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Abstarct: Advection-diffusion equation with constant and variable coefficients has a wide range of practical and 

industrial applications. Due to the importance of advection-diffusion equation the present paper, solves and analyzes these 

problems using a new finite difference equation as well as a numerical scheme. The developed scheme is based on a 

mathematical combination between Siemieniuch and Gradwell approximation for time and Dehghan's approximation for 

spatial variable. In the proposed scheme a special discretization for the spatial variable is made in such away that when 

applying the finite difference equation at any time level (j + 1) two nodes from both ends of the domain are left. After that 

the unknowns at the two nodes adjacent to the boundaries are obtained from the interpolation technique. The results are 
compared with some available analytical solutions and show a good agreement. 
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1. INTRODUCTION 

 Advection-diffusion equation is one of the most 

important partial differential equations and observed in a 

wide range of engineering and industrial applications [1]. It 

has been used to decsribe heat transfer in a draining film [2], 

water transfer in soil [3], dispersion of tracers in porous 

media [4], contaminant dispersion in shallow lakes [5], the 

spread of solute in a liquid flowing through a tube, long-

range transport of pollutants in the atmosphere [6] and 

dispersion of dissolved salts in groundwater [7]. In the initial 

works while obtaining the analytical solutions of dispersion 

problems in the ideal conditions, the basic approach was to 

reduce the advection-diffusion equation into a diffusion 

equation by eliminating the advection term(s). It was done 

either by introducing moving coordinates see, Ogata Banks 

1969 [8]; Harleman and Rumer 1963 [9]; Bear 1972 [10]; 

Guvanasen and Volker 1983 [11]; Aral and Liao 1972 [12] 

and Marshal et al., 1996 [13]. Another direction is to 

transform advection-diffusion to diffusion equation only was 

by introducing another dependent variable see Banks and Ali 

1964 [14]; Ogata 1970 [15]; Lai and Jurinak 1971 [16]; 

Marin 1974 [17] and Al-Niami and Rushton 1977 [18]. 

Some one-dimensional analytical solutions have been given, 

see Tracy 1995 [19] by transforming the nonlinear 

advection-diffusion into linear one for specific forms of the 

moisture contents vs pressure head and relative hydraulic 

conductivity vs pressure head curves which allow both two-

dimensional and three-dimensional solutions to derived. 

Accurate numerical solution of the advection-diffusion  
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equation is usually characterized by a dimensionless 

parameter, called Peclect number. These results become 

increasingly difficult as the Peclect number increases due to 

onset of spurious oscillations or excessive numerical 

damping if finite difference [20] or finite element 

formulations are used [21]. Numerous innovative algorithms 

and methods can be found in the literatures [22-31]. In 

finding the analytical solutions many difficulties encountered 

such as the nonlinearities etc. also in the numerical solutions 

difficulties apear due to many reseaons and herein we will 

give two for such reseaons. Firstly, the nature of the 

governing equation, which includes first-order and second-

order partial derivatives in space. Secondly, it is vital to 

construct an appropriate mesh to obtain a better 

approximation to the problem. However, the construction of 

an appropiate mesh is not easy task and sometimes the 

problem can not be solved because the lake of mesh 

structure. In the present paper, the advection-diffusion 

equation with constant and variable coefficients is solved 

using a new scheme. The developed scheme is based on a 

mathematical combination between Siemieniuch and 

Gradwell approximation for time and Dehghan's 

approximation for spatial variable. The scheme also 

developed and based on a special discretization for spatial 

variable in such away that when applying the finite 

difference equation at any time level j +1( )  two nodes from 

both ends of the domain are left and by assuming all 

unknowns became known at the old time level j( ) , the new 

finite difference equation is applied at m 2  internal nodes 

of the domain, where m  are the total number of nodes inside 

the domain of interest. Then making use of interpolation 

technique to find the unknows at two internal nodes left. 

After that the unknowns at the two nodes adjacent to the 

boundaries are obtained from the interpolation technique. 

Four examples with known analytical solutions are presented 
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to test the validity of the new finite difference equation and 

its new scheme. The first three examples are of constant 

coefficients and are chosen such that different cases between 

the advection and diffusion parameters are used to show 

their affect on the solution. The fourth example is for 

advection-diffusion equation with variable coefficients. It 

was for one-dimensional advection-diffusion equation in a 

longitudal finite initially solute free domain and for 

dispersion problem. In this example the velocity of the flow 

considered spatially dependent due to inhomogenity of the 

domain. Results due to the present method agree well with 

the analytical solutions and can be extend to cover higher 

dimensional problems. 

2. MATHEMATICAL FORMULATION 

 In the present paper, the mathematical formulation for 

two different types of advection-diffusion equation will be 

presented. The first type is for advection-diffusion equation 

with constant coefficients while the second type is for the 

same equation but with variable coefficients. 

 Case (1): Advection-diffusion with constant coefficients: 

u

t
+

u

x
=

2u

x2
 (1) 

 With initial condition 

 
u x, 0( ) = f x( ) 0 x  (2) 

 And boundary conditions 

u x = 0, t( ) = g0 x( ) 0 < t T  (3) 

 
u x = , t( ) = g1 x( ) 0 < t T  (4) 

 Condition (3) or (4) may be replaced by: 

u x, t( )
x

= g2 x( ) 0 < t T  (5) 

 In equations (2-5) the functions f x( ) , g0 x( ) , g1 x( )  and 

g2 x( )  are known. 

 Case (2): Advection-diffusion with variable coefficients: 

 As we mentioned before, advection-diffusion equation 

can be found in different types of practical applications, and 

so the variable coefficients will have different meaning from 

application to another. Therefore, the mathematical 

formulation for advection-diffusion herein, will be for solute 

dispersion problem. In this problem, the medium is 

considered inhomogeneous, therefore the velocity is 

considered depend on the position variable. The 

mathematical formulation for such application will be as 

follow: 

C x, t( )
t

=
x

D x, t( )
C x, t( )
x

u x, t( )C x, t( )  (6) 

 With 

u x, t( ) = u0 1+ ax( )  (7) 

D x, t( ) = D0 1+ ax( )
2

 (8) 

 
C x, t( ) = 0, 0 x , t = 0  (9) 

C x, t( ) = C0 , x = 0 , t > 0  (10) 

 

C x, t( )
x

= 0, x = , t 0  (11) 

 In fact the mathematical formulation in both cases is the 

same, only two equations are added in the second case and 

given by equations (7) and (8). This difference comes from 

the nature of the dispersion problem that is both flow 

velocity and dispersion should satisfy Darcy's law, therefore, 

Atul in [30] added these two relations to ensure satisfication 

of Darcy's law. 

3. THE PROPOSED FINITE DIFFERENCE EQUATION 

 The scheme starts by using the Siemieniuch-Gradwell 

time difference formula as follow: 

u

t i,n

= A11 ui 1,n+1 ui 1,n( )+ B11 ui,n+1 ui,n( ) +

C11 ui+1,n+1 ui+1,n( )
 (12) 

 Next use the space difference formulas derived by 

Dehghan [29]: 

u

x i,n

= A21 ui+2,n ui,n( ) + B21 ui,n ui 2,n( ) +

C21 ui+1,n ui 1,n( )
 (13) 

 And 

2u

x2
i,n

= A31 ui+1,n 2ui,n + ui 1,n( ) +

B31 ui+2,n 2ui,n + ui 2,n( ) + C21 ui+1,n ui 1,n( )

  (14) 

 Substutiting equations (12-14) into equation (1) and re-

arrange according the time level, lead to: 

A11ui 1 + B11ui + C11ui+1( )
n+1

=

1ui 2 + 2ui 1 + 3ui + 4ui+1 + 5ui+2( )
n
 (15) 

 In which: 

1 = B21 + B31  (16) 

2 = A11 + C21 + A31  (17) 

3 = B11 + A21 B21 2 A31 2 B31  (18) 

4 = C11 C21 + A31  (19) 

5 = A21 + A31  (20) 

A11 = C11 =

2
t

x( )
2

t

x

4 t( )
 (21) 



A Numerical Algorithm for Solving Advection-Diffusion Equation The Open Numerical Methods Journal, 2012, Volume 4    3 

B11 =

2 +
t

x
2

t

x( )
2

2 t( )
 (22) 

A21 =

12
t

x( )
2 + 2

t

x

2

3
t

x
2

24 x( )
 (23) 

A31 =

t

x

4

8
t

x

2

12
t

x( )2

2

+ 8
t

x( )
2

6
t

x( )
2 x( )

2

 (24) 

B21 =

2
t

x

2

+12
t

x( )
2 + 3

t

x
2

24 x( )
 (25) 

B31 =

t

x

4

8
t

x

2

+12
t

x( )
2

2

2
t

x( )
2

6
t

x( )
2 x( )

2

 (26) 

C21 = ( )

t

x

2

+ 6
t

x( )
2 4

6 x( )
 (27) 

 The m 2( )  linear system of equations obtained from 

applying equation (15) at the time levels j +1( )  and j( ) , 

respectively. 

4. SOLUTION ALGORITHM 

 Suppose that the domain of the problem is divided into m 

internal points, see Fig. (1), then at each two successive 

times level apply equation (15), leads to a linear system of 

equations. 

 

Fig. (1). Grid distribution. 

 The new scheme can be stated as follows: 

1. Suppose that the domain  0 < x <  is divided into m  

internal nodes and numbered according to Fig. (1). 

2. At time level j( )  all temperature nodes should be 

known from previous time level and this represents 

the R.H.S. of equation (15). 

3. At time level j +1( )  apply the L.H.S. of equation 

(15) starting from node (2) and stop at node m 1( ) . 

4. Solve the linear system of equation resulted from 

steps 3 and 4. 

5. Use interpolation technique to find the temperature at 

the internal nodes 1 and m( ) . 

6. Repeat steps (2-5) up to the end of the time. 

5. RESULTS AND DISCUSSION 

 The proposed finite difference equation and the 

numerical scheme are tested for their validity to solve 

advection-diffusion with constant and variable coefficients. 

Three different examples for advection-diffusion with 

constant coefficients are solved to study the effect of the 

parameters  and  on the results obtained, then another 

two different examples the first one is a one-dimensional 

advection-diffusion equation with variable coefficients and 

the second one is a two-dimensional case problem. Let us 

start with the first three examples of constant coefficients to 

study the effect of the parameters  and  

 Problem (1): 1-D Advection-Diffusion with 

= 0.01& = 1.0  

 In this case problem, the constant coefficients appear in 

the advection-diffusion equation are = 0.01& = 1.0  

associated with initial and boundary conditions respectively, 

given by: 

u x, 0( ) = f x( ) = exp
x + 0.5( )

2

0.00125
 (28) 

u x = 0, t( ) = g0 x( ) =
0.025

0.000625 + 0.02t
exp

0.5 t( )
2

0.00125 + 0.04t
 (29) 

u x = 1, t( ) = g1 x( ) =
0.025

0.000625 + 0.02t
exp

1.5 t( )
2

0.00125 + 0.04t
 (30) 

 The exact solution is given by: 

u x, t( )=
0.025

0.000625 + 0.02t
exp

x + 0.5 t( )
2

0.00125 + 0.04t
 (31) 

 The problem is solved at different cases for space size 

step and time size step. In Fig. (2), the results for two 

different space size step and two different time step size step 

are shown. It is very clear that a good agreement between the 

analytical solution and the present numerical results with 

minimum error obtained, and the error becomes clear when 

using large size step for time and space. 

 Problem (2): 1-D Advection-Diffusion with 

= 1.0 & = 0.1  

 In this case problem, the constant coefficients appear in 

the advection-diffusion equation are = 1.0 & = 0.1  

associated with initial and boundary conditions respectively, 

given by: 
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u x, t( ) = 0.0  (32) 

u x = 0, t( ) = g0 x( ) = 300 0 < t T  (33) 

u x = 6, t( )
x

= g1 x( ) 0 < t T  (34) 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u(
x,

t)

Example (1)
u(x,t = 0.5)

Analytical solution

dx = 0.0125 and dt = 0.02

dx = 0.0125 and dt = 0.01

dx = 0.05 and dt = 0.02

dx = 0.05 and dt = 0.01

 

Fig. (2). Results of example (1). 

 In this case, the example is solved at three different time 

steps; 0.1, 1 and 3. The results are compared with the 

corresponding analytical solution as shown in Fig. (3). As it 

appears from the figure, a good agreement between the 

analytical solutions and the present results can be observed. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
x

0

25

50

75

100

125

150

175

200

225

250

275

300

u
(x

,t
)

Example (2)
u(x,t)

Alpha = 1.0
Beta = 1.0

Analytical at t = 0.1

Present at t = 0.1

Analytical at t = 1.0

Present at t = 1.0

Analytical at t = 3.0

Present at t = 3.0

 

Fig. (3). Results of example (2). 

 Problem (3): 1-D Advetion-Diffusion with 

= 1.0 & = 2.0  

 In this case problem, the constant coefficients appear in 

the advection-diffusion equation are = 1.0 & = 2.0  

associated with initial and boundary conditions respectively, 

given by: 

u x, t( ) = 0.0  (35) 

u x = 0, t( ) = a exp bt( ) 0 < t T  (36) 

u x = 6, t( ) = a exp bt + cx( ) 0 < t T  (37) 

u x, t = 0( ) = a exp cx( )  (38) 

 The analytical solution of this problem is given by: 

u x, t( ) = a exp bt + cx( ) , c =
±

2
+ 4 b

2
 (39) 

 The temperature variation against spatial variable and at 

different times are shown in Fig. (4). It is clear from the 

figure. that a linear damping is occurred and the error 

becomes large by inreasing the space and becomes clear at 

large times, but in all cases the error is acceptable and can be 

decreased by decreasing both space and time step size. 

0.00 1.00 2.00 3.00 4.00 5.00 6.00
x

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

u
(x

,t
)

Example (3)
u(x,t)

Alpha = 1.0
Beta = 2.0

Analytical at t = 0.5

Present at t = 0.5

Analytical at t = 1.0

Present at t = 1.0

Analytical at t = 2.0

Present at t = 2.0

 

Fig. (4). Results of example (3). 

 Problem (4): 1-D Advection-Diffusion with variable 

coefficients 

 The fourth case problem is for the same equation with 

variable coefficients. The solute dispersion problem is taken 

as a practical example. The domain of the problem 

0 x 1.0 Km( )  is inhomogeneous, therefore the velocity is 

considered dependent on the position variable. An important 

parameter called inhomogeneous parameter is taken into 

consideration and its effect on the results studied for two 

different values away from each others as shown in Figs. (5-

7). Starting the results by Fig. (5) which shows the variation 

of the ratio C /C0 ,C0 = 1  against the spatial variable x  at 

different times 0.1 t 1.0  and at inhomogeneous 

parameter equals a = 1.0 . As it is clear that the behavior in 

all curves is exponentially decaying and by going the time up 

the ratio increases at any spatial point. Following up the 
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results and turn up to Fig. (6) which shows the effect of the 

inhomogeneous parameter on similar results obtained in Fig. 

(5) but in this case the inhomogeneous parameter equals 

a = 0.1 . Obviously the same behavior is obtained but the 

exponently decaying behavior becomes more concave 

downward, i.e., at the same point x  the ratio C /C0  in case 

of a = 1.0  is greater when a = 0.1  and agrees very well 

with the practice. It is clear from both Figs. (5, 6) that by 

increasing the inhomogeneous parameter, the ratio C /C0  

increases and vise versa. Collecting these two figures in one 

figure. to clarify this observation which becomes very clear 

as shown in Fig. (7). Finally, from the solution of the above 

four test problems one can see that the proposed equation 

and scheme are simple in computation compared with other 

methods. 
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Time = 0.4

Time = 0.5

Time = 0.6

Time = 0.7

Time = 0.8

Time = 0.9

Time = 1.0

 

Fig. (5). Ratio of C /C0  at different times and inhomogeneous parameter 

equals 1.0. 
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Fig. (6). Ratio of C /C0  at different times and inhomogeneous parameter 

equals 0.1. 
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Time = 0.9 , a = 1.0

 

Fig. (7). Comparison between C /C0  at different times and two diferent 

values for inhomogeneous parameter. 

 Problem (5): 2-D Advection-Diffusion with variable 

coefficients 

 In this test problem, a two-dimensional advection-

diffusion equation with variable coefficients are solved and 

the obtained results are compared with the available 

analytical solution. The government differential equation is: 

u(x, y, t)

t
= kx

2u(x, y, t)

x2 + ky
2u(x, y, t)

y2

+ x

u(x, y, t)

x
  + y

u(x, y, t)

y

0 x,y 1

  (40) 

 The exact solution is given by; 

uex (x, y, t) = a exp(bt + cxx) + exp(bt + cyy)( )  (41) 

cx =
x ± x

2
+4kxb

2kx
 (42) 

cy =
y ± y

2
+4kyb

2ky
 (43) 

 The initial and boundary conditions are obtained from the 

analytic solution as follows: 

u(x, y, 0) = uex (x, y, 0)  (44) 

u(0, y, t) = uex (0, y, t)     ,   u(1, y, t) = uex (1, y, t)  (45) 

u(x, 0, t) = uex (x, 0, t)     ,   u(x,1, t) = uex (x,1, t)  (46) 

 The results for this test problem are shown in Figs. (8-

13). In these figures a comparison between the results due to 

the present results and the analytical solution at three 

different times, t = 0.1, 0.5, 0.9  seconds. As it is clear from 

these figures, a good agreement between the two results are 

obtained. 
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Fig. (8). Analytical solution at t =0.1. 

 

Fig. (9). Present at t = 0.1. 

 

Fig. (10). Analytical at t = 0.5. 

6. CONCLUSION 

 In the present paper, a new finite difference equation is 

derived to solve linear advection-diffusion equation with 

both constant and variable coefficients. The derivation based 

on a mathematical combination between spatial and time 

discretisation from previous numerical methods. Also a new 

numerical scheme is developed to track the unknowns in the 

problem under condideration. Due to the practical 

importance of the advection-diffusion equation, the present 

method can open the way to the reseachers to this direction 

of method of computation due to easy manuplation and the 

high accuracy obtained as seen from the five test examples in 

one and two dimensions that solved in the present paper. 

Finally one can modify the present method by using different 

finite difference methods for approximating both spatial and 

time derivatives. 

 

Fig. (11). Present at t = 0.5. 

 

Fig. (12). Analytical at t = 0.9. 

 

Fig. (13). Present at t = 0.9. 
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NOMENCLATURE 

C x, t( )  = Solute concentration at position x  along the  

   longitudal direction at a time t  

D x, t( )  = Solute dispersion 

u x, t( )  = Medium's flow velocity 

a  = Inhomogeneous parameter, 
 

a =
b

 

b  = May be real constant 
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