made, generating either of the
two types of array shown in Table 1 for each modulus. Once
made, a Hadamard array can be checked for correct wiring
by testing the output from the array; for a newly formed row
with k elements, only the output neuron from that row, but
not from previously generated rows, should be active when
the k inputs are active. Connections to the new row can be
edited as necessary until these conditions are met. The
method of construction ensures correct wiring of the array in
the absence of external stimuli. Once the array is fully wired,
the minimum size input set t that produces only a single out-
put from the array can be determined. This process estab-
lishes the minimum wiring necessary for the array to be
functional. This process can be extended to form very large
square arrays. Even bigger, giant arrays could also be gener-
ated using twin primes where it is only necessary to calculate
quadratic residues for each prime rather than for their prod-
uct. Thus the results for v=71 and v+2=73 can be combined
to yield the connectivity matrix rather than it being necessary
to add all the odd numbers less than vx(v+2)=5183. Giant
arrays, regardless of how they are formed, offer a selective
advantage as they allow data to be processed in larger
chunks and thus faster, favoring their rapid evolution.

CODING OF INPUTS INTO SQUARE ARRAYS

An interesting feature of the proposed arrays is that by
their design, no more than about half of the inputs can be
active at any one time. This is true even in the absence of
learning. This outcome could be accomplished in biological
systems by the encoding of primary sensory input using
“On” and “Off” cells to encode the presence or absence of an
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input. The use of “On” and “Off” cells has also been de-
scribed in visual [20] and auditory sensory systems [21].
There are also an equal number of positive and negatively
correlated afferents in tactile responses to curvature [22].

The “On-Off” coding scheme is easily applied to square
arrays. An “On” cell would be paired with an “Off” cell,
with each pair being either (1,0), meaning the “On” cell is
active and the “Off” cell quiescentand as (0,1) for the reverse
case when there is no stimulus. The 2"/ possible input com-
binations to the array each will be mapped to one of the v
possible output indices. A simple algorithm to do this finds
the minimal Hamming distance between the input vector and
an output row i.e. the row to which the input vector is most
similar. An index for the input is assigned when there is a
best match to only one row. When the best match is with
multiple rows, a single element in the input vector is flipped
to either “On” or “Off” in a reiterative fashion until a best
match to a single output row is found. The algorithm flips
elements in a pre-specified order so that it is deterministic,
ensuring that a particular input vector always receives the
same index, something that could not be guaranteed if flip-
ping was randomly performed. With this approach, it is not
necessary to adjust connection weights as is done with other
neural network models. This scheme has the interesting
mathematical property of producing the same index for the
“negative” image of the input when the requirement is
changed to maximize rather than minimize the Hamming
distance.

PREDICTIVE FEATURES OF THE MODEL

By their very nature, error-correcting arrays create chal-
lenges for the experimenter analyzing brain function; map-
ping of inputs to outputs may be complicated since a particu-
lar output may be triggered by many different combinations
of active inputs. This result may create the impression that
the system is degenerate rather than precisely wired [23].
Further, a particular set of inputs need not be spatially con-
tiguous in the mature brain; the inputs could be sourced from
different parts of the brain during development [24, 25]. This
may make localization of an adult function to just one area
of the brain difficult , especially when inputs from other re-
gions compensate for the loss of another [26]. There may
also be a multitude of connections to an output neuron, espe-
cially in the case of giant arrays, with apparent complexity
obscuring their underlying mode of operation.

The square array format is also consistent with the sparse
coding of sensory input because there is only one output per
array despite a complex pattern of inputs [14, 27]. Classifica-
tion using multiple co-prime arrays provides each primary
sensory input an inherent numerical representation regardless
of modality. A prediction is that the average separation be-
tween adjacent active output neurons in an array field is
equal to the array size, while the number of active input neu-
rons per array would be about half the array size (since
2k=v+1). Another is that the number of external inputs could
be used to estimate the array sizes. For example it is esti-
mated that ~24 thalamic neurons map to a layer I\Vc neuron
of the cat visual cortex suggest an array size of twice that
number is required for this mapping [5, 28]. A region where
array size could also be determined is the medial entorhinal
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cortex where grid cell firing rate provides a positional map
ofan animal’s location in space [29]. Giant arrays would be
predicted to facilitate classification; performance would be
enhanced as fewer steps are required for indexing large num-
bers of inputs. The regional architecture would reflect the
number of connections between input and output neurons.
Variations in array size may partly explain known differ-
ences in connectivity between rostral and caudal regions of
the human brain [30]. Indexing uses a series of hierarchical
arrays of size v, with v input and v output neurons. The
number of neurons required imposes an upper limit on array
size v since there are only so many neurons in the brain: for
v=1019, at least 10° neurons of the 10™ in the human brain
would be necessary for a single array, each connecting with
about 500 other neurons in that array. In general, the number
of connections in arrays of dimension v x v would scale by
(v*+v)/2. The total number of neurons required to index a
particular set of inputs also would vary depending on the
way mapping was performed; a greater number would be
needed if all arrays are statically defined as opposed to de-
signs in which array boundaries are set dynamically using
switch arrays. Connection of input neurons to multiple arrays
corresponding to moduli of different sizes is implicit in the
CRT design and is consistent with studies reporting that nu-
meration is both modular in nature and spread over a number
of brain regions [24, 25, 31].

The following questions arise. Is there a class of genes
that determine the preferred size of arrays, or do these vary
by individual? Are there mutations in these genes that reduce
the variety of arrays possible, impairing cognition and learn-
ing by reducing the total number of indices available for
categorization? Do learning difficulties arise because array
boundaries are either poorly or wrongly set? How is the
number of inputs required to produce a unique output speci-
fied, given that it may vary in the range of t to k? If the num-
ber is always equal to k, does that lock in responses to a
highly specific set of inputs resulting in stereotypic behav-
iors such as those present in autism? If too low and equal to
t, does that alter attention span such as in hyperactivity dis-
orders due to increased sensitivity to neural noise? Do partial
arrays exist, either as part of normal development or due to
disease-associated neuronal death and are they characterized
by partial sensory deficits where some, but not all, input
combinations elicit a response?

SUMMARY

A set of reiterated, easily generated structured arrays
provides a means through which error-tolerant classification
systems can evolve biologically, enabling simple arithmetic
with abstraction as an emergent property. Given the ease
with which these arrays can be constructed from primitive
arrays, it may not be surprising that many organisms may
have evolved a number sense and the ability to perform sim-
ple quantification [24].
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