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to the nonstationary Stokes equations in the two-dimensional case. For the space discretization, we use the well-known 

LBB-stable quadrilateral finite element which consists of conforming biquadratic elements for the velocity and 

discontinuous linear elements for the pressure. We discuss implementation aspects as well as methods for solving the 

resulting block systems using monolithic multigrid solvers based on Vanka-type smoothers. By means of numerical 

experiments we compare the different time discretizations with respect to accuracy and computational costs. We show that 

the convergence behavior of the multigrid method is almost independent of the mesh size in space and the time step size 
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1. INTRODUCTION 

 To solve time dependent partial differential equations, 

different time stepping schemes have been developed and 

analyzed. In practice, it is quite common to discretize first in 

space and then in time, which is known as the method of 

lines. This approach creates a system of ordinary differential 

equations which can be solved by one of the ''good '' state of 

the art ODE methods where ''good'' means stable, accurate 

and efficient. However, the spatial mesh points stay fixed in 

time which often is a restriction, for example, in the case 

where moving meshes are needed to approximate the 

solution properly. Thus, the method may have difficulties in 

changing the spatial mesh over the time steps. On the other 

hand, the Rothe method, which first discretizes in time, 

allows fully adaptive integration of time dependent PDEs. 

Two classes of time discretization schemes of variational 

type based on Rothe's method are the continuous Galerkin-

Petrov method (cGP) and the discontinuous Galerkin 

method (dG). These methods are of higher order due to their 

theoretical construction. Moreover, the cGP-method is A-

stable [2] and the dG-method is L-stable [3] for each 

polynomial degree k  in time. In our recent paper [1], we 

described both methods in detail for the heat equation and 

proposed an efficient multigrid method for solving the 

according block systems in each time step. For example, we 

have demonstrated by means of numerical test problems that 

the cGP(2)-method is of third order accurate in each time 

point and even of fourth order in the endpoints tn  of the time  
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intervals whereas the dG(1)-method has the order two in 

each time point and order three in the discrete time points tn . 

 Let us mention some earlier work on these methods in 

literature. The approach of the cGP-method has already been 

used by Aziz and Monk [4] (but not under this name) for the 

linear heat equation. They have proved optimal error 

estimates as well as superconvergence results at the discrete 

points tn  of the time mesh. In [2], the cGP-method was 

presented as a ''discontinuous Galerkin Petrov'' method 

where the name was chosen due to the fact that the test space 

is discontinuous in time and different from the ansatz space. 

The method was analyzed for the linear case in an abstract 

Hilbert space and for the non-linear case in the Euclidean 

space. In [1] the method was renamed into its final name 

''continuous Galerkin Petrov'' method since the ansatz space 

is continuous in time contrary to the well-known 

''discontinuous Galerkin'' method [3]. The dG-method in 

time has already a long tradition in literature, see e.g. the 

classical book [3] with all relevant historical references. 

Therein, for an abstract model problem, which includes 

again the heat equation, optimal error estimates and 

superconvergence results at the discrete time points are 

proven. In [1] we have compared for the heat equation, the 

cGP( k )-method, where the time polynomial ansatz is of 

degree k , with the dG( k 1 )-method where both ansatz- 

and test-space are time polynomial of degree k 1 . Since 

both methods require to solve a linear k k -block system in 

each time step, they have comparable computational costs 

concerning computing time and memory requirements. 

However, concerning the discretization error in time, the 

accuracy of the cGP( k )-method is one order higher than that 

of the dG( k 1 )-method. On the other hand, the dG( k 1 )-

method is L-stable, i.e., it has better damping properties with 
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respect to high frequency error components than the (only) 

A-stable cGP( k )-method. 

 In this paper, we extend our work on the heat equation in 

[1] to the nonstationary Stokes equations. The new difficulty 

is now that we have to treat a saddle point problem arising 

from the mixed formulation with velocity and pressure. The 

problem here is the question how to handle the pressure 

since there is no ''direct'' evolution due to a missing time 

derivative for the pressure. For each of the time 

discretizations cGP(1), cGP(2) and dG(1), we describe in 

detail our approach to derive a linear block-system on each 

time interval for the block-unknowns consisting of velocity 

and pressure vectors. The cGP(1)-method is very close to the 

well-known Crank-Nicolson scheme. Both methods differ 

only in the choice of the unknown that is solved for on each 

time interval and in the way how the numerical integration of 

the right hand side is done. The cGP(1)-method is accurate 

of order 2 in the whole time interval as it is known for the 

Crank-Nicolson scheme. In the cGP(2)-method as well as in 

the dG(1)-method, we have two block-unknowns on each 

time interval which have to be computed by solving a linear 

2 2  block system. The cGP(2)-method is accurate of order 

3 in the whole time interval and superconvergent of order 4 

in the discrete time points tn . The dG(1)-method is of order 

2 in the whole time interval and superconvergent of order 3 

in the discrete time points. From the theoretical point of 

view, we would expect these orders of accuracy for the 

velocity since the velocity is the solution of an evolution 

problem in the subspace of the divergence-free functions. 

However, we have observed the orders of accuracy on the 

whole time interval also for the pressure. The situation 

becomes different if we look at the superconvergence of the 

pressure at special time points. Since we obtain 

superconvergence results for the velocity at the discrete time 

points tn , it is also desirable to get the same for the pressure 

at these points which is practically important, for instance, 

for the computation of the hydrodynamic forces in CFD 

problems such as drag and lift. Due to the fact that we do not 

have an initial pressure, we cannot obtain the pressure in 

cGP-methods at the endpoints tn  of the time intervals by 

using the same extrapolation as for the velocity. In order to 

achieve the superconvergence for the pressure at these 

points, we make use of suitable Lagrangian interpolation 

polynomials in the cGP-method. Then, the same technique is 

also applied to the dG(1)-method. 

 Another important aim of this paper is to construct and 

test a suitable multigrid method that can solve the resulting 

linear block-systems in an efficient way. Here we apply a 

geometrical monolithic block-multigrid solver. We 

concentrate only on the related algorithmic and numerical 

aspects and omit theoretical investigations. Multigrid 

methods can be regarded as the most efficient solvers for the 

solution of large sparse linear systems, in particular for those 

arising from the discretization of PDEs where the condition 

number of the system matrix deteriorates with increasing 

problem size. In contrast to other iterative solvers (like for 

instance BiCGStab or GMRes), multigrid solvers converge 

with a rate which is independent of the mesh size and require 

computational costs which are only linearly dependent on the 

number of unknowns. The efficiency and the robustness of 

these solvers essentially depend on the smoothing operator. 

We employ a Vanka-type smoother which can be considered 

as block Gauß-Seidel method, where successively for each 

element of the mesh a local system is solved containing all 

velocity and pressure unknowns for all local time points of 

the time interval that belong to this element. Our numerical 

experiments confirm that this multigrid method (see also [5, 

6]) converges at a rate which is almost independent of the 

mesh size in space and the time step size. 

2. THE cGP- AND dG-METHODS FOR THE STOKES 
EQUATIONS 

 We consider the nonstationary Stokes equations, i.e. we 

want to find a velocity 
 
u : [0,T ] 2

 and a pressure 

p : [0,T ]  such that 

tu u + p = f , div u = 0 in (0,T ),

u = 0 on [0,T ], u(x, 0) = u0 (x) in for t = 0,
 (1) 

where  denotes the viscosity, f : (0,T ) 2
 is the 

body force and 
 
u0 :

2
 the initial velocity field at time 

t = 0 . For simplicity, we assume homogeneous Dirichlet 

conditions at the boundary  of a polygonal domain 
2
. To make this problem well-posed, one needs to 

impose an additional condition on p , i.e., pd = 0 . 

 The proposed time discretization schemes are accurate of 

higher order and have been studied for the heat equation in 

[1]. In particular, the cGP(1) and cGP(2)-method are 

accurate of order 2 and 3, respectively, in the whole time 

interval. Moreover, the cGP(2)-method shows a 

superconvergent behavior of order 4 in the discrete time 

points. The dG(1)-method is of order 2 in the whole time 

interval and superconvergent of order 3 in the discrete time 

points. The purpose of this paper is to perform numerical 

tests to illustrate that we can get for these time discretization 

schemes the same accuracy as for the heat equation also in 

the case of the Stokes equations. To this end, we only 

concentrate on the algorithmic and numerical aspects. A 

rigorous analysis regarding theoretical aspects will be 

subject of a forthcoming paper. 

 We start with the time discretization of problem (1) 

which is of variational type. In the following, let I = [0,T ]  

denote the time interval with some positive final time T .  For 

a function  u : I 2
 and a fixed t I , we will denote 

by u(t) := u( , t)  the associated velocity function at time t  

which is an element of a suitable function space V . In case 

of the Stokes equations, this space is the Sobolev space 

V = (H 0
1 ( ))2 . Similarly, we denote by p(t) := p( , t)  the 

associated pressure function at time t  which is an element of 

the function space Q = L0
2 ( )  where 

L0
2 ( ) = {q L2 ( ) : qdx = 0}.  
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 In the time discretization, we decompose the time 

interval I  into N  subintervals In := [tn 1, tn ] , where 

n =1,…,N  and 
 
0 = t0 < t1 <… < tN 1 < tN = T .  The symbol 

 will denote the time discretization parameter and will also 

be used as the maximum time step size : = 1 n Nmax n  

where n := tn tn 1 . 

 Then, for the cGP(k)-method, we approximate the solution 

Vu I:  by means of a function u : I V  which is 

piecewise polynomial of order k  with respect to time, i.e., we 

are looking for u  in the discrete time space 

Xk := {u C(I ,V) :u |In Pk (In ,V) n =1,…,N},        (2) 

where 

 
Pk (In ,V) := {u : In V:u(t) =

j=0

k

U jt j , t In , U
j V, j}.  

We introduce the time discrete test space 

Yk 1 := {v L2 (I ,V) :v |In Pk 1(In ,V) n =1,…,N}   (3) 

consisting of piecewise polynomials of order k 1  which are 

globally discontinuous at the end points of the time intervals. 

Similarly, we will use for the time discrete pressure p  an 

analogous ansatz space Xk
, where the vector valued space V  

is replaced by the scalar valued space Q , and an analogous 

discontinuous test space Y k 1
. 

 Now, in order to derive the time discretization, we multiply 

the momentum equation in (1) with some suitable In -supported 

test functions v Yk 1
, integrate over In , use Fubini's 

Theorem and partial space integration of the terms u  and p  

and apply the k -point Gaussian quadrature rule for the 

evaluation of the time integrals. To determine u |In  and p |In  

we represent them by the polynomial ansatz 

u (t) :=
j=0

k

Un
j

n, j (t), p (t) :=
j=0

k

Pn
j

n, j (t),         (4) 

where the ''coefficients'' (Un
j ,Pn

j )  are elements of the Hilbert 

space V Q  and the real functions n, j Pk (In )  are the 

Lagrange basis functions with respect to k +1  suitable nodal 

points tn, j In  satisfying the conditions 

 
n, j (tn,i ) = i, j , i, j = 0,…, k            (5) 

with the Kronecker symbol i, j . For an easy treatment of the 

initial condition, we set tn,0 = tn 1 . Then, the initial condition is 

equivalent to the condition 

Un
0 = u |In 1

(tn 1 ) if n 2 or Un
0 = u0 if n =1.           (6) 

 The other points 
 
tn,1,…, tn,k  are chosen as the quadrature 

points of the k -point Gaussian formula on In . This formula is 

exact if the function to be integrated is a polynomial of degree 

less or equal to 2k 1 . We define the basis functions 

n, j Pk (In )  of (4) via the affine reference transformation 

Tn : Î In  where Î := [ 1,1]  and 

 

t = Tn (t̂ ) :=
tn 1 + tn
2

+
n

2
t̂ In t̂ Î , n =1,…,N .      (7) 

Let ˆ
j Pk ( Î ) , 

 
j = 0,…, k , denote the basis functions 

satisfying the conditions 

 
ˆ
j (t̂i ) = i, j , i, j = 0,…, k,           (8) 

where t̂0 = 1  and t̂i , 
 
i =1,…, k , are the standard Gaussian 

quadrature points for the reference interval Î . Then, we define 

the basis functions on the original time interval In  by 

n, j (t) := ˆ j (t̂ ) with t̂ := Tn
1(t) =

2

n

t
tn tn 1

2
Î .     (9) 

 At the end, we obtain the following time discrete In -

problem of the cGP(k)-method [1, 2]: 

 Find on interval In = [tn 1, tn )  the k  unknown pairs of 

''coefficients'' (Un
j ,Pn

j ) V Q , 
 
j =1,…, k , such that for all 

 
i =1,…, k , it holds 

j=0

k

i, j Un
j ,v( ) + n

2
a(Un

i ,v) + n

2
b(v,Pn

i ) = n

2
f (tn,i ),v( ) v V,

b(Un
i ,q) = 0 q Q,

 (10) 

where n  denotes the length of the time interval In , 

Un
0 := u (tn 1 )  for n > 1 , U1

0 := u0  and ,( )  the usual inner 

product in L2 ( ) . The bilinear forms a( , )  and b( , )  on 

V V  and V Q , respectively, are defined as 

a(u,v) := u vdx u,v V,

b(v, p) := v pdx v V, p Q.
 

 A typical property of this cGP(k)-variant is that the initial 

pressure Pn
0

 of the ansatz (4) does not occur in this formulation. 

This will be the reason for some problems to achieve 

superconvergence for the pressure approximation at the discrete 

time levels tn . 

 In the following subsections, we specify the constants i, j  

of the cGP(k)-method for the cases k =1  and k = 2  and we 

describe explicitly the well-known dG(1) approach. 

2.1. cGP(1)-Method 

 We use the one-point Gaussian quadrature formula with 

the point t̂1 = 0  and tn,1 = tn 1 +
n

2
. Then, we get 1,0 = 1  

and 1,1 = 1 . Thus, equation (10) leads to the following 

equation for the ''one'' unknown Un
1 = u (tn 1 +

n

2
) V  and 

Pn
1 = p (tn 1 +

n

2
) Q  
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Un
1 ,v( ) + n

2
a(Un

1 ,v) + n

2
b(v,Pn

1 ) = n

2
f (tn,1 ),v( ) + Un

0 ,v( ) v V

b(Un
1 ,q) = 0 q Q.

 (11) 

 Once we have determined the solution Un
1

 at the midpoint 

tn,1  of the time interval In , we get the solution at the next 

discrete time point tn  simply by polynomial interpolation with 

the ansatz (4), i.e., 

u (tn ) = 2Un
1 Un

0 ,          (12) 

where Un
0

 is the initial value at the time interval [tn 1, tn )  

coming from the previous time interval In 1  or the initial value 

u0 . 

 If we would replace f (tn,1 )  by the mean value 

( f (tn 1 ) + f (tn )) / 2 , which means that we replace the one-point 

Gaussian quadrature of the right hand side by the Trapezoidal 

rule, the resulting cGP(1)-method is equivalent to the well-

known Crank-Nicolson scheme. 

2.2. cGP(2)-Method 

 Here, we use the 2-point Gaussian quadrature formula with 

the points t̂1 =
1

3
 and t̂2 =

1

3
. Then, we obtain the 

coefficients 

( i, j ) =
3

3

2

2 3 3

2

3
2 3 3

2

3

2

i =1, 2, j = 0,1, 2.  

 On the time interval In , we have to solve for the two 

''unknowns'' 

(Un
j ,Pn

j ) = (u (tn, j ), p (tn, j )) V Q with tn, j := Tn (t̂ j ) for j =1, 2.  

 The corresponding coupled system reads: 

 

1,1 Un
1 ,v( ) + n

2
a(Un

1 ,v) + 1,2 Un
2 ,v( ) + n

2
b(v,Pn

1 ) = 1(v)

2,1 Un
1 ,v( ) + 2,2 Un

2 ,v( ) + n

2
a(Un

2 ,v) + n

2
b(v,Pn

2 ) = 2 (v)

b(Un
1 ,q) = 0

b(Un
2 ,q) = 0,

 (13) 

which has to be satisfied for all v V  and q Q  with 
 i ( )  

defined by 

 
i (v) =

n

2
f (tn,i ),v( ) i,0 Un

0 ,v( ) i =1, 2.       (14) 

 Once we have determined the solutions (Un
j ,Pn

j )  at the 

Gaussian points in the interior of the interval In , we get the 

solution at the right boundary tn  of In  again by means of 

polynomial interpolation from the ansatz (4), i.e., 

u (tn ) = Un
0
+ 3(Un

2 Un
1 ),         (15) 

where Un
0

 is the initial value at the time interval In . 

2.3. dG(1)-Method 

 In the dG(1)-method, velocity and pressure are 

approximated by a discontinuous piecewise linear ansatz space, 

i.e. (u , p ) Y1 Y 1
. On time interval In  we use the 

polynomial representation 

u (t) :=
j=1

2

Un
j

n, j (t), p (t) :=
j=1

2

Pn
j

n, j (t),       (16) 

with the two ''coefficients'' (Un
j ,Pn

j ) V Q , j =1, 2 , which 

are the values of u  and p , respectively, at the points 

tn, j In  of the 2 point Gaussian formula. The real functions 

n, j P1(In )  are the linear Lagrange basis functions with 

respect to these two Gaussian points. 

 In order to present the method, we use the following 

constants for i, j {1, 2}  

( i, j ) =
1

3 1

2

3 1

2
1

, (di ) =

3 +1

2

3 +1

2

.  

 Then, on the time interval In , one has to determine the two 

''unknowns'' (Un
j ,Pn

j ) V Q  as the solution of the following 

coupled system: 

 

1,1 Un
1 ,v( ) + n

2
a(Un

1 ,v) + n

2
b(v,Pn

1 ) + 1,2 Un
2 ,v( ) = 1(v),

2,1 Un
1 ,v( ) + 2,2 Un

2 ,v( ) + n

2
a(Un

2 ,v) + n

2
b(v,Pn

2 ) = 2 (v),

b(Un
1 ,q) = 0

b(Un
2 ,q) = 0

 (17) 

which has to be satisfied for all v V  and q Q  with 
 i ( )  

defined by 

 
i (v) =

n

2
f (tn,i ),v( ) + di Un

0 ,v( ) i =1, 2.       (18) 

 Once we have solved the above system, we obtain u  and 

p  at the time tn  by means of the following linear interpolation 

u (tn ) =
3 +1

2
Un
2 3 1

2
Un
1 and p (tn ) =

3 +1

2
Pn
2 3 1

2
Pn
1.  (19) 

3. SPACE DISCRETIZATION BY FEM 

 Next, in each time step, we apply a standard Galerkin 

finite element discretization with the so-called Q2 / P1
disc

 

Stokes element, i.e., with biquadratic finite elements for the 

velocity and discontinuous piecewise linear elements for the 

pressure. This LBB-stable element pair leads to an L2 -

approximation order of O(h3 )  for the velocity and O(h2 )  

for the pressure where h  denotes the mesh size of the space 

grid. In the following, we will present the resulting block 
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systems for the cGP(1)-, cGP(2)- and dG(1)-method which 

are used in our numerical experiments. 

3.1. cGP(1)-Method 

 The corresponding 3 3  block system on each time 

interval In  reads: For given initial velocity coefficient 

vectors Un
0 = (Un

0 ,V n
0 ) , find Un

1 ,V n
1

 and a scaled pressure 

vector 
 
Pn

1
 such that 

M +
n

2
A Un

1
+ B1Pn

1
=

n

2
Fn
1
+ MUn

0

M +
n

2
A V n

1
+ B2Pn

1
=

n

2
Fn
2
+ MVn

0

B1
TUn

1
+ B2

T V n
1

= 0

 

where Pn

1
:= n

2
Pn
1

, and M ,A  and B  denote the mass, 

Laplacian and gradient matrices, respectively. Once we have 

determined the solution Un
1

, V n
1

 we compute the nodal 

vector Un+1
0

, V n+1
0

 of the discrete solution u ,h  at the time tn  

by using the following linear extrapolation 

 
u ,,h (tn ) Un+1

0 = 2Un
1 Un

0 , v ,h (tn ) V n+1
0 = 2V n

1 V n
0 .  

3.2. cGP(2)-Method 

 The 6 6  block system on each time interval In  reads: 

For given initial velocity vectors Un
0 = (Un

0 ,V n
0 ) , find 

Un
1 ,Un

2 ,V n
1 ,V n

2
 and scaled pressure vectors 

 
Pn

1
,Pn

2
 such that 

 

3M + nA 2 3 3( )M 0 0 B1 0

2 3 3( )M 3M + nA 0 0 0 B1

0 0 3M + nA 2 3 3( )M B2 0

0 0 2 3 3( )M 3M + nA 0 B2

B1
T 0 B2

T 0 0 0

0 B1
T 0 B2

T 0 0

Un
1

Un
2

V n
1

V n
2

Pn

1

Pn

2

=

Rn
1

Rn
2

Rn
3

Rn
4

0
0

 

where Pn

i
:= n Pn

i
 and 

Rn
1 = nFn

1
+ 2 3MUn

0 , Rn
2 = nFn

2 2 3MUn
0 ,

Rn
3 = nGn

1
+ 2 3MVn

0 , Rn
4 = nGn

2 2 3MVn
0 .

 

 Here, we compute the nodal vector 0

1+n
U  and 0

1+n
V  of the 

fully discrete solution u ,h  at the time nt  by using the 

following quadratic extrapolation 

u ,h (tn ) ~Un+1
0 =Un

0
+ 3(Un

2 Un
1 ),

v ,h (tn ) ~ V n+1
0 =V n

0
+ 3(V n

2 V n
1 ).

 

3.3. dG(1)-Method 

 The analogous 6 6  block system on the time interval 

In  reads: For given initial velocity vector Un
0 = (Un

0 ,V n
0 ) , 

find Un
1 ,Un

2 ,V n
1 ,V n

2  and scaled pressure coefficient vectors 

Pn

1
,Pn

2
 such that 

 

2M + nA 3 1( )M 0 0 B1 0

3 1( )M 2M + nA 0 0 0 B1

0 0 2M + nA 3 1( )M B2 0

0 0 3 1( )M 2M + nA 0 B2

B1
T 0 B2

T 0 0 0

0 B1
T 0 B2

T 0 0

Un
1

Un
2

V n
1

V n
2

Pn

1

Pn

2

=

Rn
1

Rn
2

Rn
3

Rn
4

0
0

 

where 
 
Pn

i
:= n Pn

i
 and 

Rn
1 = nFn

1
+ 3 +1( )MUn

0 , Rn
2 = nFn

2
+ 3 +1( )MUn

0 ,

Rn
3 = nGn

1
+ 3 +1( )MVn

0 , Rn
4 = nGn

2
+ 3 +1( )MVn

0 .
 

 In this case, we compute the nodal vector Un+1
0

,V n+1
0

 and 

Pn+1
0

 of the left side limit of the fully discrete solution u ,h  

at the time tn  by using the following linear extrapolation 

u ,h (tn ) ~Un+1
0 =

3 +1

2
Un

2 3 1

2
Un
1,

v ,h (tn ) ~ V n+1
0 =

3 +1

2
Vn
2 3 1

2
Vn
1.

 

 One can obtain the pressure at the discrete time points tn  

by using the same extrapolation 

p ,h (tn ) ~ Pn+1
0 =

3 +1

2
Pn
2 3 1

2
Pn
1.  

4. POSTPROCESSING FOR HIGH ORDER PRESSURE 

 In many flow problems, often the hydrodynamic forces such 

as drag, lift etc, have to be calculated. These forces consist of 

functionals for velocity and pressure at the same discrete time 

points. Now, since we have superconvergence results for the 

velocity only at the discrete time points tn , it is desirable to get 

a high order pressure at the same points. In contrast to the 

dG(1)-method, we cannot obtain the pressure in cGP-methods 

at the discrete time points by using the same extrapolation as for 

velocity since this would involve the initial pressure which we 

do not have. In this section, we explain how to get higher order 

accuracy for the pressure in the cGP-methods at the discrete 

time points tn  from the obtained pressure at the intermediate k  

Gaussian points in the subinterval [tn 1, tn ] . The same 

technique is then also applied for the dG(1)-method which gives 

better results than the associated extrapolation. To do this, we 

use the Lagrangian interpolation polynomials to get the solution 

at time tn  which we explain in the following for the cGP(1), 

cGP(2) and dG(1)-method, respectively. 

4.1. cGP(1)-Method 

 We consider the left and right subinterval at time tn . Let 

t0  and t1  be the intermediate Gaussian points in these 

subintervals where the solution is already known. We can 

construct the corresponding linear Lagrangian interpolation 

polynomial L(t)  such that L(ti ) = p (ti )  for i = 0,1 . Once 
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this linear polynomial L(t)  is obtained we can get the 

solution at the discrete time point tn . In this way, one extra 

time step would be required to compute the solution at the 

end point t = T  of the simulation. The corresponding 

interpolation is visualized in Fig. (1). 

 

Fig. (1). Lagrange interpolation for pressure at the discrete time 
point tn. 

4.2. cGP(2) and dG(1)-Method 

 In case of cGP(2) or dG(1)-method, we have two 

Gaussian points in each subinterval In . Let t0 , t1, t2  and t3  

be the four points in the neighboring subintervals at tn . Now 

we construct the cubic Lagrangian polynomial passing 

through these four points. Once we have determined this 

polynomial L(t)  we obtain the solution at the next discrete 

time point tn  (see Fig. 2). As in case of cGP(1), one more 

time step is needed to find the solution at the end point. 

 

Fig. (2). Lagrange interpolation for pressure at the discrete time 
point tn. 

5. SOLUTION OF THE LINEAR SYSTEMS 

 The resulting linear systems in each time interval 

[tn 1, tn ] , which are 6 6  block systems in the case of the 

cGP(2) and dG(1) approach and 3 3  block systems for the 

cGP(1)-method, are treated by using a geometrical multigrid 

solver with a local pressure Schur complement smoother (see 

[6, 7]). Multigrid methods are known as the most efficient 

iterative methods for the solution of large linear systems 

arising from the discretization of partial differential 

equations, particularly of elliptic type. In this paper, we use 

the standard refinement scheme (see [6]) for the grid 

hierarchies, and for the smoothing operator, a cell centered 

Vanka like smoother is employed. Moreover, we use the 

canonical grid transfer routines regarding the chosen FEM 

space which treat both solution components separately in the 

case of the cGP(2) and dG(1) approaches (see [8] for the 

details, particularly regarding the grid transfer for the 

biquadratic finite elements). Finally, the coarse grid problem 

is solved by a direct solver. 

6. NUMERICAL RESULTS 

 In this section, we perform several numerical tests in 

order to compare the accuracy of the proposed time 

discretization schemes. As a test problem we consider the 

Stokes problem (1) with the domain := (0,1)2  and =1 . 

The prescribed velocity field u = (u1,u2 )  is 

u1(x, y, t) := x2 (1 x)2 2y(1 y)2 2y2 (1 y) sin(10 t),

u2 (x, y, t) := 2x(1 x)2 2x2 (1 x) y2 (1 y)2 sin(10 t),
 

and the pressure distribution p(x, y, t) := (x3 + y3 0.5)  

(1.5 + 0.5 sin(10 t)).  The initial data is u0 (x, y) = u(x, y, 0) . 

 We apply the time discretization schemes cGP(1), 

cGP(2) and dG(1) with an equidistant time step size 

= T / N . To measure the error (in time), the following 

discrete L -norm of a function v : I L2 ( )  is used 

 

v :=
1 n N
max v (tn ) L2 ( )

, v (tn ) :=
t tn 0
lim v(t), tn := n .  

 The behavior of the standard L2 -norm 
 

2 := L2 ( I ,L2 ( ))
 

and the discrete L -norm of the time discretization error 

u(t) uh, (t)  for the velocity over the time interval I = [0,1]  

can be seen in Tables 1 and 2, respectively. The estimated 

value of the experimental order of convergence (EOC) is 

also calculated and compared with the theoretical order of 

convergence for both velocity and pressure. All our 

numerical tests, where we compared the accuracy of our time 

discretization schemes are related to space mesh level 7 with 

equidistant h = 2 6
. 

 We see that the cGP(2)-method is of order 3 in the L2 -

norm and superconvergent of order 4 at the discrete time 

points tn , while the dG(1)-method is of order 2 in the L2 -

norm and superconvergent of order 3 at the end points of the 

time intervals as expected from the theory. The cGP(1)-

method is of order 2 everywhere which is the same behavior 

as that of the well-known Crank-Nicolson scheme. 

 Now we show the accuracy of our time discretization 

schemes for the pressure. Here, we also illustrate the 

behavior of the L2 -norm 
 

2 := L2 ( I ,L2 ( ))
 and the discrete 

L -norm of the error in the pressure, respectively.  

 From Table 3, we observe that the experimental orders of 

convergence (EOC) coincide with the theoretical orders of 

convergence for corresponding time discretization schemes. 

Next, we want to analyze the behavior of L -error for the 

pressure. As we have already discussed, one can achieve the 

high order pressure at the discrete time points tn  by using 

the Lagrangian interpolation polynomials symmetric at tn . 

The behavior of the discrete L -norm of the error for 

pressure can be seen in Table 4.  

 We observe that the cGP(2)-method has superconvergent 

results of order 4 for pressure at the discrete time points tn , 

while both the cGP(1) and dG(1)-method are of order 2 and 

3, respectively, at the end points of the time intervals as 

expected.  

                    

       tn‐1                                         tn                                      tn+1    

       tn‐1                                         tn                                      tn+1 
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Table 1. Error Norms u uh, 2  for Velocity 

 

   cGP(1)   cGP(2)  dG(1)  

 1/   
 
u uh, 2   EOC  

 
u uh, 2   EOC  

 
u uh, 2   EOC  

 10   5.56E-03     4.40E-04     2.91E-03    

20   1.53E-03   1.86   1.11E-04   1.99   6.51E-04   2.16  

40   3.93E-04   1.97   1.33E-05   3.06   1.82E-04   1.84  

80   9.87E-05   1.99   1.62E-06   3.04   4.83E-05   1.91  

160   2.47E-05   2.00   2.03E-07   3.00   1.25E-05   1.95  

320   6.18E-06   2.00       3.17E-06   1.98  

640   1.55E-06   2.00       8.00E-07   1.99  

1280   3.88E-07   2.00       2.03E-07   1.98  

2560   1.01E-07   1.94          

 

Table 2. Error Norms 
 
u uh,  for Velocity 

 

   cGP(1)   cGP(2)  dG(1)  

 1/   
 
u uh,   EOC  

 
u uh,   EOC  

 
u uh,   EOC  

 10   2.38E-15     6.74E-04     2.18E-03    

20   8.17E-04   -38.32   1.38E-04   2.29   3.73E-04   2.55  

40   2.10E-04   1.96   1.03E-05   3.75   5.98E-05   2.64  

80   5.13E-05   2.03   6.88E-07   3.90   8.86E-06   2.75  

160   1.28E-05   2.00   4.75E-08   3.86   1.19E-06   2.90  

320   3.20E-06   2.00       1.60E-07   2.90  

640   8.01E-07   2.00          

1280   2.01E-07   1.99          

2560   5.72E-08   1.82          

 

Table 3. Error Norms p ph, 2  at the Gaussian Points for Pressure 

 

   cGP(1)   cGP(2)  dG(1)  

 1/   p ph, 2   EOC  p ph, 2   EOC  p ph, 2   EOC  

 10   2.10E-01     7.89E-04     2.60E-03    

20   4.25E-02   2.30   3.03E-04   1.38   8.31E-04   1.64  

40   1.08E-02   1.97   4.18E-05   2.86   2.53E-04   1.72  

80   2.73E-03   1.99   5.31E-06   2.98   7.13E-05   1.82  

160   6.83E-04   2.00   6.87E-07   2.95   1.88E-05   1.93  

320   1.71E-04   2.00   1.91E-07   1.85   4.86E-06   1.95  

640   4.39E-05   1.96       1.25E-06   1.96  

1280   1.10E-05   2.00       3.57E-07   1.81  

2560   2.75E-06   2.00       1.37E-07   1.38  

5120   6.86E-07   2.00          

10240   1.74E-07   1.98          
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 Since the error norms we compared so far contain both 

the spatial and time error, after a certain stage the space error 

becomes dominant. To see the accuracy for the time error 

more clearly, we now compute the norm 

 

uh uh, ~ u
h,

uh,  by considering the reference 

time step size =1 / 2560  for velocity and pressure for the 

cGP(2) and dG(1)-method.  

 One can see from Table 5 that the experimental orders of 

convergence for the cGP(2) and dG(1)-methods are much 

more visible in the absence of spatial discretization errors. 

 Next, we perform numerical tests to analyze the 

corresponding behavior of the multigrid solver for the 

different time discretization schemes. As explained before, 

the solver uses a cell oriented Vanka type smoother and 

applies four pre- and post-smoothing steps. We present the 

averaged number of multigrid iterations per time step for 

solving the corresponding systems in Table 6. 'Lev' denotes 

the refinement level of the space mesh.  

 

 From Table 6, we see that the multigrid solver requires 

almost the same number of iterations for the different presented 

time discretization schemes. Moreover, the number of multigrid 

iterations remains fairly constant if we increase the refinement 

level of the space mesh. There is also no noticeable increase in 

the number of iterations if we decrease the time step (due to the 

non-diagonal mass matrix of Q2 ). This means that the behavior 

of the multigrid solver is almost independent of the spatial mesh 

size and the time step. 

 Next, in order to measure and compare the efficiency of 

the multigrid solver for our time discretizations, we present 

in Table 7 the averaged CPU-time required for one solver 

iteration on a given space mesh level.  

 In these numerical tests, the multigrid solver has been 

implemented in our solver package FEAT2 

(www.featflow.de). The CPU-times have been measured on 

an AMD Opteron 250 at 2.4GHz. In Table 7, we observe that 

the CPU-time in case of cGP(2) or dG(1) is almost 3 times 

the CPU-time of cGP(1) for the multigrid solver. We also 

note that the CPU-time grows approximately by a factor of 4 

Table 4. Error Norms 
 
p ph,  for the Pressure Using Lagrange Interpolation 

 

   cGP(1)   cGP(2)  dG(1)  

 1/   p ph,   EOC  p ph,   EOC  p ph,   EOC  

 10   9.97E-06     7.55E-04     2.25E-03    

20   1.00E-01   -13.30   1.35E-03   -0.84   1.36E-03   0.73  

40   2.94E-02   1.77   8.86E-05   3.93   1.14E-04   3.57  

80   7.63E-03   1.94   5.60E-06   3.98   1.91E-05   2.58  

160   1.93E-03   1.99   4.13E-07   3.76   2.43E-06   2.98  

320   4.83E-04   2.00       3.84E-07   2.66  

640   1.21E-04   2.00          

1280   3.02E-05   2.00          

2560   7.55E-06   2.00          

5120   1.90E-06   1.99          

10240   4.74E-07   2.00          

 

Table 5. Temporal Errors for Velocity and Pressure 

 

   cGP(2)  dG(1)  

 1/   uh uh,   EOC  ph ph,   EOC  uh uh,   EOC ph ph,   EOC  

 10   6.74E-04     7.55E-04     2.18E-03     2.25E-03    

20   1.38E-04   2.29   1.35E-03   -0.84   3.73E-04   2.55   1.36E-03   0.73  

40   1.03E-05   3.75   8.86E-05   3.93   5.98E-05   2.64   1.14E-04   3.57  

80   6.88E-07   3.90   5.60E-06   3.98   8.86E-06   2.75   1.50E-05   2.93  

160   4.39E-08   3.97   3.51E-07   4.00   1.19E-06   2.90   2.42E-06   2.63  

320   2.75E-09   4.00   2.19E-08   4.00   1.55E-07   2.94   3.46E-07   2.80  

640   1.71E-10   4.01   1.37E-09   4.01   1.96E-08   2.98   4.57E-08   2.92  



Galerkin Time Discretizations for the Stokes Equation The Open Numerical Methods Journal, 2012, Volume 4    43 

as expected if we increase the space mesh level. These 

factors are nearly optimal since the number of space 

unknowns is increased by a factor of 4 if the level is 

increased by one. 

Table 6. Averaged Multigrid Iterations Per Time Step for 

cGP(1) - cGP(2) - dG(1) 

 

 Lev  =1/20 =1/80 =1/320 =1/280  

 3   6-7-7   8-9-8   9-10-10   10-11-10  

4   9-8-9   8-8-8   8-10-9   10-11-7  

5   9-9-9   8-8-8   8-9-8   9-10-9  

6   10-10-9   10-10-8   8-8-8   7-8-8  

7   10-10-9   10-10-10   9-9-10   8-8-8  

 

 Finally, we compare the time discretization schemes with 

respect to accuracy and numerical costs. Here, the multigrid 

solver uses four Vanka iterations in the pre- and post-

smoothing step. The space discretization was done on mesh 

level 7. Table 8 shows, for different sizes of the time step  

and different time discretization schemes, the discrete  

L -norm and the total CPU-time for the computation in all 

time intervals. Due to its superconvergence of order 3 in the 

discrete time points, the dG(1)-method is faster than cGP(1) 

which is only of order 2.  

 One can see that, in order to achieve the accuracy of 

10 7
, we need the very small time step =1 / 2560  for the 

cGP(1) while this accuracy can be already achieved with 

=1 /160  and =1 / 320  in cGP(2) and dG(1)-schemes, 

respectively. To compare the numerical costs per time step 

let us note that the number of multigrid iterations to solve 

one linear block system is approximately the same (about 8) 

for the three time discretization schemes. However, the costs 

of one multigrid iteration in the cGP(2) or dG(1) method is 

almost 3 times higher than in cGP(1). Nevertheless, for a 

desired accuracy of 10 7
, the cGP(2) scheme is about 5 

times faster than cGP(1) due to the much larger time step 

size required for cGP(2). 

 Next, we also compare our presented time discretization 

schemes with respect to accuracy and numerical costs for the 

pressure. To this end, we will only compare the accuracy 

Table 7. CPU-Time Per Solver Iteration for Space Mesh Level=5,6,7, Respectively 

 

   Lev=5  Lev=6  Lev=7  

1/   cGP(1)   cGP(2)  dG(1)   cGP(1)  cGP(2)   dG(1)  cGP(1)   cGP(2)   dG(1) 

 10   0.10   0.33   0.35   0.43   1.40   1.39   1.86   5.98   5.86  

20   0.10   0.33   0.35   0.43   1.41   1.40   1.83   5.88   5.84  

40   0.11   0.33   0.33   0.47   1.40   1.43   2.03   6.02   6.14  

80   0.10   0.34   0.35   0.44   1.41   1.40   2.03   6.12   6.15  

160   0.10   0.33   0.36   0.43   1.44   1.41   1.95   6.19   6.11  

320   0.10   0.33   0.36   0.53   1.45   1.55   1.94   6.23   5.88  

640   0.11   0.34   0.34   0.53   1.40   1.40   2.11   6.22   6.09  

1280   0.10   0.36   0.36   0.46   1.48   1.40   1.91   6.23   6.27  

 

Table 8. Error Norms 
 
u uh,  and Total CPU-time to Achieve the Accuracy of 10

7
 for Velocity Field 

 

   cGP(1)   cGP(2)  dG(1)  

 1/   u uh,   CPU  u uh,   CPU  u uh,   CPU  

 10   2.38E-15   40   6.74E-04   183   2.18E-03   189  

20   8.17E-04   80   1.38E-04   364   3.73E-04   365  

40   2.10E-04   160   1.03E-05   713   5.98E-05   764  

80   5.13E-05   342   6.88E-07   1401   8.86E-06   1445  

160   1.28E-05   645   4.75E-08   2866   1.19E-06   2884  

320   3.20E-06   1337       1.60E-07   6145  

640   8.01E-07   2833          

1280   2.01E-07   5564          

2560   5.72E-08   13441          
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measured in the discrete L -norm. Here, the pressure is 

obtained at the discrete time points tn  by using the 

Lagrangian interpolation procedure.  

 From Table 9, it can be seen that to achieve the accuracy 

of 10 6
, the cGP(1) and dG(1)-methods need very small 

time step sizes, i.e., =1 /10240  and =1 / 320 , while this 

accuracy has been already achieved with =1 /160  for the 

cGP(2) scheme. Hence, the cGP(2)-method always gives the 

accurate results for velocity and pressure in a much more 

efficient way. 

 At the end, to show that the proposed time discretization 

schemes can also efficiently handle the case when the 

solution approaches a steady state, we provide numerical 

tests with very large time steps. We consider problem (1) for 

= (0,1)2  and the prescribed (time-independent) velocity 

u1(x, y, t) := x2 (1 x)2 2y(1 y)2 2y2 (1 y) ,

u2 (x, y, t) := 2x(1 x)2 2x2 (1 x) y2 (1 y)2 ,
 

and the pressure distribution p(x, y, t) := (x3 + y3 0.5).  

For these analytical solutions for u  and p , we compute the 

corresponding right hand sides. As initial data we take 

u0 = 0 .  

 Table 10 indicates for the multigrid method the number 

of solver iterations required for one time step which shows 

that there is no big difference in the number of solver 

iterations for time step size =10 6
 up to =106 . This 

means that the behavior of the multigrid convergence is 

pretty robust with respect to very small as well as very large 

time steps. 

7. CONCLUSION 

 We have described in detail the application of the 

continuous Galerkin-Petrov and discontinuous Galerkin time  

 

discretization schemes to the nonstationary Stokes equations. 

The spatial discretization is carried out by using biquadratic 

finite elements for velocity and discontinuous linear 

pressure. The presented linear block-systems for cGP(1), 

cGP(2) and dG(1) have been solved using a coupled 

geometrical multigrid method based on a Vanka-type block-

smoother. In our experiments, this multigrid-solver turned 

out to be of optimal computational complexity. From the 

numerical studies, we observed that the estimated 

experimental orders of convergence confirm the expected 

theoretical orders. Furthermore, the tests show that the 

cGP(2)-scheme provides significantly more accurate 

numerical solutions for both velocity and pressure than the 

other presented schemes cGP(1) and dG(1) which means that 

quite large time step sizes are allowed to gain highly 

accurate results. Secondly, all the presented time 

discretization schemes are also compared with respect to 

their numerical costs. 

 In our recent work, we currently extend these time 

discretization schemes to the Navier-Stokes equations to 

simulate complex time dependent flow problems in a very 

efficient way together with special Newton-multigrid 

techniques for the corresponding saddle point problems. 

Table 10. Averaged Multigrid Iterations Per Time Step for 

cGP(1) - cGP(2) - dG(1) 

 

 Lev   =10
6
  =10

3
  =1  =10

3
   =10

6
 

 3   5-5-5   5-5-5   4-4-4   4-4-4   4-4-4  

4   7-7-7   5-6-6   6-6-6   6-6-6   6-6-6  

5   8-8-8   6-7-7   6-7-7   7-7-7   7-7-7  

6   8-8-8   6-7-7   9-9-9   9-9-9   9-9-9  

7   8-8-8   7-7-7   9-9-9   9-9-9   9-9-9  

8   8-8-8   8-8-8   9-9-9   9-9-9   9-9-9  

 

 

Table 9. Error Norms p ph,  and Total CPU-Time to Achieve the Accuracy of 10
6
 for the Pressure Using Interpolation 

 

   cGP(1)   cGP(2)  dG(1)  

 1/    
 
p ph,   CPU  

 
p ph,   CPU  

 
p ph,   CPU  

 10   9.97E-06   40   7.55E-04   183   2.25E-03   189  

20   1.00E-01   80   1.35E-03   364   1.36E-03   365  

40   2.94E-02   160   8.86E-05   713   1.14E-04   764  

80   7.63E-03   342   5.60E-06   1401   1.91E-05   1445  

160   1.93E-03   645   4.13E-07   2866   2.43E-06   2884  

320   4.83E-04   1337       3.84E-07   6145  

640   1.21E-04   2833          

1280   3.02E-05   5564          

2560   7.55E-06   13441          

5120   1.90E-06   27427          

10240   4.74E-07   53692          
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