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Abstract: A second order elliptic problem is investigated in domains with complex geometry. The sequence of nonnested 

finite element triangulations is generated by higher order curved elements. Convergence analysis of the full nonnested 

multigrid algorithm is done on the basis of a pure isoparametric approach. A numerical example supporting the considered 

theory is presented.  
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1. INTRODUCTION 

The reaction-diffusion equation in curved domains is an 
object of interest in our investigation. Most of the authors 
considering such problems analyze various methods on the 
basis of piecewise linear finite elements [1-7]. Such elements 
are applicable in the case of polygonal domains with simple 
geometry. Curved domains with complex geometry needs 
higher order elements and isoparametric or superparametric 
approach [8]. On the other hand multigrid method is the 
most powerful tool for solving finite element equations. 

There are various reasons to obtain non-nested finite 
element spaces when solving elliptic boundary value 
problems. Mixed finite element formulations, some C

1
 finite 

elements [4], non-quasi-uniform [6] or degenerate [7] 
triangulations, noninherited bilinear forms [1] tend to 
generate non-nested multigrid methods. The application of 
finite element methods for solving problems in curved 
domains requires isoparametric approach. Usually isopara-
metric finite element spaces are non-nested [9]. 

M. Jung and T. Todorov considered a two-level method 
for the problem of interest and proved the stability of a 
intergrid transfer operator [9]. Such results are a necessary 
but not a sufficient condition for convergence of a multigrid 
method. Moreover various multigrid methods can be con-
structed using the same two-level method. In order to 
conclude convergence for the full multigrid algorithm in the 
nested case the above could meet aptly the requirement 
stated by means of employing recursion properties. But in 
the case of curved boundaries convergence of the full multi-
grid algorithm depends on the properties of the isoparametric 
finite element spaces. 

In the present paper multigrid extension of the two-level 
method obtained by M. Jung and T. Todorov [9] is inves-  
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tigated and convergence results are found. A rigorous proof 
of optimal rate of convergence for the full isoparametric 
non-nested multigrid algorithm is done. The analysis is 
completed for all degree of trial functions greater than one. 
Asymptotic rate of convergence is computed numerically 
thereby confirming the main result. 

2. SETTING OF THE PROBLEM 

Let  be a simply connected bounded curved domain in 

  R
2

, with Lipschitz-continuous boundary . Consider the 

Dirichlet problem for the nonhomogeneous reaction-

diffusion equation  

(P) :

Find a function u such that

(a(x) u)+ b(x)u = f in ,

u = 0 on
,
 

where the coefficients 
  
a(x) , 

  
b(x)  and the right-hand side 

  
f (x)  are sufficiently smooth functions. Assume that there 

exist positive constants 
  
a,  

  
a ,  

 
b  and 

  
b ,  such that  

  
a a(x) a , b b(x) b , x .  

As usual, we denote the real Sobolev space for 

nonnegative integers  k  and 
  
p = 2  by 

  
H

k ( ) . The space 

  
H

k ( )  is provided with the norm 
   k ,  and the 

seminorm 
  
| |

k , . Define the space  

  
H

0

1( ) = {v H
1( ) | v = 0 on }.  

The weak formulation of problem ( P ) is given by  

 

(P ) :
Find a function u V = H0

1( ) that satisfies

a(u,v) = ( f ,v), v V
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with

  
a(u,v) = a(x) u v + b(x)uv{ }dx and ( f ,v) = fvdx.  

3. ISOPARAMETRIC FINITE ELEMENT DISCRETI-

ZATIONS 

Let 
 0

 be an initial triangulation of the domain  with 

triangular finite elements of degree   k 2 . Normally, curved 

elements are used only in the boundary layer. The domain 

 0
 corresponds to the initial triangulation. Dividing each 

element of 
 n

   n 0  into   k
2

 finite elements of degree  k  we 

obtain the triangulation 
  n+1

. The approximate domains 
 n

 

correspond to the triangulations 
 n

. Denote 
  n

=
n

. 

Obviously 
  n 1

/
n
 and 

 n
/ . Let 

  
N

n
 be the set of all 

nodes of the triangulation 
 n

 and 
    
N

n
= N

n
\ N

n 1
. The sets 

of the nodes of two consecutive triangulations are connected 

by 
   
N

n 1
N

n
. The nodes in 

   
N

n
 could not belong to 

  n 1
. For more details see M. Jung and T. Todorov [9]. 

Define a finite element space 
  
V

n
 associated with a 

triangulation 
 n

 by  

 
   
V

n
= {v C(

n
) | v

|K
P

K
, K

n
}.  

Let 
  n

:
n

 be the map defined by Lenoir [10]. 

The map 
 n

 is notable with the fact that the distance from 

any point on  to the closest point on 
 n

 is 
  
O(h

n

k+1)  at 

most when the boundary is smooth enough. Moreover 
 n

 is 

equal to the identity map on elements, which do not belong 

to the boundary layer. 

Introduce the approximating bilinear forms and the 
  
L

2
-

scalar product in 
  
V

n
 by  

 

    
a

n
(u,v) =

n

(a
n
)(x) u v + (b

n
)(x)uv{ }dx, u,v H

0

1 (
n
),  

 
   
(u,v)

n
=

n

uvdx, u,v V
n
.  

Now we are able to formulate the problem 
   
(P

n
)  

approximating 
  
(P)   

  

(Pn ) :
Find a function un Vn that satisfies

an (un ,v) = ( f n ,v)n =
def

Gn (v), v Vn

 

4. MULTILEVEL SOLUTION METHOD 

Consider the eigenpairs 
  
(

i

(n) ,
i

(n) )  of the problem  

   
a

n
(

i

(n) ,v) =
i

(n) (
i

(n) ,v)
n
, v V

n
,          (1) 

    
i = 1,2,…, N

n
= dimV

n
.  

Without loss of generality we suppose that the 
eigenfunctions are normalized by the following way  

  
(

i

(n) ,
j

(n) )
n

=
ij
, a

n
(

i

(n) ,
j

(n) ) =
i

(n)

ij
,  

where 
 ij

 is the Kronecker symbol. For each  v  in 
  
V

n
 we 

have the following representation 
  
v =

i=1

N
nc

i i

(n) .  Define the 

norm 
  
||| |||

s,n
 by  

  

||| v |||
s,n

2 =
i=1

N
n

c
i

2

i

(n)( )
s

, s 0.  

Obviously,  

   
||| |||

0,n
= || ||

0,
n

and ||| |||
1,n

= ||| |||
n

|| ||
1,

n

,  

where 
  
||| |||

n
 is the usual energy norm. Denote the intergrid 

transfer operator [9] by 
    
I

n
: V

n 1
V

n
. The auxiliary 

operator 
    
Q

n 1
: V

n
V

n 1
 introduced by  

   
a

n 1
(Q

n 1
w,v) = a

n
(w, I

n
v), v V

n 1
, w V

n
 

defines the coarse grid correction in the nonnested multigrid 

method. Compile the coarse-level residual problem  

 

(Rn 1) :
Find a function Vn 1 such that

an 1( ,v) = Gn (Inv) an (w
( ), Inv) v Vn 1,

 

for some 
   
w

( )
V

n
. Denote the full multigrid solution 

obtained by  r  iterations of the  n -th level scheme (2) with 

initial guess 
  
I

n
û

n 1
 by 

  
û

n
.   

The  n -level algorithm 
  
(n 1) .  

For   n = 0 , solve 
  
(P

0
)  by any method. 

obtain 
  
u

0
 

set 
  
û

0
= u

0
  

For   n > 0  do the following 

set 
  
u

[0]
= I

n
û

n 1
 

For   i = 1  to r do 

set   w
(0) = u

[i 1]
 

(i) perform  smoothing iterations with the initial guess 

  w
(0)

  

   
(w

( j )
w

( j 1) ,v)
n

=
n

1(G
n
(v) a

n
(w

( j 1) ,v)), v V
n
,         (2) 

 
   
j = 1,2,…, , where 

 n
 is the largest eigenvalue of the 

problem (1). 

(ii) Solve the residual problem 
   
(R

n 1
)  approximately by 

means of 
 
p  iterations of the 

  
(n 1) st-level scheme starting 

with the initial guess zero for obtaining an approximate 

solution . 

(iii) Compute the new iterate   w
( +1)

 by  

 
  
w

( +1) = w
( )

+ I
n

.  

set   u
[i] = w

( +1)
 

next  i  

obtain 
  
û

n
= u

[r ]
 

next  n . 
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5. PRELIMINARY RESULTS 

Describe some hypotheses, which are necessary for the 
convergence analysis. 

H1 The boundary  is piecewise   C
k+1

,   k 2 . 

H2 All nodes from 
  
N

n n
 belong to . 

H3 The triangulations 
 n

 consists of isoparametric finite 

elements of degree   k 1 in the boundary layer and straight 

elements in the rest of 
 n

. 

H4 The triangulations 
 n

 are  k -regular in the sense of 

Ciarlet and Raviart [11]. 

H5 The weak solution 
  
u H

k+1( ) . 

Lemma 1 [9, M. Jung and T. Todorov]. Let hypotheses H1-
H4 be fulfilled, then there exists a constant 

 
[0,1)  such 

that the inequality  

   

k
h

n 1

h
n

k + , k 2, n N                       (3) 

holds for any sufficiently small 
  
h

n 1
.  

The next theorem certifies the convergence of the two-

level method.  

Theorem 1 [9, M. Jung and T. Todorov] Suppose that 

conditions H1-H5 are satisfied and 
  
p > 1  be any integer. 

Then there exist constants  1  and 
 

(0,1)  independent 

of the level number  n , such that  

 
  
||| u

n
w

( +1) |||
n

||| u
n

w
(0) |||

n
 

if  

 
  
||| |||

n 1

p ||| |||
n 1

.  

6. CONVERGENCE OF THE FULL MULTIGRID 

ALGORITHM 

[9, Theorem 2] assures the stability of the intergrid 

transfer operator 
 
I

n
. Denote the constant in this theorem 

when   s = 1 by 
 
C

n
. The convergence  

   

n n 1( ) \
n n 1( )

n

 

leads to 
 

I
n

I

n
, where  I  is the identity operator. 

From the proof of [9, Theorem 2] and the properties of 

maps 
 n

 it follows that 
 

C
n

I

n
. Since the sequence 

  
{C

n
} is 

bounded there exists an exact upper bound 

  
C = max

i=1,2,...,n
C

i
.  Satisfying the conditions of Theorem 1 

we can assert that there exists a constant  C  depending on 

the weak solution such that  

 
   
||| u

n
u

n
|||

n
C(u)h

n

k , n = 0,1,2,3,... .        (4) 

Using the recurrence formulae we obtain an optimal 
convergence rate for the full multigrid algorithm, which is 
the sense of the next theorem. 

Theorem 2 Assume that the hypotheses H1-H5 hold, the 

number of iterations 
 
p  for solving the coarse-level residual 

problem fulfils 
  
1 < p k 2

1  and the number of iterations  r  

for executing the  n -th level scheme satisfies 
  

r
< 1.  Then  

 
   
||| u

n
û

n
|||

n
< h

n

k
   (5) 

and  

 
   
||| u

n
û

n
|||

n
< (1+ )h

n

k ,   (6) 

where  

 

  

= r 1+

1 r
and = (k + )k .  

Proof. The n-th level scheme (2) reduces the energy norm 
of the error in approximate solution by a factor of  per 
each iteration, i.e.  

 
  
||| u

n
û

n
|||

n

r ||| u
n

I
n
û

n 1
|||

n
.  

Obviously 
  
domI

n
 can be extended to the whole 

  
H

0

1(
n
)  

and then the results of [9, Theorem 2] will be true for all 

functions belonging to 
  
H

0

1(
n
) . 

Applying (4), Lemma 1, Theorem 1 and [9, Theorem 2] 
we get  

 

   
||| u

n
û

n
|||

n

r ||| u
n

u
n n

|||
n
+ ||| u

n n
I

n
u

n 1
|||

n
(  

             
  
+ ||| I

n
u

n 1
I

n
û

n 1
|||

n
)  

   
<

r
h

n

k
+ ||| I

n
(u

n n 1
) I

n
u

n 1
|||

n
+ ||| I

n
(u

n 1
û

n 1
) |||

n( )  

   
<

r
h

n

k
+ ||| I

n
(u

n n 1
u

n 1
) |||

n
+ ||| u

n 1
û

n 1
|||

n 1( )  

 
   
<

r
h

n

k
+ ||| u

n n 1
u

n 1
|||

n 1
+ ||| u

n 1
û

n 1
|||

n 1( )  

 
   
<

r
h

n

k
+ h

n 1

k
+ ||| u

n 1
û

n 1
|||

n 1( )  

 
   
<

r
h

n

k
+ h

n

k
+ ||| u

n 1
û

n 1
|||

n 1( ).  

Thus we obtain  

   
||| u

n
û

n
|||

n
<

r (1+ )h
n

k
+ ||| u

n 1
û

n 1
|||

n 1( ).         (7) 

Apply (7) we estimate  

   
||| u

n
û

n
|||

n
<

r (1+ )h
n

k
+

r (1+ )h
n 1

k
+ ||| u

n 2
û

n 2
|||

n 2( )

 
   
<

r (1+ )(1+ r )h
n

k
+

r ||| u
n 2

û
n 2

|||
n 2

 

   
<

r (1+ )(1+ r )h
n

k
+

r (1+ ) r
h

n 2

k
+ ||| u

n 3
û

n 3
|||

n 3( )

   

<
r (1+ ) 1+ r

+
r( )

2

h
n

k
+ ( r )2 ||| u

n 3
û

n 3
|||

n 3
.  

Performing the recursion with respect to  n  we complete 
the proof of (5) by  

   

||| u
n

û
n

|||
n
<

r (1+ ) 1+ r
+

r( )
2

+ ...+ r( )
n 1

h
n

k
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+( r )n 1 ||| u
0

û
0

|||
0

(1+ ) r
h

n

k

1 r .
 

It is necessary to use the triangle inequality  

 
   
||| u

n
û

n
|||

n
||| u

n
u

n
|||

n
+ ||| u

n
û

n
|||

n
 

in order to obtain the validity of (6).  

7. NUMERICAL EXAMPLE 

Let  be a quarter of the unit disc. Consider a problem  

 

   

(P ) :
u =

2xy

x
2
+ y

2
, x ,

u = 0, x

 

with the following exact solution  

  
u =

xyln (x
2
+ y

2 ).

4
 

Let 
 0

 be an initial triangulation of the domain , Fig. 

(1) with four quadratic triangular finite elements. 

Consequently we obtain triangulations 
 n

, see Fig. (2) 

  n = 1,2,3,4  with 
  
(2n+1)2

 elements and 
  
2(2n+1)2 3.2n+1

+1  

internal nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). An initial triangulation 
 0

 of the domain  by quadratic 

finite elements. 

 

We can reduce the error in approximate solutions by 

increasing the number of presmoothing iterations  or (and) 

by increasing the number of repetitions  r  of the two-level 

scheme. It is very complicated to find optimal connection 

between the latter parameters with respect to the total 

computational work. Therefore we confine to the case 

  r = 10 , 
  
p = 3  and  = 20 . We follow the idea of Andreev, 

Kascieva and Vanmaele [12] in order to obtain the 

approximate rate of convergence . 

Having in mind that the equality (3) can be strengthened 
in view of  

 

   

k <
h

n 1

h
n

k, k 2, n N  

for convex domains, we have  

 
Table 1 confirms the theoreticl results obtained in 

Theorem 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (2). A refined triangulation 
 1

 of the domain . 

 

Table 1. Approximate Rate of Convergence Obtained by 

Three Diffeerent Meshes 

  
||| û

3
I

3
û

2
|||

3
 0.0000238333 4 4 3 4

ˆ ˆ||| |||u I u  0.0000059082 

2 2 1 2
ˆ ˆ||| |||u I u  0.0001187984 3 3 2 3

ˆ ˆ||| |||u I u  0.0000238333 

 2.31746  2.01219 

 

8. CONCLUSION 

In this paper, we consider finite element discretizations 
of reaction-diffusion problems on two-dimensional curved 
domains with a Lipschitz-continuous boundary. The disc-
retization is constructed by means of higher order elements 
on a sequence of nonnested triangulations. Optimal conver-
gence rate is proved for the full nonnested multigrid algo-
rithm. The convergence theorem is considered in the case 
when the number of iterations for the coarse-level residual 
problem is chosen such that the cost of the computational 
work of one iteration step of the multigrid algorithm is 
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proportional to the number of unknowns. Numerical tests 
supporting the theory are presented. 
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