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Abstract: We provide error estimates for an approximation method to compute simultaneously solutions of two 

dynamical systems each with given asymptotic behaviour and both coupled only by conditions on initial values. The 

method applies to compute connecting orbits — point–to–point, point–to–periodic and periodic–to–periodic — as in the 

literature and in numerical applications. Since our set–up is more general, we call solutions of our systems generalised 

connecting orbits and provide further applications like Skiba points in economic models or solutions with a discontinuity. 

By specifying the asymptotic rates our method also applies to the computation of solutions converging in a strongly stable 

manifold. The numerical analysis shows that the error decays exponentially with the length of the approximation intervals 

even in the strongly stable case and for periodic solutions. For orbits connecting hyperbolic equilibria this is in agreement 

with known results in the literature. In our method we select appropriate asymptotic boundary conditions which depend 

typically on parameters. In order to solve these types of boundary value problems we set up an iterative procedure which 

is called boundary corrector method.  

Keywords: Numerical method, point–to–periodic, periodic–to–periodic, generalised connecting orbits, asymptotic rate, 

asymptotic boundary condition, error estimates.  

I. INTRODUCTION  

 A connecting orbit is a pair (x, ) of parameters  and a 

solution x of   x = f(x, ) converging for t  ±  to given 

sets. Therefore, a connecting orbit converges to solutions 

+( ) or ( ) in these sets.  

 Computation and continuation of homoclinic and 

heteroclinic point–to–point connecting orbits is well 

established and implemented in recent versions of the 

continuation package Auto with Homcont, see [1-4]. 

Methods to compute point–to–periodic and periodic–to–

periodic connecting orbits including the computation of 

boundary conditions and phase fixing conditions are 

introduced and implemented for several examples using 

Auto. In [5] point–to–periodic connecting orbits are 

computed for the Lorenz system, the electronic circuit model 

and for a three-level food chain model. For the latter model 

periodic-to-periodic orbits are computed in [6]. In [7] point–

to–periodic and periodic–to–periodic connections are 

computed for the Lorenz system, a coupled Duffing system 

and a model with a saddle–node Hopf bifurcation and a 

detailed numerical analysis of this method is provided in [8].  

 This paper provides the numerical analysis framework 

for the methods used therein and generalises results on 

point–to–point connecting orbits and the work in [9] since it 

also applies to convergence in strongly stable or strongly 

unstable manifolds and allows for a discontinuity of the 

system. Usually in the literature a connecting orbit (x, ) 

solves for t   
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x = f (x, ),

lim
t

| x(t) v
+
( )(t) |= 0,

lim
t

| x(t) v ( )(t) |= 0.

 (1)  

 Among others, solving (1) is a main application of the 

set–up analysed here. In this paper we solve for t  [0, ) 

systems of the form  

  
x

+
 = f+(x+, ), x+(t)  

m
,  

  
x = f (x , ), x (t)  

m
,  

g(x+(0), x (0), ) = 0,  (2)  

|x+(t)  y+( )(t)|  
  Ce +

t
,   

|x (t)  y ( )(t)|   Ce
t
 

with appropriate constants C > 0, + < 0,  < 0 and 

solutions y+( )(t) and y ( )(t) characterising the asymptotic 

behaviour.
1
 It is straightforward to use the system (2) for 

solving (1) by defining f+ := f, f  := f, g(x+(0), x (0), ) := 

x+(0)  x (0), y+( )(t) := v+( )(t) and y ( )(t) := ( )( t) (here 

the time is inverted). On the other hand, a solution (x+, x , ) 

of (2) defines by x(t) := x+(t) for t > 0 and x(t) := x ( t) for t < 

0 a solution of (1) which is smooth in t = 0.  

 However, the system (2) is rather flexible in the functions 

f+, f , in the coupling condition g and in the asymptotic rates 

+, . In Section II we illustrate this by embedding the usual 

connecting orbits in our context and by providing additional 

applications.  

 

1
Even if the analysis in this paper formally applies to compact invariant sets 

we only apply it to stationary points and to periodic orbits. In more delicate 

problems it would be difficult to fix an orbit on the invariant set and this is 

essential for the method analysed here.  
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 The constants +,  are upper bounds for asymptotic 

rates. For example, if y+ is a hyperbolic equilibrium, then + 

is an upper bound for the real parts of the stable eigenvalues. 

Choosing the asymptotic rates +,  and appropriate 

asymptotic boundary conditions allows to select solutions 

converging in the strongly stable directions. In particular, 

x+(·) and y+( )(·) are called +–asymptotic if |x+(t)  y+( )(t)|< 

  Ce +
t  

holds for t sufficiently large. For “ ” the definition is 

analogous. With  

 := max( +, ),      x = 

 

x
+

x
and y = 

 

y
+

y
 

the system (2) has the structure  

  x = f(x, ),       x(t)  
2m 

, g(x(0), )=0, 

|x(t)  y( )(t)|   Ce t
 

of the problems treated in [10]. Nevertheless it is not 

appropriate to apply the results in [10] directly since the 

asymptotic rates + and  need not coincide. The method 

and the error estimates in [10] depend crucially on the 

possibility to separate manifolds with different asymptotic 

rates and therefore on a gap in the eigenvalue structure. 

Applying the results in [10] directly implies that the gap in 

the full eigenvalue structure is the intersection of the gaps of 

both parts. Since the solutions y+( ) and y ( ) have, in 

general, different asymptotic rates the gap in the eigenvalue 

structure of the full system might shrink or even vanish. 

Moreover, to use the information that both solutions are only 

coupled at the initial values we have to consider a block 

partitioning of the system and to take the different 

asymptotic rates into account.  

 In [11] a similar approximation method applied to point–

to–periodic and periodic–to–periodic connecting orbits is 

analysed and implemented including the computation of 

periodic orbits and the asymptotic boundary conditions for 

the Lorenz system and with van der Pol oscillators. Indeed, 

the error estimates in [11] are similar to ours if inserting the 

corrections in [12]. For the proof of the central theorem the 

authors claim “The steps on the proof in [13, Theorem 3.1] 

apply here …” (or [10, Theorem 4] in the correction [12]). 

However, [13, Theorem 3.1] applies only to hyperbolic 

stationary points and [10, Theorem 4] applies only to one 

sided boundary value problems.  

 In this paper we provide error estimates of the 

computational method and give a detailed proof in IV.2 

taking into account the structure of the system with two parts 

and the coupling condition. Indeed, we observe that this kind 

of proof needs some additional assumptions on the length of 

the intervals as provided in IV.4 We are not aware of any 

proof using such technique and avoiding restrictions on the 

length of the intervals.  

 In Section III we define a solutions of (2) as generalised 

connecting orbit, define non-degeneracy and relate the 

non-degeneracy to the non-singularity of a linear system. We 

compute a solution z+(t), t  J+ := [0, T+], z (t), t  J  := [0, 

T ] and  of the boundary value problem  

   

z
+

f
+
(z

+
,v)

z f (z ,v)

g(z
+
(0), z (0),v)

M
+
(T

+
,v)(z

+
(T

+
) y

+
(v)(T

+
))

M (T ,v)(z (T ) y (v)(T ))

= 0  

as an approximation of a generalised connecting orbit (x+, 

x , ) solving (2) and provide error estimates for | |z+(t)  

x+(t)||, | |z (t)  x (t)|| and |   |. 

 The matrices M+(T+, ), M (T , ) define appropriate 

asymptotic boundary conditions. Since we concentrate on the 

approximation of the connecting orbit, we assume further on 

that the matrices M+(T+, ), M (T , ) and the points y+( )(T+), 

y ( )(T ) are given as smooth functions of . For a numerical 

implementation this belongs to the boundary value problem. 

Theoretical results to get a smooth parameterisation are in [9, 

13]. Practical implementations are provided in [14] and in 

packages like Auto or Homcont, see e. g. [3].  

 In Section IV we analyse the error of this method. The 

error is shown to decay exponentially with the length of the 

intervals. In particular, the error estimates for both parts 

allow for choosing the length of the intervals
2  

T  and T+ in 

an appropriate way. As corollary of our main theorem we 

show that the method applied to point–to–periodic and 

periodic-to-periodic connecting orbits and with appropriate 

asymptotic boundary matrices induces error estimates  

  

| v
J

| Ce
2max(

+
T

+
, T )

,

|| z
J

+ x
+

| J
+

|| Ce
2max(

+
T

+
, T )

,

|| z
J

x | J || Ce
2max(

+
T

+
, T )

.

 

 Recall that + < 0 and  < 0.  

 To avoid the parameter-dependent computation of the 

asymptotic boundary matrices M+(T+, ) and M (T , ) we 

develop the iterative boundary corrector method for 

generalised connecting orbits. This method requires at most 

three iterations.  

II. CONNECTING ORBITS AND OTHER APPLICA-
TIONS  

 The system (2) is rather flexible in the functions f+, f , in 

the coupling condition g and in the asymptotic rates + and 

. To illustrate this, we apply it first to point–to–point, 

point–to–periodic and periodic–to–periodic connecting orbits 

and then provide additional applications.  

Connecting Orbits  

 A connecting orbit from one compact invariant set V ( ) 

to another V+( ) is a solution 
  
(x , )  on  of a parametrised 

dynamical system (   
p 

is the parameter set)  

  x  = f(x, ), x(t)  
m 

,     
p
 

which converges to V+( ) as t   and to V ( ) as t   . 

As seen in [9] a connecting orbit is non-degenerate if a 

transversality condition holds and the number of parameters  

 
2
Equivalenty one may use time scaling of both differential equations. 
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is p = m+u  m u  m c + 1 = m+u + m s  m + 1. The numbers 

m+s + m+c, m+u + m+c are the dimensions of the centre stable 

and centre unstable manifolds of V+( ) and m s + m c, m u + 

m c are the dimensions of the centre stable and centre 

unstable manifolds of V ( ). Note that m = m+s + m+c + m+u = 

m s + m c + m u holds. As in the introduction we reformulate 

this as generalised connecting orbit solving system (2). In 

our approach we deal with single orbits y+( ) on V+( ) and 

y ( ) on V ( ). In case of periodic solutions we fix the phase 

of the periodic orbit to get a single solution. We need 

additional conditions or parameters to get non-degeneracy as 

defined in Section III.  

• For a point–to–point connecting orbit we use a 

phase fixing condition (x+, x , ) = 0 in addition to 

x+  x  = 0 to define  

 

  

g(x
+
, x , ) :=

x
+

x

(x
+
, x , )

.  

• For a point–to–periodic connecting orbit the phase 

is fixed by fixing the phase of the periodic orbit. 

Therefore, g(x+, x , ) := x+  x  is an appropriate 

function g.  

• For a periodic–to–periodic connecting orbit the 

phase of only one periodic orbit can be fixed. Thus, 

the phase of the second periodic orbit is used as 

additional “free” parameter included in the 

parameter vector       
p+1 

and we define 

g(x+, x , ) := x+  x .  

 The dimension
3 

of the manifold W coupling the systems 

at t = 0 and defined by g(x+, x , ) = 0 is m+u + m+c + m c + 

m s in each case.  

 The theory on connecting orbits with equilibria or 

periodic orbits as invariant sets is provided in [9] and [15]. In 

[15] “bifurcation functions” are defined and it is proved that 

connecting orbits exist if and only if the “bifurcation 

functions” are zero. In [9] the non-degeneracy is related to 

the regularity of an operator and the non-singularity of a 

linear map. A similar concept is used in this paper.  

 Numerical computations with periodic orbits using an 

approximation method similar to ours are in [16] and in [14]. 

In [14] periodic–to–periodic connecting orbits for a specific 

Hamiltonian system arising from a reduced water-wave 

problem are computed. An explicite error analysis is provide 

in neither of the papers.  

 An approximation method for connecting orbits of 

hyperbolic stationary points is analysed in [13, 17]. Applying 

to the set–up in [13, 17] we get the same results. In our 

generalisation we also approximate connecting orbits starting 

in the strongly unstable or ending strongly stable manifold. 

This might be applied to approximate orbit flip solutions as it 

is done in [1, 18].  

Solutions with Discontinuity  

 The splitting at 0 allows for discontinuities, since f+ and 

f  do not necessarily have the form f+ = f, f  = f as in the 

 

3
The dimension of the centre manifold is m+c = 0 for a hyperbolic 

equilibrium and m+c = 1 for a hyperbolic periodic orbit y+. Analogous for 

“ ”.  

connecting orbit cases before. In order to approximate 

solutions with “jumps” at 0, we define the condition at 0 by 

x+(0)  x (0) =  with   
m 

. This may also be used as 

heuristic approach to detect initial approximations for 

connecting orbits as follows: First compute solutions which 

satisfy all conditions of a connecting orbit except for x+(0) = 

x (0) and define the difference vector . Then use the 

components of  as continuation parameters and try to 

continue  to 0. A similar method for locating connecting 

orbits is developed in [19]. It is called “successive 

continuation”. A local convergence analysis for this method 

is presented in [19]. A similar technique allowing initially 

for discontinuities and then detecting connecting orbits by 

continuation is Lin’s method implemented in [7] and with 

detailed numerical analysis in [8].  

Skiba Points  

 The control problems discussed in [20] lead to 2n– 

dimensional dynamical systems (state and costate system). 

The first n variables are state-variables with given initial 

value and the second n variables are costate-variables not 

fixed initially. We want to approximate simultaneously two 

solutions x+  
2n

, x   
2n 

of   x = f(x) which converge to 

different solutions y+, y  and which satisfy x+i(0) = x i(0) = vi 

for i = 1, ··· , n and given v  
n 

. To get unique solutions 

converging either to equilibria or to periodic orbits the stable 

manifold has to be n–dimensional (an equilibrium y+ has 

 
m

b

+
:= n unstable eigenvalues and a periodic orbit y+ has 

 
m

b

+
:= n + 1 centre unstable Floquet multipliers, same with 

“ ”). We set f+ = f  = f, g(x+(0), x (0)) = 

  

x
+
(0) v

x (0) v
 

2n
 and in the periodic case we add the phase of each 

periodic orbit as “free” parameter. Therefore, we have p = 0 

parameter if the y+, y  are both equilibria, p = 1 parameter if 

one of y+, y  is a periodic orbit and the other is an 

equilibrium and p = 2 parameters if both y+ and y  are 

periodic orbits. With m =2n we see that  

    
W = {(x

+

0
, x0

, )
2m+ p

| g(x
+

0
, x0

) = 0}  

is a manifold in 
2m+p 

of dimension 2m + p  m = 
 
m

b

+
+ 

 
m

b
. 

This is the key condition for non-degeneracy (see Section 

III). The aim is to compare the values of an objective 

function   Û  for both trajectories. In particular, we want to 

“free” one component i and approximate solutions which 

satisfy   Û (x+(0)) =   Û (x (0)) for an objective function   Û . 

Thus, we substitute for a given index i the conditions x+i (0) 

 vi = 0 and x i (0)  vi = 0 by the conditions x+i (0)  x i (0) 

= 0 and   Û (x+(0))    Û (x (0)) = 0. Such solutions are called 

Skiba points (see [20]).  

III. NONDEGENERATE GENERALISED CONNEC-
TING ORBITS  

 In this section we define the concept of a generalised 

connecting orbit as a solution of (2). We use a 

transversality condition to define the non-degeneracy of a 
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generalised connecting orbit. Moreover, we relate the non-

degeneracy to the non-singularity of a linear operator.  

 Given a parameter set    
p
, two parametrised 

dynamical systems  

  
x

+
 = f+(x+, ), x+(t)  

m
,  (3)  

  
x  = f (x , ), x (t)  

m
,  (4)  

two families of solutions {y+( )}  of (3) and {y ( )}  

of (4) and a manifold W  
2m+p

, a generalised connecting 

orbit (x+, x , ) consists of a solution x+ of (3) on [0, ) 

which converges with an exponential rate + < 0 to y+( ) and 

a solution x  of (4) on [0, ) which converges with an 

exponential rate  < 0 to y ( ) so that the coupling condition 

(x+(0), x (0), )  W is satisfied. The manifold W is defined 

as the zero set of a function g. For stationary points and 

periodic orbits the set of points converging with an 

asymptotic rate is a manifold which can be foliated, see e. g. 

[21-23]. In particular, we define the unification of all leafs 

evaluated at y+( )(0),     
p 

by 
  
M

+

+0  
 

m 
  and call 

it +–stable manifold of y+ evaluated at 0. By this definition, any 

solution u(t) of (3) with (u(0), )  
  
M

+

+0
 satisfies |u(t)  y+( )(t)| 

<   Ce +
t  

and therefore converges with an asymptotic rate + < 0 to 

y+( ). Analogously, we define 
  
M 0

. Summarising, a 

generalised connecting orbit (
 
x

+
, 

 
x , ) has the properties  

(
 
x

+
(0),

 
x (0), )   W, 

(
 
x

+
(0), )  

  
M

+

+0
, (

 
x  (0), )  

  
M 0

. 

 To linearise along the limiting orbit we assume  

A1.  The functions satisfy f+, f   C
2
(

m+p
, 

m
) and the 

second derivatives 
  
f
+

(2)
 and 

  
f (2)

 are locally 

Lipschitz with respect to x.  

A2.  The parameter set   
p  

is a bounded open set and 

y+, y   C
2
( , BC

1
( +, 

m
) with the Banach space 

BC
1 

of bounded, once differentiable functions. 

Moreover, y+( ) is a solution of   x  = f+(x, ) and y ( ) 

is a solution of   x  = f (x, ) for each   . The 

functions y+, y  are bounded in    and t  +.  

A3.  The linear operator  

  
L

+
( ) :=

d

dt x
f
+
( y

+
( ), ),  

 has a shifted exponential dichotomies with data (
  
K

+
,  

 +
,  

 +
,  

 
P

a

+
( ), 

 
P

b

+
( )), 

+
 < 0 of class C

1 
with 

respect to . The ranks of the projectors are 

independent of  and given by the dimensions 
 
m

a

+
:= 

dim R (
 
P

a

+
(t)( )) and 

 
m

b

+
:= dim R (

 
P

b

+
(t)( )) of 

ranges R of the respective projectors. Analogous 

assumptions and notions hold for “ ”.  

 To precise A3 and the notations therein, consider a linear 

differential operator Lx =   x  A(·)x with A  BC(J, 
m m

), x 

 C
1
(J, 

m
) and J   is some interval. Denote the solution 

operator of Lx = 0 by S(·,·), i. e. LS(·,s) = 0 and S(s,s) =Id m 

for all s  J. Using the concept of an exponential dichotomy 

(first developed in [24]) to separate fibres with different 

asymptotic rates we define a shifted exponential dichotomy 

as in [15] and its smoothness in the parameter as in [18, 25]. 

The assumption A3 implies the existence of sufficiently 

smooth fibres.  

Definition 3.1 (Shifted Exponential Dichotomy)  

 L := d/dt  A(·) has a shifted exponential dichotomy 

on J with exponents  <  if there exist a constant K and 

projectors Pa(t), Pb(t), t  J with Pb(t) = Id m  Pa(t) so that  

S(t, s)P (s) = P (t)S(t, s),  = a, b and t, s  J 

| |Pa(t)S(t, s)|| < Ke
(t s)

, t > s 

| |Pb(s)S(s, t) || < Ke
(t s)

, t > s. 

 We call (K, , , Pa, Pb) the dichotomy data. The 

dichotomy data are of class C
l 
with respect to  if  A  BC

l  

( , BC(J, 
m m

)), l > 0 and L( )=d/dt  A( )(·) has a shifted 

exponential dichotomy with dichotomy data (K, , , Pa( ), 

Pb( )) for all   . The projectors Pa(·)(t), Pb(·)(t)  C
l
( , 

m m
) and K, ,  are independent of .  

 Assumption A3 implies that it is possible to separate 

solutions with different asymptotic rates and 
 
P

a

+
( ), 

 
P

b

+
( ), 

 
P

a
( ) and 

 
P

b
( ) are the projections on the corresponding 

linear subspaces. Note that for stationary points and periodic 

orbit A2 and A3 hold if A1 is satisfied, see e. g. [9, 13].  

 Using a roughness theorem (see e. g. [25]) one can show 

that A3 implies that the linear operator L+( ) :=d/dt f+/ x 

(x+(·), ),    evaluated at solutions x+ converging with 

asymptotic rates +  
 
(

+
,

+
)  to y+( ) have shifted 

exponential dichotomies with data (K+, +, +, 
 
P

a

+
( ), 

 
P

b

+
( )), + < 0. In particular, the projections 

 
P

a

+
( ), 

 
P

b

+
( ) 

describe the linearisation along the solution x+(·). Analogous 

result holds for “ ”.  

 We describe the set of points (x+(0), x (0), )  
2m+p 

for 

which x+ is +–asymptotic with y+( )(0) and x  is –

asymptotic with y ( )(0) by  

   
M

0
:= {(x

+

0
, x0

, ) | (x
+

0
, ) M

+

+0
, (x0

, ) M
0
, }  

with  =( +, ) as index. Since 
  
M

+

+0  
and 

  
M

0   
are C

1
–

manifolds of dimensions 
 
m

a

+
 + p and 

 
m

a
 + p the set 

  
M

0
 is 

an (
 
m

a

+
 + 

 
m

a
 + p)–dimensional C

1
–manifold. To define 

non-degeneracy we assume in addition to A1–A3 

A4.  W is an (
 
m

b

+
 + 

 
m

b
)–dimensional manifold in 

2m+p 

which is described by the set  

             

    
W := {(x

+

0
, x0

,μ)
2m+ p

| g(x
+

0
, x0

,μ) = 0}  
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with a function g  C
1
(

2m+p
, 

   
m

a
+
+m

a
+ p

)  so that 

g
  
(x

+

0
,  

  
x0

,  
 
μ)  has full rank for all 

  
(x

+

0
,  

  
x0

,  
 
μ)   W.  

A5.  
    
T

( x (0), )
W + T

( x (0), )
M

0
=

2m+ p
.

 
 

 Assumption A4 implies by (
 
m

a

+
 + 

 
m

a
 + p) + (

 
m

b

+
 + 

 
m

b
) = 2m + p that A5 is equivalent to  

   
T

( x (0), )
W T

( x (0), )
M

0
= {0}.  

 Choices for the number of parameters p and the manifold 

W in different applications are provided in Section II.  

Definition 3. 2 (Generalised Connecting Orbit)  

 Let A1–A4 hold. We call 
  
(x

+
, x , ) a generalised 

connecting orbit from W to y+ and y  of type ( +, ) if 
 
x

+
 

and y+( ) are +–asymptotic at , 
 
x  and y ( ) are –

asymptotic at  and (
 
x

+
(0), 

 
x (0), )  W. If in addition 

the transversality condition A5 holds, then it is called a 

nondegenerate generalised connecting orbit from W to y+ 

and y  of type ( +, ).  

 We relate non-degeneracy to non-singularity of a linear 

operator in Lemma 3.3 below. The derivation of this non-

singularity condition also introduces some notions used in 

the proof of our main Theorem 4.1.  

 Let D
0 

: 
2m+p 

 
 

  
m

a
+
+m

a
+ p  

be the linear operator defined 

by the Jacobian matrix 

  

g

x
+

,
g

x
,

g
(x

+
(0), x (0), ),  (5) 

of g evaluated at (
 
x

+
(0), 

 
x (0), ). Then  

   
T

( x (0), )
W = ker(D0

) =: N(D0
).  

 As seen in [10, Prop. 3, Corr. 1], there exists an open 

neighbourhood    of (0, 0, )  R (
 
P

a

+
(0))  R 

(
 
P

a
(0))  

p 
in which the manifold 

  
M

0
 is locally 

parametrised by a function  

b( +, , ) := (x+( +, )(0), x ( , )(0), ). 

 By this definition b(0, 0, ) = (
 
x

+
(0), 

 
x (0), ) and b 

maps to  

  W := {(x+( +, )(0), x ( , )(0), )| 

      ( +, , )    }
  
M

0
.  

 Therefore the tangent map B( +, , )( +, , ) of b is 

defined by  

  

+

x
+
(

+
, )(0)

+
+ x

+
(

+
, )(0)μ

x ( , )(0) + x ( , )(0)μ

μ

.  

 With the same arguments as in [10, Prop. 3] we observe 

  

x
+
(0, )(0) = P

a

+
(0) and x (0, )(0) = P

a
(0).  

 Thus +  R(
 
P

a

+
(0)) and   R(

 
P

a
(0)) imply that the 

tangent map B
0 

:= B(0, 0, ) of b at the point (
 
x

+
(0), 

 
x (0), ) is  

  

B0
(

+
, ,μ) =

+
+ x

+
(0, )(0)μ

+ x (0, )(0)μ

μ

.  (6) 

 For (
 
x

+
(0), 

 
x (0), )  W the tangent space of 

  
M

0  
is 

   
T

( x (0), )
M

0
= R(B0

) and  

   
T

( x (0), )
W T

( x (0), )
M

0
= N(D0

) R(B0
).  

 Using this result and the definitions of D
0 

and B
0 

we 

obtain the following lemma.  

Lemma 3.3. Suppose that A1–A4 hold and let (
 
x

+
,
 
x , ) 

be a generalised connecting orbit from W to y+ and y  of 

type ( +, ). Then (
 
x

+
,
 
x , ) is nondegenerate if and only 

if the linear operator  

D
0
  B

0
 = D(

 
x

+
(0), 

 
x (0), )  B(0, 0, ) 

is nonsingular.  

IV. THE APPROXIMATION OF GENERALISED 
CONNECTING ORBITS  

 The numerical method for approximating generalised 

connecting orbits on finite intervals is introduced and 

analysed in IV.1 In particular, the error is shown to decay 

exponentially with the length of the intervals. The detailed 

proof of the main theorem is provided in IV.2. In IV.3 we 

present the boundary corrector method and in IV.4 we 

comment on restrictions to the length of intervals.  

IV.1. The Approximation Theorem  

 In this section we set up an approximation theory for 

generalised connecting orbits. We truncate [0, ) to finite 

intervals J+ = [0, T+] and J  = [0, T ] and approximate both 

parts 
 
x

+
 and 

 
x  of a generalised connecting orbit on J+ and 

J , respectively. At T+ and T  we use asymptotic boundary 

conditions.  

 Assume A1–A4. Let ( x , ) = (
 
x

+
,
 
x , ) be a non-

degenerate generalised connecting orbit from W to y+ and y  

of type ( +, ) with  
+

< + < min(0, 
+

) and  < < 

min(0, ). Moreover, suppose that the operators L+ := d/dt 

 f+/ x(
 
x

+
, ) and L := d/dt  f / x(

 
x

+
, ) have shifted 

exponential dichotomies with dichotomy data (K+, +, +, 

 
P

a

+
,
 
P

b

+
) and (K , , , 

 
P

a
, 

 
P

b
) so that +, + satisfy 

+
 

< + < + < + < 
+

 and ,  satisfy  <  <  <  < 
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. We assume that the boundary conditions are regular in 

the following sense: 

A6.  The functions M+(T+, ·)  C
1
( ,   

m
b
+ m

)
 
and M (T , ·) 

 C
1
( ,   

m
b

m
) satisfy  

N(M+(T+, ))  R(
 
P

b

+
(T+) ) = {0}, 

N(M (T , ))  R(
 
P

b
(T ) ) = {0} 

 for all T+, T   + sufficiently large. Moreover, let 

M+(T+, ), M (T , ) and the derivatives M+(T+, 

), M (T , ) be uniformly bounded by constants 

MM+
, MM , 

 

  
M

M

1
and 

  
M

M
+

1
 and Lipschitz continuous 

with constants L M+
, L M , 

  
L

M
+

1  
and 

  
L

M

1
. The inverse 

functions N+ := (M+(T+, )|
  
R

b

+
)

1
 and N := (M (T , 

)
  
R

b
)

1
 are uniformly bounded by 

 
M

N
+

 > 0 and 

 
M

N
 > 0.  

 We abbreviate the subspaces 
  
R

b

+  
:= R(

 
P

b

+
(T+))( ), 

  
R

b
= R(

 
P

b
(T ))( ), 

  
R

b

+  
:= R(

 
P

b

+
(T+))( ), 

  
R

b
= 

R(
 
P

b
(T )( ). The function 

  
R

b

+   

  
m

b
+

: x  M+(T+, )x 

is denoted by M+(T+, )|
  
R

b

+
. As seen in [26] the assumption 

A6 implies that M+(T+, )|
  
R

b

+  
and M (T , )|

  
R

b

 
are 

nonsingular and that their inverse functions N+ := (M+(T+, 

)|
  
R

b

+
)

1  
and N  := (M (T , )|

  
R

b
)

1 
 are uniformly 

bounded by MN+ := 4KMN+ > 0 and MN  := 4KMN  > 0.  

Remark: If the assumption of uniformly bounded functions 

is too strong, assumption A6 may be weakened so that 

uniformity has to be satisfied only on subsets I+, I   + so 

that there exist sequences 
  
{T

+

i
}

i N
  I+, 

  
{T i

}
i N

  I  with 

limi  
 
T

+

i  
=   and lim i  

 
T i  

= . In the case of equilibria 

we always choose [0, ) and in the case of 1–periodic orbits 

(scaled system) we may choose N [N  , N + +], , + 

 [0, 1]. For details see [26].  

 N(M+(T+, ))  R(
 
P

b

+
(T+))( ) = {0} is not a very 

restrictive condition since such boundary condition only 

excludes endpoints in the +–unstable subspace. Matrices 

M+(T+, ), M (T , ) satisfying the following more 

restrictive assumption A6* allow for endpoints in the +–

stable subspace and in the –stable subspace only. In this 

case we get quadratic error estimates  

  

| M
+
(T

+
, )(x (T

+
) y( )(T

+
)) |

C
M

+
| x

+
(T

+
) y

+
( )(T

+
) |

2

| M (T , )(x (T ) y( )(T )) |

C
M

| x (T ) y ( )(T ) |
2

 (7) 

for constants 
 
C

M

+
 > 0, 

 
C

M
 > 0 and sufficiently large T+, T . 

Such boundary conditions imply that we do not need an 

additional gap in the structure of the exponents and they 

induce a better performance of the approximation method. 

However, it needs additional effort to compute such 

boundary matrices. For equilibria and periodic solutions such 

asymptotic boundary conditions can be computed by solving 

an eigenvalue problem (equilibrium) or the adjoint 

variational equation (periodic solution) as shown in [9, 13] 

and implemented in [5-7].  

A6*  The functions M+(T+,·), M (T ,·) satisfy as sumption 

A6 and in addition  

N(M+(T+, )) = N(
 
P

b

+
(T+))( ) and 

N(M (T , )) = N(
 
P

b
(T )( )). 

 Within the proof of Theorem 4.1 we use the assumption 

that the estimate  

  

e +
T

+ + e
T

r(
+
,T

+
) + r( ,T )

 

is satisfied for T+, T ,  > 0, +,   , + < | +|,  < 

| | and with  

  

r( ,T ) :=
e| |T

+
1

| |
(e| |T

1) : 0,

1 + T : = 0.

 

 Therefore we define the set of pairs (T+, T ) satisfying 

this condition by  

    

D( , 
+
, 

+
, , ):= (T

+
, T )  

+

2
 

e +
T

+ + e
T

r(
+
,T

+
) + r( ,T )

.

 

 More details about this set and sufficient conditions for 

(T+, T ) to be in this set are provided later on in IV.3. To 

argue that this set is not empty lets consider one of the 

results of IV. 3 in advance. Let (T+, T ) be of the form ( T, 

T) and   (| |/| +|, | |/| +|). Then there exists some T 

with ( T, T)  D( , +, +, , ) for all T >  T . Such an 

 always exists since + < | +| and  < | | imply 

| +|·| | < | +|·| |.  

Remark: In the following theorem we define + = d+ +  + 

and  = d    with d+ = d  =1 or d+ = d  = 2. Thus, + < 

| +| is equivalent to d+ + < min(0, 2 +) which implies an 

additional restriction + < 2 + only if d+ = 1 (“simple” 

boundary conditions A6) and + < 0 (strongly stable case). 

The same holds for “ ”.  

 We approximate a generalised connecting orbit 

(
 
x

+
,
 
x , ) by (

  
z

J

+
,
  
z

J
,  J)  Y := C

1
(J+, 

m
)  C

1
(J , 

m
)  

p 
and define the norm on the Banach spaces Y by 

   

|| x
+
, x , ) ||

Y
=|| x

+
||

Y

+
+ || x ||

Y
+ | |,

|| x
+

||
Y

+
= sup

t J
+

(| x
+
(t) | q

+
(t)), q

+
(t) =

2

1+ e +
t
,

|| x
+

||
Y

= sup
t J

(| x (t) | q (t)), q (t) =
2

1+ e
t
.
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 With these notations we formulate the central theorem of 

this paper. The very technical proof is provided in a separate 

section IV. 2.  

Theorem 4.1. Suppose that A1–A5 and A6* hold. Let d+ = 

d  = 2 and let ( x , ) be a nondegenerate generalised 

connecting orbit from W to y+ and y  of type ( , +). Let L+ 

:= d/dt  f+/ x(
 
x

+
, ), L  := d/dt  f / x(

 
x , ) have 

shifted exponential dichotomies with data (K+, +, +, 
 
P

a

+
, 

 
P

b

+
), (K , , , 

 
P

a
, 

 
P

a
) and +,  satisfying + < + < 

min(0, +) and  <  < min(0, ).  

 Then there exist  > 0, C+

 
> 0, C

 
> 0,  > 0 and 

 
T

+
, 

 
T  

sufficiently large, so that for all (T+, T )  D( , +, d+ +  +, 

, d   ) with T+ > 
 
T

+
, T  > 

 
T  the operator equation 

HJ (z+, z , ) = 0 defined by  

   

z
+

f
+
(z

+
, )

z f (z , )

g(z
+
(0), z (0), )

M
+
(T

+
, )(z

+
(T

+
) y

+
( )(T

+
))

M (T , )(z (T ) y ( )(T ))

= 0  (8)  

has a unique solution (
  
z

J

+
,
  
z

J
,  J) in a ball in Y with radius 

 = /[r( +, T+) + r( , T )], denoted by B( )(
 
x

+
|J+, 

 
x |J , ). With + := 2 +  + < 0 and  := 2    < 0 

the pointwise error estimates of 
  
z

J

+
,  

 
z

J
 and J are  

  

|
J

| C+e +
T

+ + C e
T

| z
J

+
(t) x

+
| J

+
(t) |

 (9)  

 

  

(C+e +
T

+ + C e
T

)
e +

t
:

+
> 0

1 :
+

0
 (10)  

  
| z

J
(t) x | J (t) |  

 

  

(C+e +
T

+ + C e
T

)
e

t
: > 0

1 : 0
 (11)  

 If M+(T+, ) and M (T , ) only satisfy A6 but the 

exponents satisfy the additional gap–conditions + < + < 

min(0, 2 +) and  <  < min(0, 2 ), then the existence 

result holds for d+ = d  = 1 and the error estimates hold with 

+ := +  + <  | +|< 0 and  :=    <  |  |< 0.  

 In the following corollaries we apply Theorem 4.1 to 

different combinations of connecting orbits as they are 

typical in the literature. For these corollaries we always 

assume A6* and therefore that the boundary matrices 

M+(T+,·), M (T ,·) are computed parametrically and solve the 

eigenvalue problem (equilibrium) or the adjoint variational 

equation (periodic solution).  

 Theorem 4.1 applied to connecting orbits with hyperbolic 

equilibria or periodic orbits (
+

 > 0,  > 0) induces the 

following corollary.  

Corollary 4.2. Suppose that A1–A5 and A6* hold. Let ( x , 

) be a nondegenerate point–to–periodic or periodic–to–

periodic connecting orbit with 
+

 > 0 and  > 0. Let +,  

be given with + < + < 0 and  <  < 0. Then there exist 

 > 0, C
+ 

> 0, C
 
> 0,  > 0 and 

 
T

+
, 

 
T  sufficiently large, so 

that for all (T+, T )  D( , 0, 2 +, 0, 2 ) with T+ > 
 
T

+
, T  

> 
 
T  the operator equation (8) has a unique solution (

 
z

J

+
, 

 
z

J
, J)  B and the following estimates hold  

  

|
J

| C+e
2

+
T

+ + C e
2 T

,

|| z
J

+ x
+

| J
+

|| C+e
2

+
T

+ + C e
2 T

,

|| z
J

x | J || C+e
2

+
T

+ + C e
2 T

.

 

 We get this result applying Theorem 4.1 with + =  = 0. 

Since the typical error estimates are of the form  C
+e +

T
+ + 

 C e
T

, it is numerically convenient to choose (T+, T ) = 

(T| |/| +|, T) so that +T+ = T . For sufficiently large T 

the condition (T |  |/| +|, T)  D( , +, +, , ) is always 

satisfied and therefore no restriction. In case of a connecting 

orbit from a hyperbolic equilibrium with  > 0 to a 

hyperbolic periodic orbit we concentrate on interval length 

with 2 +T+ = (2   )T  and get a super–convergence result 

due to the multiplicative factor  e
T  

in (11).  

Corollary 4.3. Suppose that A1–A5 and A6* hold. Let ( x , 

) be a nondegenerate point–to–periodic connecting orbit 

with  > 0. Let +,  be given with + < + < 0 and  < 

 < 0. Then there exists  T  > 0 and suitable constants, so 

that the operator equation (8) has a unique solution (
 
z

J

+
, 

 
z

J
, 

J)  B for all T > 
 
T  and (T+, T ) = (T(2   )/(2 +), T) 

and the following estimates hold  

  

|
J

| Ce
(2 )T

,

|| z
J

+ x
+

| J
+

|| Ce
(2 )T

,

|| z
J

x | J || Ce
2 T

.

 

 The following corollary applies to strongly stable 

manifolds and centre stable manifolds in case of periodic 

orbits.  

Corollary 4.4. Suppose that A1–A5 and A6* hold. Let ( x , 

) be a nondegenerate connecting orbit with convergence in 

the strongly stable manifold or in the centre stable manifold 

so that 
+

 < 0,  < 0. Let +,  be given with + < + < + 

< 
+

 and  <  <  < . Then there exist  > 0, C
+ 

> 0, 

C  > 0,  > 0 and 
 
T

+
, 

 
T  sufficiently large, so that for all 

(T+, T )  D( , +, 2 +  +, , 2   ) with T+  > 
 
T

+
, T  

> 
 
T  the operator equation (8) has a unique solution (

 
z

J

+
, 

 
z

J
, J)  B and the following estimates hold  
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|
J

| C+e
(2

+ +
)T

+ + C e
(2 )T

,

|| z
J

+ x
+

| J
+

|| C+e
(2

+ +
)T

+ + C e
(2 )T

,

|| z
J

x | J || C+e
(2

+ +
)T

+ + C e
(2 )T

.

 

 For hyperbolic point–to–point connecting orbits we get 

super-convergence in the parameter as in [13, 17, 27, 28] for 

+ > 0 and  > 0 if we restrict to pairs (T+, T ) satisfying 

+T+ = T . For these pairs we obtain  

  

|
J

| C+e
(2

+ +
)T

+ + C e
(2 )T

,

|| z
J

+ x
+

| J
+

|| C+e
2

+
T

+ + C e
2 T

,

|| z
J

x | J || C+e
2

+
T

+ + C e
2 T

.

 

 As seen in the different arguments it is numerically 

convenient to choose the length of both intervals with an 

appropriate rate. The error estimates above may help to 

choose them adequate.  

IV.2. Proof of the Main Theorem 4.1  

 Assumptions A1–A5 imply the existence of a + – stable 

manifold of y+ characterised by a differentiable function 

x+(
+
, ) parameterised by 

+  

  
R

a

+
 and    and a –

stable manifold of y  characterised by a differentiable 

function x ( , ) parameterised by 
  

  
R

a

 
and   , see 

[10, Prop. 3] or [26, Prop. 2.2] for details.  

 In order to describe the linearisation along the 

generalised connection orbit ( x , ) let S
±
(·,·) be the solution 

operator
4 

of L±x = 0 on J± = [0, T±] (or J± = +, meaning “T± 

= ”), which implies L±S
±
(·, s) = 0 and S

±
(s, s) = 

   
Id

m  for all 

s  J±. Then,  

  

s
J

±
(w)(t) := S ±

(t,s)P
a

±

0

t

(s)w(s)ds

S ±
(t,s)P

b

±

t

T
+

(s)w(s)ds

 (12) 

solves L±x = w on J±. As show in detail in [10, Prop. 3] or 

[26, Prop. 2.2] the partial derivatives of x± at (0, ) are 

  

x
±
(0, )( ) = S ±

( ,0)P
a

±
(0)  (13) 

  

x
±
(0, )( ) = s

(0, )

±
(

±
( ))

S ±
( ,0)P

a

±
(0) y

±
( )(0) + y

±
( )( )

 (14) 

with  

  

±
(s) := f (x

±
(s), ) f ( y

±
(s), )

+
x

f (x
±
(s), )

x
f ( y

±
(s), ) y

±
( )(s).

  (15) 

4
We index the first two parts of (x+, x , ) by “+” and “ ”. Definitions and 

assertions which hold for both parts are often indexed by “±”, so that “(x± , 

) solves 
  
x

+
 = f±(x±, )” means that (x+, ) solves 

  
x

+
 = f+(x+, ) and (x  , 

) solves 
  
x  = f (x , ).  

 In addition to Y let Z = C
0
(J+, 

m
)  C

0
(J , 

m
)  

  
m

a
+
+m

a
+ p

   
m

b
+

    
m

b be a Banach space with norm  

   

|| (
+
, ,r

0
,r

+
,r ) ||

Z

= C
Z

J
+ ||

+
||

Z

+
+C

Z

J
|| ||

Z

+ | r
0

| +C
Z

J
+ | r

+
| e +

T
+ + C

Z

J
| r | e

T

 

using  

   

||
+

||
Z

+
= ||

+
||

+

+
+ |

0

T
+

+
(s) | e +

s
ds

with ||
+

||
+

+
= sup

t J
+

(|
+
(t) | e +

t
) and

 

   

||
_

||
Z

= || || + |
0

T

(s) | e
s
ds

with || || = sup
t J

(| (t) | e
t
).

 

 The constants are defined by  

   

C
Z

J
+ = (K

+
+ M

M
+

M
N

+

K
+

2
) || R

0

+
||,

C
Z

J
= (K + M

M
M

N
K 2

) || R
0

||,

C
Z

J
+ = M

N
+

K
+

|| R
0

+
||,

C
Z

J
= M

N
K || R

0
|| .

 

 Here 
  
R

0

+
, 

  
R

0
 and Q0 are the partial derivatives of g such 

that the matrix (
  
R

0

+

  
R

0
Q0) describes D

0 
as defined in (5). B

0 

is defined as in (6) so that we obtain  

  

D0 B0
(

+
, ,μ) = R

0

+

+
+ x

+
(0, )(0)μ

+ R
0

+ x (0, )(0)μ + Q
0
μ

 (16) 

is nonsingular (see Lemma 3.3).  

 Therefore, D
0  

 B
0
( +, , 0) = 

  
R

0

+

+
 + 

  
R

0
 implies 

rank (
  
R

0

+
) > 0, rank (

  
R

0
) > 0 and | |

  
R

0

+
| | > 0, ||

  
R

0
|| > 0. 

To prove Theorem 4.1 we make use of the following lemma 

(see also [13, 29]).  

Lemma 4.5 (Perturbation Lemma) Let F: B( )(y0)  Z be 

a C
1
–function from a -ball in Y into Z (Banach spaces). 

Assume that F (y0) is a homeomorphism and there exist 

constants  and  so that  

| |F (y)  F (y0)|| <  <  < | |F (y0)
1
||

1
, 

| |F(y0) || < (   )  

holds for all y  B( )(y0). Then F has a unique zero 
 
y  in 

B( )(y0) and  

||
 
y   y0|| < (   )

1
||F(y0)||, 

||y1  y2|| < (   )
1
||F (y1)  F (y2)|| 

for all y1, y2  B( )(y0).  

Sketch of the Proof of Theorem 4.1  

 We apply the Perturbation Lemma 4.5 for fixed (T+, 

T )  D( , +, d+ +  +, , d   ) with F = HJ and y0 = 
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(
 
x

+
|J+, 

 
x |J , ) =: ( x |J, ) and abbreviate ( +, , r0, r+, 

r ) by ( , r0, r). We prove the assumptions of Lemma 4.5 by 

the following steps:  

Step 1.  We show that there exists a Clin > 0 with ||( , ) | |Y 

< Clin | |( , r0, r)| |Z for each solution ( , ) of  

  
H

J
( x |J, )( , )=( , r0, r).  

Step 2.  The derivative 
  
H

J

 
( x |J, ) is a homeomor-

phism. Thus we observe  

       

    

|| H
J
(x | J , )

1
( ,r

0
,r) ||

Y

C
lin

|| H
J
(x | J , )H

J
(x | J , )

1
( ,r

0
,r) ||

Z

= C
lin

|| ( ,r
0
,r) ||

Z

 

 and define  := 1/Clin   | |
  
H

J
( x |J, 

  
)

1
||

YZ

1.
. 

 Hence “  < | |F (y0)
1
||

1
” in Lemma 4.5.  

Step 3.  We show that there exist CLip > 0,  := /(2CLip) > 0 

with | |
  
H

J
(z, ) 

  
H

J

 
( x |J, )| |YZ   := /2 for 

all (z, )  B(
 

)( x |J, ) with 
 

 := /[r( +, T+) + 

r( , T )]. Notice that the ball B(
 

)( x |J, ) has to 

shrink for larger T+, T . This implies “ | |F (y)  

F (y0)|| <  < ” in Lemma 4.5 for fixed T+, T .  

Step 4.  There exist  > 0, 
 
C

±

 
> 0 and 

 
T

±
 with  

    

|| H
J
(x | J , ) ||

Z
C+e +

T
+ + C e

T

( )
r(

+
,T

+
) + r( ,T )

 

 for all T = (T+, T )  D( , +, +, , ) and T+ > 

 
T

+
, T  > 

 
T . For the second inequality the 

assumption (T+, T )  D( , +, +, , ) is 

essential.  

 This implies “| |F(y0)|| < (   )
 

” in Lemma 4.5 

for fixed T+, T  and a radius 
 

 = /[r( +, T+) + 

r( , T )] which depends on the length of the 

intervals.  

Step 5.  Lemma 4.5 implies that HJ has a unique solution 

(zJ, J) in a ball B(
 

)( x |J, ) satisfying  

|| zJ, J)  ( x |J, )||Y < 2Clin||HJ( x |J, )||Z. 

 With constants C
+ 

:= 2Clin
   C

+
,  C

 
:= 2Clin  C and by 

step 4 we obtain  

|| zJ, J)  ( x |J, )||Y <     C
+e +

T
+ + C e

T
.  

Proof: Now we derive the details of the proof.  

Step 1.  Let ( +, , r0, r+, r )  Z be arbitrary and let ( +, 

, )  Y be a solution of the inhomogeneous 

equation  

   
H

J
(x

+
| J

+
, x | J , )(

+
, ,μ) = (

+
, ,r

0
,r

+
,r ).  (17)  

 This equivalent is equivalent to the variational equation  

   +
=

+
A

+
( )

+
V

+
( )μ,  (18) 

   
= A ( ) V ( )μ,  (19) 

  
r

0
= R

0

+

+
(0) + R

0
(0) + Q

0
μ,  (20) 

  
r
+

= R
+ +

(T
+
) + Q

+
μ,  (21) 

  
r = R (T ) + Q μ,  (22)  

with  

  

A
±
( ) =

x
f

±
(x

±
( ), ),

V
±
( ) = f

±
(x

±
( ), ),

R
0

±
=

x
±

g(x
+
(0), x (0), ),

Q
0

= g(x
+
(0), x (0), ),

R
±

= M
±
(T

±
, ),

Q
±

= M
±
(T

±
, )(x

±
(T

±
) y

±
( )(T

±
)),

M
±
(T

±
, ) y

±
( )(T

±
).

 

 By assumption A4 and A5 this system is a linear 

boundary value problem of dimension 
 
m

a

+
 + 

 
m

a
 + p + 

 
m

b

+
+ 

 
m

b

+
 = 2m + p for which the Fredholm alternative holds and a 

unique solution ( +, , )  Y exists.  

 Defining 
 a

±  
= 

 
P

a

±
(0) ±(0)  R(

 
P

a

±
(0)) and 

 b

±  
= 

 
P

b

±
(T+)( ±(T±)  ( )(T±) )  R(

 
P

b

±
(T+)) the unique 

solutions +,  of  

L± ± = (V±(·)  + ±),  t  J±, 

 
P

a

±
(0) ±(0) = 

  a

±
,  

 
P

b

±
(T±) ±(T±) = 

 b

±  
+ 

 
P

b

±
(T±) y±( )(T±)  

solve (18), (19) and are of the form  

  

±
(t) = S

±
(t,0)

a

±
+ S

±
(t,T

±
)

b

±
+ s

j

±
(

±
)(t)

+ s
j

±
(V

±
( )μ)(t)

+ S
±
(t,T

±
)P

b

±
(T

±
) y

±
( )(T

±
)μ

 (23) 

  

= S
±
(t,0)

a

±
+ S

±
(t,T

±
)

b

±
+ s

J

±
(

±
)(t)

+ y
±
( )(T

±
)μ + s

J

±
(

±
( ))(t)μ

S
±
(t,0)P

a

±
(0) y

±
( )(0)μ

  (24) 

  

= S
±
(t,0)

a

±
+ S

±
(t,T

±
)

b

±
+ s

J

±
(

±
)(t)

+ x
±
(0, )(t)μ

+ S
±
(t,T

±
) S

±T
±

(T
±
,s)P

b

±
(s)x

±
(s)μds

  (25) 
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(see also [10, Eqs. (51), (54), (55)]). Here S± and 
 
s

J

±
 are 

defined as in (12) and the derivatives of x± are defined by 

(13)-(15). To obtain pointwise estimates for +,  we first 

use (20)–(22) to get estimates for 
 a

±
, 
 b

±
 and .  

 Using the definitions of D
0 

and B
0 

and equations (16), 

(20) and (25) we obtain  

  

D0 B0
(

a

+
,

a
,μ) + R

0

+S
+
(0,T

+
)

b

+
+ R

0
S (0,T )

b

= r
0

+ R
a

+
(T

+
) + R

a
(T )

 

with  

  

R
a

±
(T

±
) := R

0

± S
±
(0,s)P

b

±
(s)

±
(s)ds

0

T
±

R
0

±S
±
(0,T

±
) S(T

±
,s)P

b

±
(s)

±
(s)μds

T
±

 

 From 
 
s

J

±
( ±(·))(T±) = 

 
P

a

±
(T±)

 
s

J

±
( ±(·))(T±), (14), (21), 

(22) and (24) we get  

  

M
±
(T

±
, )

b

±

= r
±

M
±
(T

±
, )μ(x(T

±
) y

±
( )(T

±
))

+ M
±
(T

±
, )P

a

±
(T

±
)( y

±
( )(T

±
) x

±
(0, )(T

±
))μ

M
±
(T

±
, )S

±
(T

±
,0)

a

± M
±
(T

±
, )s

J

±
(

±
)(T

±
)

= R
b

±
(T

±
).

 

 Therefore, defining 
  
ˆ

b

±
:= 

 b

±  
 we get the linear system  

  

D0 B0
(

a

+
,

a
,μ) + R

0

+S
+
(0,T

+
) ˆ

b

+e +
T

+

+ R
0

S (0,T ) ˆ
b
e

T

= r
0

+ R
a

+
(T

+
) + R

a
(T )

M
+
(T

+
, ) ˆ

b

+
= R

a

+
(T

+
)e +

T
+

M (T , ) ˆ
b

= R
a

(T )e
T

.

 

 We estimate |
 
R

a

±
(T±)| and |

 
R

b

±
(T±)| e

T
±  by  

    

| R
a

±
(T

±
) |

|| (
±
,0,0) ||

Z
+ || R

0

±
|| K

±
c

,

± e
(

± ±
)T

+ | μ |

| R
b

±
(T

±
) | e ±

T
±

|| (
±
,0,r

±
) ||

Z
+

c
±

C
,μ

e
(

± ±
)T

± (|
a

±
| + | μ |)

K
±
M

N
±

|| R
0

±
||

 

with abbreviations 
 +

 := ( +, 0), 
  
r
+

 := (r+, 0), 
 

 := (0, 

), 
  
r  := (0, r ), C ,  := | |(D

0 
 B

0
)

1
|| and some constants 

  
c

,

±
 > 0 and   c

±
 > 0.  

 To estimate |(
 a

+
, 

 a
, )| we notice that  is involved in 

both parts of the problem, thus we have to choose 
 
T

±
 as 

follows: Let a > 1 and T± > 
 
T

±
 := [ln(

  
c

+
)  ln(1  1/a) + 

ln(2)]/( ±  ±) so that 
   
c

±
e

(
± ±

)T
+ < 

 

1

2
 (1 – 1/a) holds. Now 

we estimate  

    

| (
a

+
,

a
,μ) | || D0 B0

)
1

|| || (
+
, ,r

0
,r

+
,r ) ||

Z

+ c
+
(|

a

+
| + | μ |)e

(
+ +

)T
+

+ c (|
a

| + | μ |)e
( )T

a C
,μ

|| (
+
, ,r

0
,r

+
,r ) ||

Z

 

    

| ˆ
b

±
|

1

K
±

|| R
0

±
||

|| (
±
,0,r

±
) ||

Z

+
c

±

C
,μ

K
±

|| R
0

±
||

(|
b

+
| + | μ |)e

(
± ±

)T
±

1+ a

2

1

K
±

|| R
0

±
||

|| (
+
, ,r

0
,r

+
,r ) ||

Z

a

K
±

|| R
0

±
||

|| (
+
, ,r

0
,r

+
,r ) ||

Z
.

 

for all T+ > 
 
T

+
 and T  > 

 
T . These estimates for 

 a

+
, 

 a
, 

  
ˆ

b

+
, 

  
ˆ

b
,  are used to get an estimate for the solution ( +, , 

) of (18)–(22) and hence of (17).  

   
|

±
(t) |

1+ e ± t

2
C ±a || (

+
, ,r

0
,r

+
,r ) ||

Z
 

with some constant 
 
C ±  

> 0 (For details on these 

comprehensive, but straightforward calculations see [26] or 

[10]). Therefore we observe that 
  
||

±
||

Y

±  
= 

  
sup

t J
±

 

(| ±(t)|q±(t)) < a (C
±
 | |( +, , r0, r+, r )||Z and with Clin := 

a(C ,  + 
 
C+  

+ 
 
C ) 

||( +, , )||Y < Clin||( +, , r0, r+, r )||Z. 

Step 2. By Step 1 we observe for a solution of (17) that 

  
H

J
( x |J, )

1
( +, , r0, r+, r ) = ( +, , ) and get the 

estimate  

||
  
H

J
( x |J, )

1
( +, , r0, r+, r )||Y 

= ||( +, , )|| Y < Clin||( +, , r0, r+, r )| |Z 

Thus  := 1/Clin < | |
  
H

J
( x |J, )

1

  
||

YZ

1
.  

Step 3. For any (z, ), ( , )  Y we estimate by compre-

hensive, but straightforward calculations (for details see [26]) 

    

H
J
(z, )

μ
H

J
(x | J , )

μ
Z

C
Lip

+
|| (z

+
x

+
| J

+
) ||

Y

+
(||

+
||

Y

+
+ | μ | r(

+
,T

+
)

+ C
Lip

|| (z x | J ) ||
Y

(|| ||
Y

+ | μ | r( ,T )

+ C
Lip

|| (
+
, ,μ) ||

Y

| v | (r(
+
,T

+
) + r( ,T ))

C
Lip

|| (z x | J ,v ) ||
Y

|| ( ,μ) ||
Y

(r(
+
,T

+
) + r( ,T ))

 

with some constant CLip > 0. Defining  := 

 2
 and 

 

  

:=
2C

Lip

 
we obtain  
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|| H
J
(z, ) H

J
(x | J , ) ||

YZ

2
= < || H

J
(x | J , )

1
||

YZ

1
 

for any (z, )  B

  
r(

+
,T

+
) + r( ,T )   

(x | J , ).  

Step 4. The truncation error is 

||HJ
   
(x | J , ) ||

Z
 

    

=

0

0

0

M
+
(T

+
)( )(x

+
(T

+
) y

+
( )(T

+
))

M (T )( )(x (T ) y ( )(T ))
Z

= C
Z

+
| M

+
(T

+
, )(x

+
(T

+
) y

+
( )(T

+
)) | e +

T
+

+ C
Z

| M (T , )(x (T ) y ( )(T )) | e
T

C
Z

+C
tr

+
|| (x

+
(T

+
) y

+
( )(T

+
)) ||

d
+ e +

T
+

+ C
Z
C

tr
|| (x (T ) y

+
( )(T )) ||

d e
T

C(e
(d

+ + +
)T

+ + e
(d )T

)

 

with 
   
C

Z

±
= M

N
±

K
±

|| R
0

±
||,C

x

±
so that  

  
|| x

±
(T

±
) y

±
( )(T

±
) || C

x

±e ±
T

± holds,  

   

C
tr

±
:=

M
M

±

: d
±

= 1,

C
M

±
: d

±
= 2(C

M

±
so that (7) holds)

 

and  C  = max 
    

C
Z

+C
tr

+
(C

x

+
)

d
+ ,C

Z
C

tr
(C

x
)

d

( ).  

 For (T+, T )  D( , +, d+ +  +, , d    ) with  

:=( )/   2C  and T± > 
 
T

±
 the inequality 

  

C(e
(d

+ + +
)T

+ + e
(d )T

)
(r(

+
,T

+
) + r( ,T ) 2

 

is satisfed. This implies the estimate 

   

|| H
J
(x | J , ||

Z
(r(

+
,T

+
) + r( ,T ) 2

.  

(T+, T )  D( , +, d+ +  +, , d    ) is important to 

guarantee this estimate. Essentially, it becomes necessary to 

control   e
(d

+ + +
)T

+
+| |T

 and   e
(d )T +|

+
|T

+  for large T+ and T , 

which is not possible for all pairs (T+, T ). A discussion of 

this problem is given in IV.4. 

Step 5. By Lemma 4.5 there exists a unique solution (zJ, J) 

in the ball B(
 

)
  
(x | J , )  with radius 

 
 = /[r( +, T+) + r( , 

T )]. With  C
±

 = 2Clin  C
±

 we get 

   
|| (z

J
,

J
) (x | J , ) ||

Y
C+e

(d
+ + +

)T
+ + C e

(d )T
.  

 Moreover, we get the estimates (9)-(11) since 

  

| v
J

| C+e +
T

+ + C e
T

|| z
J

±
(t) x

±
| J

±
(t) || (C+e +

T
+ + C e

T
)
1+ e ±

t

2
.
 

IV.3. The Boundary Corrector Method  

 To avoid the parameter-dependent computation of the 

asymptotic boundary matrices M+(T+, ), M (T , ) we 

develop an iterative method with at most three iterations 

called boundary corrector method for generalised 

connecting orbits. In addition to A1–A5 we assume  

A7.  Let < 
 
2 .  Let 0   satisfy   0 and M+(T+, ·) 

 C
1
( 0,   

m
b
+ m

), M (T , ·)  C
1
( 0,   

m
b

m
) so that 

A6* holds for all   0. 

 The idea of the boundary corrector method is to start 

with an initial parameter μo and compute M+(T+, 0), 

M (T , 0). Generically, these matrices satisfy N(M+(T+, )) 

 R(
 
P

b

+
(T+)( )) = {0} and N(M  (T , ))  R(

 
P

b
(T )( )) 

= {0}. Applying the theorem with these matrices gives us a 

solution with error estimates   e
(

+ +
)T

+  +   e
( )T

, for | 0  

| in particular. Starting the second iterate with 1 = 0 we 

have a sufficiently good initial guess so that applying the 

theorem with updated matrices M+(T+, 1), M (T , 1) gives 

us a solution with error estimates   e
(2

+ +
)T

+  +   e
(2 )T

, if 

+,  > 0 and   e
2(

+ +
)T

+  +   e
2( )T

and   e
3(

+ +
)T

+  + 

  e
3( )T

 after a third step with 2 = 1 if + < 0 and  < 0. 

With + < 2 + and  < 2  we obtain again error estimates of 

the form   e
(2

+ +
)T

+  +   e
(2 )T

. The boundary corrector 

method for generalised connecting orbits is defined as 

follows: 

1.  Start with some 0  0, i = 0  

2.  Compute M+(T+, i) and M (T , i)  

3.  Calculate 
  
(z

i+1

+
, z

i+1
,μ

i+1
)  as the solution of  

   

z
+

f
+
(z

+
, )

z f (z , )

g(z
+
(0), z (0), )

M
+
(T

+
,μ

i
)(z

+
(T

+
) y

+
( )(T

+
))

M (T ,μ
i
)(z (T ) y ( )(T ))

= 0  

4.  Repeat with 2. with (“i = i + 1”) and updated 

parameter once if + > 0 and  > 0 or twice if + < 0 

or  < 0.  

Propositon 4.6. Suppose that the assumptions of Theorem 

4.1 and A7 hold. Moreover, let 
  
T

+
,  

 
T  be sufficiently large. 

Then there exists some Cbcm > 0 so that for all T+ > 
 
T

+
, T  > 

 
T with (T+, T )  D( , +, d+ +  +, , d   ) for d+ = 

d  =1 and d+ = d  = 2 the result (zJ , J) of the boundary 

corrector method can be estimated by  

||( zJ , J)  ( x |J, )||Y 
  

C
bem

e
(2

+ +
)T

+ + e
(2 )T

( ).  

Proof: The proof is similar the one in [10, Prop. 4] since  

  
e

(
+ +

)T
+ e

( )T
max e

2(
+ +

)T
+ ,e

2( )T

( )  
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 Therefore, the boundary corrector method has the same 

exponential rate   e
(2

+ +
)T

+  +   e
(2 )T

 as the solution of 

Theorem 4.1 with d+ = d  = 2.  

IV.4. Length of Approximation Intervals  

 Following the proof of Theorem 4.1 it becomes necessary 

that the pair (T+, T ) satisfies the estimate  

  

e +
T

+ + e
T

(r(
+
,T

+
) + r( ,T )

.  (26)  

 Now we derive sufficient conditions for (26). Let  > 0, 

+,   , + < | +| < 0 and  < | | < 0 be given and 

define (0, T) = 1 + T and ( , T) = min(1 + 1/| |, 1 + T) 

for   0. Then we see that r( , T) < e
| |T

 ( , T) and that 

(26) holds for each pair (T+, T ) which satisfies  

  
(e +

T
+ + e

T
)(e

|
+

|T
+ (

+
,T

+
) + e

| |T
( ,T )) .   (27)  

 The estimate (27) is satisfied if 

  
+
T

+
+ | |T + ln( ( ,T ))

4
,  (28) 

  

T + |
+

|T
+

+ ln( (
+
,T

+
))

4
,  (29) 

  

(
+
+ |

+
|)T

+
+ ln( (

+
,T

+
))

4
,  (30) 

  

( + | |)T + ln( ( ,T ))
4

,   (31) 

hold. First we choose minimal 
  
T̂

+
, 

  
T̂   + so that (30) and 

(31) hold for all T+ > 
  
T̂

+
 and T  > 

  
T̂ . Then we define  

  

Q
+
(T ) =

| |T + ln( ( ,T )) ln
4

+

,  

  

Q (T
+
) =

|
+

|T
+

+ ln( (
+
,T

+
)) ln

4
 

and obtain that (28) and (29) hold in the domain (see gray 

area in Fig. (1))  

    

D( ,
+
,

+
, , )

= {(T ,T
+
) |T

+
max(T̂

+
,Q

+
(T ))

and T max(T̂ ,Q (T
+
))}.

 

 If +  0,   0 and T+ > 1/| +|, T  > 1/| |, the 

functions Q+ and Q  are linear with slopes | |/| +| and 

| +|/| |. Therefore + < | +| and  < | | implies that 

| +| · | | < +  and hence | +|/| | (the slope of Q ) is less 

than 

 

|
+

|

| |
(the slope of 

  
Q

+

1
). Thus Q  and 

  
Q

+

1
 intersect and 

  D ( , +, +, , )  
 
0 . Therefore   D ( , +, +, , )  

D( , +, +, , )   
 
0 . In particular, for a  (| |/| +|, 

| |/| +|) there exists some  T  with (aT, T)  D( , +, +, 

, ) for all T >  T . Similar results hold for + = 0 or  = 

0 by using definition of Q+ and Q . If + = 0, then Q (T+) = 

[ln(1 + T+)  ln( /4)]/| | and for T+ large also T  > Q (T+) 

have to be large. Nevertheless, in this case one might choose 

a  (| |/| +|, ). Analogously on may choose a  (0, 

| |/| +|) if  = 0. Summarising, we obtain the following 

Lemma:  

Lemma 4.7. Let  > 0, +,    and + < | +|,  < 

| |. Then (26) is satisfied for all (T+, T )    D ( , +, +, 

, )  
 
0 .  

Remark: If I+  I  is defined as in the remark on page 6 then 

the set   D  ( , +, +, , ) has a sufficiently large 

intersection with I+  I . Since the error is of the form 

 C
+e +

T
+  +  C e

T  
choosing (T+, T ) = (T / +, T) implies 

+T+ = T  and | |/| +|  (| |/| +|, | |/| +|) is always 

satisfied. By this observation, it is not convenient to fix one 

interval length an enlarge the other one.  

V. THE LORENZ SYSTEM  

 In this section we apply the method and our theoretical 

results to the Lorenz system  

 
   
x

1
 = (x2  x1), 

 
   
x

2
 = rx1  x2  x1x3, 

 
   
x

3

  
= x1x2  bx3. 

 We detect a point to periodic connecting orbit plotted in 

Fig. (2) and Fig. (3) and continue this connecting orbit by 

varying the parameter  to get Fig. (4). To apply the results 

of this paper we solve the boundary value problem.
5 

 

5
We use the collocation boundary value solver Colcon and its version for 

parameter continuation Colpar from Bader and Kunkel [30]. 

Fig. (1). Typical diagram for   D ( , +, +, , ) with  = 0, +  0.  

T

T

T+T̂+

+ T+

D (ε,β  ,Δ  ,β  ,Δ  )

^

~
++

1Q    (T )
+ +

Δ
Δ

Q  (T )+
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x Tf (x,r; ,b)

y Tf ( y,r; ,b)

z + f (z,r; ,b)

x(0) z(0)

( y(2), )

y(2) y(3)

V
+
(x(3) y(3))

V z(3)

= 0.  

 

Fig. (2). Approximation of a point to periodic connecting orbit in 

the Lorenz system with parameters  = 10 and b = 8/3. 

Fig. (3). The first and third component of the connecting orbit (—) 

and the periodic orbit (--) in the rescaled version.  

 We truncate the scaled solution on the interval [0,3], such 

that we compute three periods of the periodic orbit. The 

periodic orbit is fixed at t = 2 and t = 3 by y(2) = y(3) and a 

simple phase fixing function  (y(2), ) = y1(2) .  

 The boundary value solver restricts us to compute on the 

interval [0,3] even for the first part z of the connecting orbit. 

Thus we also scale the first part by a constant . At r = 24.0 

the “unstable eigenvalue” of 0 is 10.1365 and the “stable 

Floquet multiplier” of the periodic orbit is 0.93 · 10
5 

. This 

yields for the systems scaled by  = 2/3 and the period  T    

0.677167 roughly similar exponents +   7.845 and    

6.76 for this scaled system.  

 

Fig. (4). Parameter-space r– . Branch of point to periodic 

connecting orbits. 

Remark: For the boundary value solver it is essential to have 

an appropriate initial approximation for the solution. By 

applying the strategy in [10] we get such an initial 

approximation of a point to periodic connecting orbit. We 

approximate the “first part” (a solution in the unstable 

manifold of 0 which intersects the hyperplane {(0, x2, x3)|x2, 

x3  } at t = 0) for different parameter values r and define 

an approximation of the intersection points which is linear in 

r. For the “second part” (a solution in the stable manifold of 

the periodic orbit) we compute a solution which has its initial 

value on the linearisation (mentioned above) and which is 

asymptotic to the periodic orbit. This is a solution with a 

relatively large error at t = 0 and it does not allow for 

continuation, but it is a sufficiently accurate first guess for a 

solution of (32). Even if the orbits look alike, (figure 6 in 

[10]) is this initial guess whereas Fig. (2) is the result of our 

method.  

 The value  = 6.5043 as well as the matrices V+, V   
2,3 

for the asymptotic boundary conditions are defined by 

the initial approximation and the linearisation of the periodic 

orbit.  

 We apply the method with fixed matrices V+, V   
2,3

 

so that we apply Theorem 4.1 to this scaled system with + = 

 close to max( +, ), + =  = 0 (as in Corollary 1) and 

with d+ = d  = 1. Thus we get error estimates with exponents 

+T+ = T  and with T+ = T  due to the scaling of the 

system. An implementation of the Lorenz system with 

simultaneous parameter dependent computation of matrices 

V+, V   
2,3

 satisfying A6* and therefore with exponent 

2 +T+ and 2 T  for the error estimates is provided e. g. in 

[5, 7, 11].  

 As result (32) we get an approximation for the unknown 

parameter r 24.05803, the unknown period  T  0.677167 

and initial solutions for the “first part” of the connecting 

orbit z(t)  
3 

, for the “second part” x(t)  
3 

and for the 

periodic orbit y(t)  
3 

.  

 The phase portrait is plotted in Fig. (2) and in Fig. (3) we 

plot the first and third component of the connecting orbit (–) 

and the periodic orbit (--) in the rescaled version, such that 
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  x  = x(·/ T ),   z  = z( · / ) and 
  
y  = y(·/ T ) for t > 0 and 

  
y  = 

y(· / T
 
+ 3) for t < 0. Parameter continuation with respect to 

 yields a branch of point to periodic connecting orbits. In 

Fig. (4) we plot the pairs of parameters (r, ) corresponding 

to these point to periodic connecting orbits. 

CONCLUDING REMARKS  

 We have developed error estimates of a computational 

method for a general type of a connecting orbit which 

includes most of the common connecting orbits and we 

provided a detailed numerical analysis framework for 

different connecting orbits. Practical implementations of 

several examples are provided in [5-7, 11]. These 

implementations include a smooth parametric computation 

of the limiting orbits and the boundary matrices.  

 Connecting orbits which converge, but not with an 

exponential rate (in our notion this means  = 0) are not 

covered by our theory. The case of a homoclinic connecting 

orbit of a semi-hyperbolic equilibrium is analysed in [28, 

31].  

 It seems straightforward to transfer the results of this 

paper from the case with two subproblems to the case with a 

finite number of subproblems.  
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