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Abstract: A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth-order elliptic equa-
tions is analyzed and developed in this paper. The a posteriori error estimator which is needed in the adaptive refinement
algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The pos-

teriori errors are effectively estimated.
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L. INTRODUCTION

A general theory of the least-squares method has been
developed by A K Aziz, R B Kellogg and A B Stephens in
[1]. The most important advantage of the least-squares
method leads to a symmetric positive definite problem. The
least-squares mixed finite element method approaches a
least-squares residual minimization is introduced. This
method has an advantage which is not subject to the LBB
condition [2]. Finite element methods of least-squares type
have been studying in many fields recently (see, e.g., Stokes
equation [2], Elliptic problem [3], Newtonian fluid flow
problem [4], Transmission problems [5].

An adaptive least-squares mixed finite element method
has been studied (see, e.g., the linear elasticity [6]). But the
research about fourth-order elliptic equations which are
widely used in hydrodynamics is not common. This paper
mainly puts emphasis on an adaptive least-squares mixed
finite element method for fourth-order elliptic equations. Our
emphasis in this paper is on the performance of an adaptive
refinement strategy based on the a posteriori error estimator
inherent in the least-squares formulation by the local evalua-
tion of the functional.

This paper is organized as follows. The least-squares
formulation of the fourth-order elliptic equations is described
in Section 2. It includes the coercivity properties of the least-
squares variational formulation. Appropriate spaces for the
finite element approximation and a generalization of the co-
ercivity are shown in Section 2 to the discrete form is dis-
cussed in Section 3. The error estimates of the fourth-order
elliptic equations are derived in Section 4. In Section 5, a
posteriori error estimators which are needed in an adaptive
refinement algorithm are composed with the least-squares
functional, and the posteriori errors are effectively estimated.
Finally, we summarize our findings and present conclusions
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in Section 6. In this paper, we define ¢ to be a generic posi-
tive constant, £ be a generic small positive constant.

II. A LEAST-SQUARES FORMULATION OF
FOURTH-ORDER ELLIPTIC EQUATIONS

We start from the equations of fourth-order elliptic in the
form [7]:

ANu=f inQ, (1)
u=0 onoQ, (2)
du =0 onodQ, 3)
on

where Q c R" is a bounded domain, with boundary 0Q.
We shall consider an adaptive least-squares mixed finite
element method for (1)-(3).

Now we set Au=—0 , then, we have:

-Ac=f inQ, 4)
Au+0=0 inQ, 5)
u=0 onoQ, (6)
du =0 onodQ, (7
on

We introduce the Sobolev spaces:
H' (Q)={pe}(Q):Vpe '(Q),

HI'(Q)={ve H"(Q): D"v],,= 0,/ |< m}.

Vo

Now, let us define the least-squares problem: find
(o,u)e H'(Q) x Hé(Q) such that

J(o,u)= inf J(g,v), (8)
qeH" (Q)veH(Q)

where

J(q.v)=(Aq+ f,Aq+ [)yq +(Av+q,Av+q) 4. )
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We introduce the least-squares functional:
F(o,u)=|Ac+ [ [, +I|Au+T|f, - (10)

Taking variations in (9) with respect to g and v, the

weak statement becomes : find

(o,u)e H'(Q)x Hé (Q) such that:

B(o,u;q,v)=—(f,Av), (Vve Hé(Q),Vq e H(Q)), (11)
where

B(o,u;q,v) = (Ao, Aq)o’Q +(Au+o,Av+ q)OEQ. (12)

Theorem 2.1. The bilinear form B(.,--,-) is continuous

and coercive. In other words, there exist positive constants
o and f3, such that

1
B(o,u;q,v) < B A [y, +10 [ q + 1 Aulfo)?

1 (13)
UIAG1Eg + 1191, +1AvIE,),

B(q,vig:) 20| Aq o +11q 1l + 11 AVIE ), (14)
holds for all (o,u),(g,v) € H'(Q)x Hé Q).
Proof: i) For the upper bound we have:
B(q,viq,v) = (Aq,Aq), o + (Av+q,Av+4q),
= AqIE, +11g+AvIE,
<CUIAGIE, +11q 1B, +11AVIE,):

Since the bilinear form is symmetric, this is sufficient for
the upper bound in Theorem 2.1.

ii) For the lower bound.

B(q,viq,v) = (Aq,Aq),, +(Av+q,Av+q),
=(Aq,Aq), o +(Av,Av), , +(4.9) o +2(Av,q)
> (Aq,Aq)m + (Av,Av)m + (q,q)(m - 28(Av,q)0’Q

g 1hg
0

2 Aq 1Py +11q1Eq + 1 AVIE, ~€@11 AV I, +——22)

18 1, #1= D) 14 16 +1-€0) | Av [y,

So, we can select the positive constants € and &, satis-
fying
€
1—85>0,1—E>0.

So we obtain
B(g,v;q,v) 2 oll Aq I +11 g 1, +11 AV IE,).
Then, we complete the proof.

Theorem 2.2. Let f e H'(Q). Then, (8) has a unique
solution, and the solution is (o,u) € H'(Q) x Hé Q).
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Proof: From Theorem2.1, we know that the bilinear form
B(-,5-,) is coercive and bounded on H'(Q)x Hé (2). Then
the result follows from Lax-Milgram theorem.

III. FINITE ELEMENT APPROXIMATION

In principle, the least-squares mixed finite element ap-
proach simply consists of minimizing (10) in finite-
dimensional subspaces H,(Q)c H'(Q) and M,(Q)c Hy(Q) -

Suitable spaces are based on a triangulation 7, of € and

consist of piecewise polynomials with sufficient continuity
conditions.

Let T, be aclass qusi-uniform regular partition of €.
H,(Q) = span{®(- = X ),--,®(- = X )} + P, 15)

where @: RY — R is a radial basis function, Ffj denotes the

space of polynomials of degree less than m and
X=(X,,,X,)cQ is aset of distinct nodes.

Consider ® whose Fourier transform @ has the prop-

erty in [8]:
C+lol)y* <d<C,(+]ol)*, (16)
with positive constants C, and C, .

The least-squares functional:

F(ouw= T (Ao +[ I}, + Il au+o (). (17)

Minimizing the functional (17) is equivalent to the fol-
lowing variational problem: find ¢, € H, and u, € M, such

that
Bh(O'h,uh;q,v)=—(f,Av), (18)
holds for all (q,v) e H,(Q)x M,(Q).

The discrete bilinear form B, (:,+-,-) is defined as fol-

lows:

B,(0,1,:0:1)= X (80,.A9),, + (A, +0,.8v+g), ). (19)
where

(0,,u,)e H (Q)X M, (Q), (g,v)e H (Q)X M, (Q).

Theorem 3.1. The bilinear B, (-,+-,") is continuous and

coercive, i.e. there exist positive constants o, and f, such
that

1

B(0,.1,50:) < B, (L1 A0, [, +110, 16 +11 4w, 15,00 (20)
(IAglg; +lg15 + 1AvIE, )2,

Blg.vigv)za, (IAIE, +1g 1, +1IAvIE). @D
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which holds for all
(0,,u,)e H (Q)X M, (Q), (¢g,v)e H,(Q)x M, (Q).
Proof: i) For the upper bound we have
B,(q,v;q,v) = TEZTh((Aq, AQ)y; +(AV+q,Av+q), )
= TGZT,(II Aqly, +llg+Avip,)

SC T (I8qIE, +1g1E, +11AvIE,).

Since the bilinear form is symmetric, this is sufficient for
the upper bound in Theorem 3.1.

i) For the lower bound,
B,(q,v;q,v)= TEZTh((Aq, Ag),, +(Av+q,Mv+q), ;)
= RZTA((A%A(J)” +(Av, ), +(4,9),; +2(Av,9), )
> TEZTl ((Aq,Aq), , +(Av,Av),  +(q,9),; — 2€,(Av,q), ;)
1)

1

2 TZT (1Aq16, +Ilqly, +11AvIy, —&, (6, 1 AvIG, + )

= 201815, #(1-g )1 8v[F, 1= g1, )

1

So, we can select the positive constants € and 5] , satis-
fying

€
1-¢6, >0,1—5—1>0.

1

We obtain

Blg.vig)Za, S (IAGIE, +1g16, +11AvIE,).

Then we complete the proof.

Theorem 3.2. Let f € H'(Q). Then, (18) has a unique so-
lution, and the solution is (0,,u,) € H, ()X M,(Q).

Proof: From Theorem3.1, we know that the bilinear form
B, () is coercive and bounded on H, (Q)x M,(Q). Then

the result follows from Lax-Milgram theorem.
IV. ERROR ESTIMATES

The error estimates of the second-order elliptic problem
have studied by Kim ef al. [9]. In this section, we discuss the
error estimates of the fourth-order elliptic equations.

Assume the domain Q is convex, from the general finite
element approximation theory we have the estimate [8]:

Lemma 4.1. Assume @ € H*(Q), ® satisfies (16) with
¢2k>d/2+m. Let H,(Q) be given by (15). Then there

exists a function s e H, () such that for x €€, the esti-

mate
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lo=sll,,<ch ™ol (22)

m,Q
is valid if % is sufficiently small.

We defined the:
B(o,.u,;q,v)=(A0,,Aq),, +(Au, +0,,Av+q) . (23)

Since the exact solution (u,0) satisfy (12), using the
condition (18), we get the following property:
B(o—-o,,u-u,;q,v)=(A(0-0,),Aq),, +(A(u—u,)

+Ho-0,),Av+ q)o’Q
=0,(Vg e H,(Q),Vve M, (Q))

Now we are ready to derive the following error estima-
tion.

Theorem 4.2. Suppose that u € H*(Q) and o € H'(Q)
are the solutions of (12), and u, € H,({2) and o0, € H,(Q)

are the solutions of (23). Then for sufficiently small %, we
have the error estimation

16 -0, 1P, +IIAG—0,) I, + 1| A —u,)

2 2(k-2 2 2
Fa< e lull, o)

24
+lo]

Proof: From (12), we have:
Blo-0,u-u;0-0,,u-u)=(Au-u)+(0-0,),Au-u,)
+0-0,)),,+(A(0-0,),A(0-0,)),
= Aw=-u,)+(0-0,)l},
+A(0~0,)Ihg
<l A(o=0,) I + 11 Au=u,) i,
t+llo-o, i)
From (14), we obtain the following inequality:
A6, —0)ig +110, =0, lbg + 11 A, —u,) I
<B(o,-0,,u,—u,;0,—0,,u,—u,)
=B(0c-0,,u~u;0,-—0,,u,—u,)
S(Auw-u,)+(0-0,),A, —u,)+(c, - O'h))o’Q
+HA(o-0,),A(0, -0, ))0,Q
1
<(IA0-0)If, +IIAw-u) I}, +llo-0, )

(1A(G, =0 ) Fq + 1 A, —u) ||, +110, =0, §,)%

So we have

1A(G, =0 lhg + 1AW, —u) 5y +1I0,—0, Ik,

A0 =0,) by +IIAWw=u) |5, +Ilo -0, G,

From above the inequalities, we have:
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IA(G =0, b, +I10—0, b, + 11 A@w—u,)I[,
AG-0,) Fq + 1 Au—u) Ey +llo -0, IF,

+I1A(G, =0, g + 1 A, —u,) 5, +110, =0, 15,
<2lA(G =0 g +IIAW=u) s, +llo—0, I5,)

where we used Lemma4.1, we have the following inequality:
lo =0, IE, +I1 A0 —0,) IE, +1l Aw—u,)IE,

2(k-2 2 2
<" (|lu Il o)

+lo]
Then we complete the proof.
V. POSTIERIORI ERROR ESTIMATION

One of the main motivations for using least-squares finite
element approaches is the fact that the element-wise evalua-
tion of the functional serves as an a posteriori error estima-
tor.

A posteriori estimate attempt to provide quantitatively
accurate measures of the discretization error through the so-
called a posteriori error estimators which are derived by
using the information obtained during the solution process.
In recent years, the use of a posteriori error estimators has
become an efficient tool for assessing and controlling com-
putational errors in adaptive computations [10].

Now we defined the least-squares functional:

F(0,u)= 2 (180, + [, +1lu, + 0, [[,). (25)

where (0,,u,) € H,(Q)x M,(Q).

We have
F(0-0,u-u)= 2 (I1M@=0,)+ /I,
+A(u—-u,)+0-o0, |LiT).

So we define the posteriori estimator as following:

Fh(O'—O'h,u—uh)=TEZT n’. (26)

Theorem 5.1. Let f e H'(Q), The least-squares func-

tional constitutes an a posteriori error estimator. In other
words, for

7 =lA(c—0,)+ fIE, +1 Au—u,)+0 -0, I,
there exist positive constants «, and S, such that

I B ZA-0)l; +lo-a,l;

27)
+IA@=u) |},

Snza, S(IAM0c-0)IE, +lo-0,IF,

TeT, Tel, (28)

+ Aw—u)f,)-

which holds for all (o,,u,) € H,(Q)x M, (£2).
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Proof: From (26) and f € H'(Q), we know

> 1‘[2 =F(c-0,u—u,)

ret,

= TEZTh(II Ao—-o)+ [y, +IIAw-u)+oc-0,l,)
=C L UIA@-0) I}, +IAu-u)+0-0,I})
=CB,(0-0,u—u,;0-0,,u—u,).
From Theorem 3.1, we have:
B(oc-0,,u-u;0-0,u—u)<p, rg},(“ Ac-0) I,

tllo -0, IE, +1I Aw—u,) IE,),

B(0—-0,,u—u;0-0,,u—u)2a, TZT(H Ac-o)I},
+llo—o, [, +I1Aw—u)If,).

The positive constants o, =co, and fB, =cf,, this
completes the proof.

Remark: The mesh is adapted based on a posteriori er-
ror estimate of the fourth-order elliptic equations. We use a
mesh optimization procedure to compute the size of elements
in the new mesh, based on the computed a posteriori error
estimate 7.

The mesh is adapted using the mesh modification proce-
dures developed by Li ef al. [11]. This requires the specifica-
tion of a mesh metric field to define the desired element size
and shape distribution from the computed 7. The mesh is
then adapted to satisfy the prescribed metric field by the
processes of refinement, coarsening and re-alignment.

Adaptive refinement strategies consist in refining those
triangles with the largest values of 7.

VI. SUMMARY AND CONCLUSIONS

As the fourth-order elliptic equations belong to high-
order partial differential equations which possess complex
numerical structure, and the select of finite element spaces is
difficult, so the research about the fourth-order elliptic equa-
tions is still quite few. This paper describes an adaptive
least-squares mixed finite elements method for the fourth-
order elliptic equations for the first time, constructes a poste-
riori error estimator by the least-squares functional, and es-
timates the posteriori errors effectively by composed bilinear
form.

We describe an adaptive least-squares mixed finite ele-
ment procedure for solving the fourth-order elliptic equa-
tions in this paper. The procedure uses a least-squares mixed
finite element formulation and adaptive refinement based on
a posteriori error estimate. The method is applied to study
the continuous and coercivity of the fourth-order elliptic
equations.

In this paper, we applied relatively standard a posteriori
error estimation technique to solve the fourth-order elliptic
equations adaptively.
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This paper provides theory foundation for numerical

computation in plate bending and fluid dynamics.
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