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1. INTRODUCTION 

 We propose a new class of one-step numerical methods 
for solving stiff ordinary differential equations. These meth-
ods employ the Jacobian of a differential system and, in dis-
tinction from Rosenbrock methods [1], the square of Jaco-
bian is also involved in their formulas. The first two one-
stage methods of this kind were reported by S.S. Filippov 
and M.V. Bulatov (Conference on Scientific Computation, 
Geneva, Switzerland, June 26-29, 2002, p. 26); see also [2].  
The term ‘ABC-schemes’ for such methods was suggested 
later in [3]. 

 In Section 2 one-stage ABC-schemes are defined and 
some results obtained for them are presented. Section 3  
contains several examples of one-stage ABC-schemes.  
Multistage ABC-schemes are introduced in Section 4. Two 
examples of two-stage ABC-schemes are given in Section 5. 
Some results of a numerical experiment with ABC-schemes 
compared with those obtained by the use of implicit Runge-
Kutta methods are presented in Section 6. 

2. ONE-STAGE ABC-SCHEMES 

Definition 1 

 A one-stage ABC-scheme for numerical integration of a 
Cauchy problem for an autonomous system of n ordinary 
differential equations 

y (x) = f (y(x)),       y(x0 ) = y0                             …           (1) 

is defined as follows: 

(I + Ahfy + Bh
2 fy

2 )[y1(h) y0 ] = (I +Chfy )h f     …           (2) 

 Here, A, B, and C are the coefficients that determine a 

particular method, y1(h)  is the desired numerical solution 

after one step of integration with the step size h , y(x) and  
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f (y) are n-dimensional vector functions, fy  is the Jacobian 
matrix, and I  is the identity matrix. We consider the first 
step of integration as a representative one for the subsequent 
steps and write f , fy , ...  without arguments for f (y0 ),  
fy (y0 ), ...  . 

The following statements for one-stage ABC-schemes can be 
easily proved in standard way (see e.g. [4] and [5]). 

Theorem 1 

 The convergence order of methods (2) is not less then 
one at any choice of real coefficients A, B, and C. 

Theorem 2 

 The order of methods (2) equals two, iff 

C = A +
1

2
. 

 In this case, the principal error term is equal to 

y(x0 + h) y1(h) =
h3

3!
( fyy ff + fy

2 f ) , 

where 

= 1+ 3A + 6B               …         (3) 

and  

fyy ff =
2 fi
y j yk

f j fk
j , k=1

n

, 

fy
2 f =

fi
y j

f j
yk
fk

j , k=1

n

 

for 
 
i = 1,K ,n.  

Theorem 3 

 The stability function of ABC-schemes (2) is given by 

R(z) =
1+ (1+ A)z + (B +C)z2

1+ Az + Bz2
. 
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Theorem 4 

 The ABC-schemes (2) of order two are A-stable, iff  

A
1

2
,     B

A

2

1

4
. 

Theorem 5 

 The ABC-schemes (2) of order two are L-stable, iff  

B = A
1

2
. 

 Furthermore, some important results for linear autono-
mous systems follow immediately from the above theorems. 

Corollary 1 

 ABC-schemes (2) approximate solutions to linear systems 
(1) having constant coefficients with order three, iff  

B =
A

2

1

6
,     A

1

2
. 

 In this case, Eq. (3) yields 0= , and we have a family 
of methods depending on the single parameter A: 

I + Ahfy
A

2
+
1

6
h2 fy

2 (y1(h) y0 ) = hf + A +
1

2
h2 fy f     (4) 

with the principal error term 

y(x0 + h) y1(h) =
h4

4!
(1+ 2A) fy

3 f  

and stability function 

R(z) =
1+ (1+ A)z +

A
2
+
1
3
z2

1+ Az
A
2
+
1
6

z2
. 

These methods are A-stable for A 1 2 , and at A = 2 3  

the method is also L-stable. 

Corollary 2 

 With A = 1 2  method (4) takes the form 

I
1

2
hfy +

1

12
h2 fy

2 (y1(h) y0 ) = hf . 

 It gives fourth order approximation for the solutions of 
linear autonomous systems of differential equations. Its prin-
cipal term of local error is then equal to 

y(x0 + h) y1 (h) =
h5

5!

1

6
fy
4 f . 

 This method is A-stable with the stability function  

R(z) =
1+
1
2
z +

1
12

z2

1
1
2
z +

1
12

z2
. 

Remark 1 

 Solving linear system of algebraic equations (2) in its 

original form seems to be rather expensive. Indeed, in addi-

tion to ~ n3 / 3  multiplications and divisions that are needed 

for the LU- decomposition of the matrix in the left-hand side 

of Eq. (2), extra 3
n  multiplications are required for squaring 

a full matrix fy  of nth order, i.e. totally ~ 4n3 / 3  multiplica-

tive operations. However, it is possible to avoid matrix mul-

tiplication by decomposing the matrix in the left-hand side of 

Eq. (2) as follows: 

I + Ahfy + Bh
2 fy

2
= (I + Fhfy )(I +Ghfy )   

where the new coefficients F and G are real or complex 

numbers depending on the values of A and B. In this case, 

only two LU- decompositions of the matrices (I + Fhfy )  and 

(I +Ghfy )  are needed, i.e. totally ~ 2n3 / 3  multiplicative 

operations. Moreover, the amount of arithmetical operations 

can be once more halved, if we confine ourselves with the 

choice B = A2 / 4 , because in this case F = G = A 2 , and 

only one LU- decomposition is needed (‘cheap’ ABC-

schemes). 

 Fig. (1) illustrates some essential results obtained for the 

one-stage ABC-schemes of order 2. Region A contains all 

pairs of coefficients (A, B) corresponding to A-stable meth-

ods (Theorem 4). The thick line L indicates L-stable methods 

(Theorem 5). The dashed line is the locus of all the methods 

(4) with = 0  (Corollary 1). The dotted parabola 

B = A2 / 4  represents the ‘cheap’ ABC-schemes (Remark 1). 

The examples from the next section are indicated by small 

circles with corresponding numbers. 

3 EXAMPLES OF ONE-STAGE ABC-SCHEMES 

 Each of the examples given below is indicated in Fig. (1) 
by a small circle with the number of the corresponding  
example. 

Example 1 

 The choice A = 1 2  and B = C = 0  gives an A-stable 

method of the form 

I
h

2
fy [y1(h) y0 ] = hf  

with 21/=  in the principal term of the local error and 

the stability function  

R(z) =
1+
1
2
z

1
1
2
z

 

 Actually, this is a Rosenbrock type method, though it is 
not mentioned in [1]. 

Example 2 

 Now let us set A = 1 , B = C = 1 2 . In this case, we 
get an L-stable method 
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I hfy +
h2

2
fy
2 [y1(h) y0 ] = hf

h2

2
fy f  

 Eq. (3) gives = 1  for this method, and the stability 
function of it is given by 

R(z) =
1

1 z +
1
2
z2

 

 The method was derived in other way and discussed in 
[2].  

Example 3 

 The choice A = 2 3 , B = C = 1 6  gives the L-stable 
method 

I
2h

3
fy +

h2

6
fy
2 [y1(h) y0 ] = hf

h2

6
fy f  

with 0=  in the principal term of local error. Therefore, 
this method is a member of the family defined by Eq. (4). Its 
stability function has the form 

R(z) =
1+
1
3
z

1
2
3
z +
1
6
z2

           

It was also mentioned in [3].  

Example 4 

 The choice A = 1 2 , B = 1 12 , and C = 0  gives an A-

stable method described in Corollary 2 (see above). The cor-

responding value of  from Eq. (3) is equal to zero. This 

method is also a member of the family described by Eq. (4). 

It gives fourth order approximation for the solutions of linear 

autonomous systems of differential equations.  

Example 5 

 With the choice B = A2 / 4 , we get ‘cheap’ ABC-

schemes that minimize the costs of solving the system  

of linear algebraic equations (2) (see Remark 1 above).  

Then Eq. (2) takes the following form for the second order 

methods: 

I +
1

2
Ahfy

2

[y1(h) y0 ] = hf + A +
1

2
h2 fy f  

 Setting A = 2 + 2 0.586  gives an L-stable method. 

The stability function of this method is 

R(z) =
1+ ( 2 1)z

1 1
2
2

z

2    

 Eq. (3) yields the value of  equal to 4 3 2 0.243 . 

Example 6 

 Another example of a ‘cheap’ ABC-scheme gives the 

choice A = 1 3 1/2 1.577   

 This time the value of  is equal to zero. This means 

that the method is also a member of the family described  

by Eq. (4), and it gives third order approximation for  

the solutions of linear autonomous systems of differential 

equations.  

4. MULTISTAGE ABC-SCHEMES 

Definition 2 

A multistage ABC-scheme for numerical integration of a 

Cauchy problem for an autonomous system of n ordinary 

differential equations (1) is defined as follows: 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A-stable and L-stable one-stage second order ABC-schemes. 
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(I + Aihfy + Bih
2 fy

2 )[ui (h) y0 ]

= ( i I +Cihfy )hf (ui 1(h)) (i = 1,K.s)
  …   (5) 

y1(h) = iui (h)
i=1

s

 

i = 1
i=1

s

 

 Here, Ai , Bi , Ci , i , and i  are the coefficients that 

determine a particular method, s  is the number of stages 

(s 1) , y1(h)  is the desired numerical solution after one  

step of integration with the step size h  ( y1(h)  is the weighted 

sum of partial solutions ui (h)  obtained on the ith stage, 

u0 (h) y0 ); y(x)  and f (y)  are n-dimensional vector func-

tions, fy  is the Jacobian matrix, and I  is the identity matrix. 

We consider the first step of integration as a representative 

one for the subsequent steps and write f , fy , ...  without  

arguments for f (y0 ),  fy (y0 ), ...  . 

 Note that the number of coefficients that define a particu-

lar multistage ABC-scheme in the case s 2  is substantially 

more then for one-stage ABC-schemes. This fact enables one 

to construct methods of order higher then 2, but it is also the 

cause of difficulties that encounter in the analysis of order 

conditions and stability functions. 

Theorem 6 

 Stability functions of multistage ABC-schemes can be 

written in the following form: 

R(z) = iRi (z)
i=1

s

 

 The stability functions Ri (z) of sequential stages are 

evaluated recursively: 

Ri (z) = 1+
Pi (z)

Qi (z)
Ri 1(z)          

 
(i = 1,K , s)  

where 

R0 (z) = 1 ,     Pi (z) = i z +Ciz
2

,     Qi (z) = 1+ Aiz + Biz
2

 

 The proof of this theorem is straightforward. One has  

to apply the formulas from Definition 2 to Dahlquist test 

equation yy =' , where  is a complex number (see e.g. 

[5]), and then put zh = . 

5. EXAMPLES OF TWO-STAGE ABC-SCHEMES 

 The gain of using ‘cheap’ ABC-schemes (see Remark 1 

above) becomes still more in the case of multistage ABC-

schemes. If we put Ai = A , Bi = B  for all stages and assume 

B = A2 4 , then only a single LU-decomposition will be 

needed on each step of integration, since the matrix in the 

left-hand side of Eq. (5) is the same for all stages. For this 

reason, we confine ourselves with two examples of ‘cheap’ 

two-stage ABC-schemes. 

Example 1 

 The choice 
1 = 2 = 1 , 

1 = 2 / 3 , 
2 = 1 / 3 , AAA ==

21
, 

B1 = B2 = A
2 / 4  gives a family of two-stage third order 

methods depending on a single parameter A. In this case, 

C1 =
3

4
A2 +

1

2
A         C2 =

3

2
A2 + 2A +

1

2
 

 The stability function at z  takes the form 

R( ) = 5 +
4

A2
+
4

3A3
 

 These methods are A-stable at the values of A between  

approximately 0.75  and 0.4 . The value A 0.59   

corresponds to an L-stable method. 

Example 2 

 The choice 
1 = 1 / 3 , 2 = 1 , 

1 = 0 , 2 = 1 , 

A1 = A2 = A , B1 = B2 = A
2 / 4  gives again a family of two-

stage third order methods depending on a single parameter A, 

but in this case 

C1 =
1

4
A2 +

1

2
A +

1

2

3

6
        C2 = A +

1

2

3

3
 

and the stability function at z  now takes the form 

R( ) = 1+ 8
1

A
+
3

2

3

3

1

A2
+
1

2

3

3

1

A3
+
5

6

1

2
3

1

A4
 

 Further results for these methods will be presented  

elsewhere. 

6. NUMERICAL EXPERIMENT 

 For our numerical experiment, we have chosen a particu-

lar case of the singularly perturbed test problem suggested 

by Kaps [6], namely, the initial value problem 

y1(x) = (2 + 1 )y1(x)+
1y2
2 (x),

y2 (x) = y1(x) y2 (x) y2
2 (x),

y1(0) = y2 (0) = 1, 0 x 1 .

 

The exact solution of this problem y1(x) = e
2x , y2 (x) = e

x
 

does not depend on . However, the problem becomes very 

stiff, as 0 . 

We compare the results of numerical integration performed 

with the use of four methods: 

- method 1 is the one-stage ABC-scheme from Example 3 
of Section 3; 

- method 2 is the implicit midpoint rule (one-stage Gauss 
method [4, 5]); 

- method 3 is the two-stage ‘cheap’ ABC-scheme from 
Example 1 of Section 5 with A = 0.59 ; 

- method 4 is the two-stage Gauss method [5]. 
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Methods 1, 2, 3, and 4 have classical order 2, 2, 3, and 4, 

respectively. These methods were used for the numerical 

integration of the above problem with several diminishing 

values of  and with two constant values of step size, 

h = 1 / 40  and h = 1 / 80 . Table 1 contains the following val-

ues:  

|| e80 ||2  is the Euclidean norm of the absolute value of error 

for h = 1 / 80 at the endpoint of the integration interval; 

pa = log 2 (|| e40 ||2 / || e80 ||2 )  is the actual order of accuracy 

estimated using the results of integration with 401/=h  and 

h = 1 / 80 . In the case of methods 1 and 3 the computation 

was performed using double precision. In the case of meth-

ods 2 and 4 the data (evaluated with comparable precision) 

are taken from Table 7.5.2 in [7]. 

 Observe that, for small values of , ABC-schemes  

give better results than implicit Runge-Kutta methods.  

Note that the implicit Runge-Kutta methods employ Newton 

iterations, i.e. they are more expensive then the ABC-

schemes. One can clearly see the phenomenon of lowering of 

the actual order of accuracy at small values of  for the 

methods 3 and 4, which is in accordance with the theory of 

B-convergence [5, 7]. 
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Table 1. The Comparison of Results Obtained with the Use of ABC-Schemes and Gauss Methods 

 Method 1 Method 2 Method 3 Method 4 

 || e80 ||2  pa  || e80 ||2  pa  || e80 ||2  pa  || e80 ||2  pa  

10 – 1 6.5·10 – 6 2.1 1.1·10 – 5 2.0 2.2·10 – 7 2.9 6.3·10 – 10 4.0 

10 – 2 9.5·10 – 6 2.3 1.1·10 – 5 2.0 1.6·10 – 6 2.7 4.8·10 – 9 4.0 

10 – 3 1.7·10 – 5 2.2 1.1·10 – 5 2.0 5.9·10 – 6 2.2 4.7·10 – 8 4.2 

10 – 4 2.1·10 – 5 2.0 7.6·10 – 6 2.8 8.1·10 – 6 2.0 6.1·10 – 7 4.6 

10 – 5 2.1·10 – 5 2.0 2.2·10 – 5 2.4 8.3·10 – 6 2.0 6.9·10 – 6 2.5 

10 – 6 2.1·10 – 5 2.0 3.0·10 – 5 2.0 8.3·10 – 6 2.0 1.1·10 – 5 2.0 

10 – 7 2.1·10 – 5 2.0 3.0·10 – 5 2.0 8.3·10 – 6 2.0 1.1·10 – 5 2.0 

10 – 8 2.1·10 – 5 2.0 3.0·10 – 5 2.0 8.3·10 – 6 2.0 1.1·10 – 5 2.0 


