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Abstract: A higher-order compact scheme combined with the multigrid method is developed for solving Navier-Stokes 

equations along with pressure Poisson and energy equations in cylindrical polar coordinates. The convection terms in the 

momentum and energy equations are handled in an effective manner so as to get the fourth order accurate solutions for the 

flow past a circular cylinder. The superiority of the higher order compact scheme is clearly illustrated in comparison with 

upwind scheme and defect correction technique by taking a large domain. The developed scheme accurately captures 

pressure and velocity gradients on the surface when compared to other conventional methods. The pressure in the entire 

computational domain is computed and the corresponding fourth order accurate pressure fields are plotted. The local 

Nusselt number and mean Nusselt number are calculated and compared with available experimental and theoretical 

results. 
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1. INTRODUCTION 

 Higher order compact schemes (HOCS) are invariably 

applied for Navier Stokes (N-S) equations in cartesian 

coordinates [1-4] and are applied less to flow problems in 

curvilinear coordinate systems. Some papers on HOCS in 

polar coordinates for linear Poisson/quasi-linear 

Poisson/convection-diffusion equations can be seen in [5-8]. 

Sanyasiraju and Manjula [9] developed higher order semi-

compact scheme to incompressible N-S equations in 

cylindrical coordinates in which compactness is relaxed for 

some terms. Sengupta et al., [10] analyzed the central and 

upwind compact schemes and proposed a new optimal 

upwind based compact scheme. Multigrid methods are more 

popular to enhance the convergence rate, to use huge mesh 

points to achieve acceptable accuracy and to reduce 

computer CPU time and/or memory. To fully investigate the 

potential of using the fourth-order compact schemes for 

solving Navier-Stoke's equations, multigrid techniques are 

more essential. These multigrid methods have been 

successfully used with first and second-order finite 

difference methods [11-16]. A preliminary investigation on 

combining the fourth order compact schemes with multigrid 

techniques was made by Atlas & Burrage [17] for diffusion 

dominated flow problems and for Poisson equation Gupta et 

al., [18]. Multigrid solution and accelerated multigrid 

solution methods with the fourth order compact schemes for 

solving convection-dominated problems are relatively new. 

Some attempts have been made in cartesian coordinates for 

convection and diffusion equation [19-22] and for Navier- 
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Stokes equations for a flow in a lid driven cavity [23]. The 

present paper is concerned with solving the steady two-

dimensional Navier-Stokes equations in stream function-

vorticity formulation along with pressure Poisson and energy 

equations using higher order compact scheme (HOCS) 

combined with multigrid method for the flow past a circular 

cylinder in cylindrical polar coordinates. 

2. BASIC EQUATIONS 

 Consider the steady-state laminar viscous incompressible 

flow past a cylinder in a uniform stream with velocity U  

from left to right. The governing equations are equation of 

continuity: 

.q = 0,  (1) 

momentum equation: 

(q. )q = p +
2

Re
2q  (2) 

energy equation: 

q. T =
2

RePr
2T  (3) 

where Re  is the Reynolds number defined as 

Re =
2U a

,  

where a  is radius of the cylinder and  is kinematic 

coefficient of viscosity. T is the non-dimensionalized 

temperature, defined by subtracting the main-flow 

temperature T  from the temperature and dividing by 

Ts T  and Pr  is the Prandtl number defined as the ratio 
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between kinematic viscosity ( )  and thermal diffusivity 

( ) . The non-dimensional radial velocity( qr ) and transverse 

velocity( q ) components (which are obtained by dividing 

the corresponding dimensional components by the stream 

velocity U ) are chosen in such a way that the equation of 

continuity (1) is satisfied in cylindrical coordinates. They are 

qr =
1

r
, q =

r
 (4) 

2.1. Stream-Function Vorticity Formulation 

 We have 

(q. )q = (
1

2
q2 ) q ( q)  (5) 

and 

q = ( .q) 2q  (6) 

 Using equations (5) and (6), the momentum equation (2) 

becomes 

(
1

2
q2 ) (q ) = p

2

Re
( )  (7) 

where 

= q  (8) 

is the vorticity. Taking curl on both sides of the equation (7), 

we obtain 

q =
2

Re
( )  (9) 

 Expanding (8) and (9) using (4) with cylindrical 

coordinates (r, , z)  (axis-symmetric), we get the Navier-

Stokes equations in vorticity-stream function form as 

2

r2
+
1

r r
+
1

r2

2

2 =  

and 

2

r2
+
1

r r
+
1

r2

2

2 =
Re

2
qr r

+
q

r
 

 Because the stream function and vorticity are expected to 

vary most rapidly near the surface of the cylinder, we use the 

transformation r = e  and =  to concentrate mesh 

spacing near the body. Now, the above two equations 

become 

2

2 +

2

2 +
2e2 = 0  (10) 

2

2 +

2

2 =
Re

2
 (11) 

where  and  are dimensionless stream function and 

vorticity respectively and 

 

qr =
e

, q =
e

.  (12) 

 The boundary conditions to be satisfied are 

 On the surface of the cylinder  

( = 0) : = = 0, =
1
2

2

2  

 At large distances from the cylinder

( ) : ~ e sin , 0  

 Along the axis of symmetry

( = 0 and =1) : = 0, = 0.  

 The velocity field is obtained by solving equations (10 - 

12) using a fourth order compact scheme which is in turn 

used to solve the following pressure poisson and energy 

equations. 

2.2. Pressure Poisson Equation 

 Taking divergence on both sides of the momentum 

equation (2), we obtain 

.[(q. )q] = 2 p  (13) 

 Expanding (13) using equation (4) with cylindrical 

coordinates (r, , z)  and apply the transformations r = e  

and = , we obtain pressure poisson equation as follows 

2 p
2 +

2 p
2 =

2e 2

2

2 2

2

2

2

2 +

 (14) 

 The boundary conditions to be satisfied are 

 On the surface of the cylinder,  

( = 0) :
p
=

2

Re
. 

At large distances from the cylinder  

( ) : p 0,  

Along the axis of symmetry  

( = 0 and =1) :
p
= 0.  

2.3. Energy Equation 

 Expanding (3) using equation (4) with cylindrical 

coordinates (r, , z)  and apply the transformations r = e  

and = , we obtain energy equation as follows 

2T
2 +

2T
2 =

RePr

2

T T
 (15) 

 The boundary conditions for temperature are T =1  on 

the surface of the cylinder, T 0  as  and 
T
= 0  

along the axis of symmetry. 
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3. FOURTH ORDER COMPACT SCHEME 

 The standard fourth order central difference operator of 

the first and second order partial derivatives are given by the 

following equations 

=
h2

6

3

3 +O(h
4 )  (16) 

2

2 =
2 h2

12

4

4 +O(h
4 )  (17) 

=
k2

6

3

3 +O(k
4 )  (18) 

2

2 =
2 k2

12

4

4 +O(k
4 )  (19) 

where , 
2

,  and 
2

 are standard second order 

central discretizations such that 

i, j =
i+1, j i 1, j

2h
 

2
i, j =

i+1, j 2 i, j + i 1, j

h2
 

i, j =
i, j+1 i, j 1

2k
 

2
i, j =

i, j+1 2 i, j + i, j 1

k2
 

3.1. Discretization of Momentum Equation 

 Using (17) and (19) in equation (10), we obtain 

2
i, j

2
i, j + si, j i, j = 0  (20) 

 The truncation error of equation (20) is 

i, j =
h2

12

4

4 +
k2

12

4

4

i, j

+O(h4 , k 4 )  (21) 

and 

si, j = ( 2e2 )i, j  

 Differentiating partially the stream-function equation 

(10) twice on both sides with respect to  and , we obtain 

the following equations 

3

3 =
3

2 +
s

 (22) 

4

4 =
4

2 2 +

2s
2  (23) 

3

3 =
3

2 +
s

 (24) 

4

4 =
4

2 2 +

2s
2  (25) 

 Using equations (21), (23) and (25) in equation (20), we 

obtain 

2
i, j

2
i, j

h2 + k2

12
2 2

i, j +

h2

12
2si, j +

k2

12
2si, j + si, j = 0

 (26) 

 Equation (26) is the fourth order compact discretization 

of the governing equation (10). Equation (11) is rewritten as 

2

2

2

2 + c + d = 0  (27) 

where 

c =
Re

2
,  

d =
Re

2
.  

 Once again using (16) - (19) in equation (27), we obtain 

2
i, j

2
i, j + ci, j i, j + di, j i, j i, j = 0.  (28) 

 The truncation error of equation (28) is 

i, j =

2
h2

12
c

3

3 +
k2

12
d

3

3

h2

12

4

4 +
k2

12

4

4

i, j

+O(h4 , k 4 ),  (29) 

where h  and k  are grid spacing (h k)  in the radial and 

angular directions, respectively. Differentiating partially the 

vorticity equation (27) twice with respect to  and , we 

obtain the following equations 

3

3 =
3

2 + c
2

2 + d
2

+
c

+
d

 (30) 

4

4 =
4

2 2 c
3

2 + d
3

2 +

2
c
+ c2

2

2 + 2
d
+ cd

2

+

 

            
2c
2 + c

c
+

2d
2 + c

d
 (31) 

3

3 =
3

2 + c
2

+ d
2

2 +
c

+
d

 (32) 

4

4 =
4

2 2 + c
3

2 d
3

2 +

2
d
+ d 2

2

2 + 2
c
+ cd

2

+

 

            
2c
2 + d

c
+

2d
2 + d

d
 (33) 
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 Substituting equations (29) - (33) in equation (28) gives 

ei, j
2

i, j fi, j
2

i, j + gi, j i, j + oi, j i, j + li, j i, j  

h2 + k2

12
2 2

i, j ci, j
2

i, j di, j
2

i, j( ) = 0  (34) 

where the coefficients ei, j , fi, j , gi, j , oi, j  and li, j  are given 

by 

ei, j =1+
h2

12
ci, j
2 2 ci, j( )  

fi, j =1+
k2

12
di, j
2 2 di, j( )  

gi, j = ci, j +
h2

12
2ci, j ci, j ci, j( ) +

k2

12
2ci, j di, j ci, j( )  

oi, j = di, j +
h2

12
2di, j ci, j di, j( ) +

k2

12
2di, j di, j di, j( )  

li, j =
h2

6
di, j +

k2

6
ci, j

h2 + k2

12
ci, jdi, j  

 Equation (34) is the fourth order compact discretization 

of the governing equation (11). The fourth order compact 

differences for the coefficients c and d are given by 

c =
Re

2

k2

6

3

3  

d =
Re

2

h2

6

3

3  

3.2. Discretization of Pressure Poisson Equation 

 Equation (14) is rewritten as 

2 p
2

2 p
2 = Fi, j  (35) 

where 

Fi, j =
2e 2

2

2 2

2

2

2

2 +

i, j

 (36) 

 Again using equations (17) and (19) in equation (35), we 

obtain 

2 pi, j
2 pi, j + i, j Fi, j = 0.  (37) 

 The truncation error of equation (37) is 

i, j =
h2

12

4 p
4 +

k2

12

4 p
4

i, j

+O(h4 , k 4 )  (38) 

 Differentiating partially the poisson equation (35) twice 

with respect to  and , we obtain the following equations 

4 p
4 =

4 p
2 2

2F
2  (39) 

4 p
4 =

4 p
2 2

2F
2  (40) 

 Using equations (38) - (40) in equation (37), we obtain 

2 pi, j
2 pi, j

h2 + k2

12
2 2 pi, j =

h2

12
2Fi, j +

k2

12
2Fi, j + Fi, j  (41) 

 Equation (41) is the fourth order approximation to 

pressure poisson equation (35). 

3.3. Discretization of Energy Equation 

 Equation (15) is rewritten as 

2T
2

2T
2 + a

T
+ b

T
= 0  (42) 

where 

a =
RePr

2
,  

b =
RePr

2
.  

 Repeating the above discretization process of the 

vorticity equation (27) to energy equation (42), we obtain 

i, j
2Ti, j i, j

2Ti, j + i, j Ti, j + i, j Ti, j + μi, j Ti, j  

h2 + k2

12
2 2Ti, j ai, j

2Ti, j bi, j
2 Ti, j( ) = 0  (43) 

where the coefficients i, j , i, j , i, j , i, j  and μi, j  are given 

by 

i, j =1+
h2

12
ai, j
2 2 ai, j( )  

i, j =1+
k2

12
bi, j
2 2 bi, j( )  

i, j = ai, j +
h2

12
2ai, j ai, j ai, j( ) +

k2

12
2ai, j bi, j ai, j( )  

i, j = bi, j +
h2

12
2bi, j ai, j bi, j( ) +

k2

12
2bi, j bi, j bi, j( )  

μi, j =
h2

6
bi, j +

k2

6
ai, j

h2 + k2

12
ai, jbi, j  

 Equation (43) is the fourth order approximation to energy 

equation (42). 

 The fourth order compact differences for the coefficients 

a and b are given by 

a =
RePr

2

k2

6

3

3  

b =
RePr

2

h2

6

3

3  
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 The two-dimensional cross derivative central difference 

operators on a uniform anisotropic mesh (h k)  are given 

by 

i, j =
i+1, j+1 i+1, j 1 i 1, j+1 + i 1, j 1

4hk
 

2
i, j =

i+1, j+1 i+1, j 1 + i 1, j+1 i 1, j 1 2 i, j+1 + 2 i, j 1

2h2k
 

2
i, j =

i+1, j+1 i 1, j+1 + i+1, j 1 i 1, j 1 + 2 i 1, j 2 i+1, j

2hk2
 

2 2
i, j =

i+1, j+1 + i+1, j 1 + i 1, j+1 + i 1, j 1 2 i, j+1

2 i, j 1 2 i+1, j 2 i 1, j + 4 i, j

h2k2
 

where  =  or  or p  or T . 

3.4. Discretization of Boundary Conditions 

 On the surface of the cylinder, no-slip condition is 

applied. At far off distances ( ) uniform flow is 

imposed. We now turn to the boundary condition for the 

vorticity, focusing our discussion on the boundary where i = 

1. The vorticity boundary condition at i = 1 is derived using 

= = 0  in equation (10). Following Briley's procedure 

[24] we obtain the formula 

1, j =
108 2, j 27 3, j + 4 4, j( )

18h2 2  (44) 

 For evaluating boundary conditions, along the axis of 

symmetry, the derivative  is approximated by fourth 

order forward difference along = 0  (i.e., j =1 ) and fourth 

order backward difference along =  (or j = m +1 ) as 

follows. 

(i,1) =
1

25
48 (i, 2) 36 (i, 3) +16 (i.4) 3 (i, 5)[ ]  

(i,m +1) =
1

25

48 (i,m) 36 (i,m 1) +16 (i,m 2)

3 (i,m 3)
 

where  = p  or T . 

4. MULTIGRID METHOD WITH COARSEGRID 
CORRECTION 

 To enhance the convergence rate of HOCS discretization, 

multigrid technique with coarse grid correction has been 

used with five grids namely 16 16  (coarsest), 32 32 , 

64 64 , 128 128  and 256 256  (finest). The restriction 

operator Rk
k 1

 transfers a fine grid function Uk
 to a coarse 

grid function Uk 1
, while the prolongation operator denoted 

by Pk 1
k

, transfers a coarse grid function Uk 1
 to a fine grid 

function Uk
. In this study k = 5  is the finest grid 

256 256 . The restriction operator used in this study is 

injection where by the values of a function in the coarse grid 

are taken to be exactly the values at the corresponding points 

of the next fine grid i.e., 

(Rk
k 1uk )i+1, j+1 = u2i+1,2 j+1

k
 

 The following 9-point prolongation operator derived by 

using linear interpolation is used for the present study [25]. 

(Pk 1
k uk 1 )2i+1,2 j+1 = ui+1, j+1

k 1
 

(Pk 1
k uk 1 )2i+2,2 j+1 =

1

2
ui+1, j+1
k 1

+ ui+2, j+1
k 1( )  

(Pk 1
k uk 1 )2i+1,2 j+2 =

1

2
ui+1, j+1
k 1

+ ui+1, j+2
k 1( )  

(Pk 1
k uk 1 )2i+2,2 j+2 =

1

4
ui+1, j+1
k 1

+ ui+1, j+2
k 1

+ ui+2, j+1
k 1

+ ui+2, j+2
k 1( ).  

 It is known that the role of the iterative relaxation scheme 

in the multigrid method is to eliminate the high-frequency 

error components. Due to the coupling between the 

discretized governing equations (26) and (34), as well as 

through the discretized vorticity boundary condition (44), 

sequential relaxation of the individual equations (26) and 

(34) will have poor smoothing rate. Smoothing errors in  

using equation (34) will produce high-frequency error 

components in the vorticity solution via the boundary 

condition (44). In brief, a convergent solution of each 

equation at each step will constitute a very inefficient 

procedure [11]. Hence in the present study, the coupled 

governing equations (26) and (34) are relaxed 

simultaneously and the vorticity boundary condition is 

incorporated implicitly. A coupled point Gauss-Seidel 

procedure is used for this purpose. For example with a two-

grid computation, each iteration of the multigrid algorithm is 

carried out as follows: 

• Perform few pre-smoothing (Point Gauss-Seidel) 

iterations on finest grid. 

• Compute Residual. 

• Restrict Residual ( fine coarse) . 

• Solve the error equation on coarsest grid. 

• Prolongate the error (coarse fine) . 

• Correct the solution. 

• Perform few post-smoothing (Point Gauss-Seidel) 

iterations and repeat the above process. 

 The iterations are continued until the norm of the 

dynamic residuals is less than 10 5
. 

5. RESULTS AND DISCUSSION 

 A large far field of 120.023 times the radius of the 

cylinder is considered in all the numerical simulations. The 

drag coefficient CD  is defined by the equation 

CD =
D

U 2a2
,  
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where D  is the total drag on the cylinder, a  is the radius of 

the cylinder and  is the density of the fluid. The drag 

coefficient is composed of two parts due to the viscous and 

pressure drag, respectively. The viscous drag coefficient is 

given by 

CV =
4

Re 0

1
(0, )sin( )d ,  

and the pressure drag coefficient is 

CP =
4

Re 0

1

=0

sin( )d ,  

 The total drag coefficient, CD = CV + CP .  The drag 

coefficient values obtained from different grids for Re = 20  

and 40 are tabulated in Table 1 to show grid independence. It 

is clear from the Table 1 that (i) the solutions obtained from 

the present numerical scheme exhibit grid independence, and 

(ii) fourth order compact scheme provide accurate results 

even with a computationally inexpensive 64 64  grid. 

 Calculated fourth order accurate separation length( L ), 

separation angle( S ) and drag coefficient values for 

Re = 20  and 40 are given in Table 2 along with other 

literature values of Sanyasiraju & Manjula [9], Dennis & 

Chang [26], Fornberg [27], He & Doolen [28], Niu et al., 

[29] and with experimental results of Tritton [30]. The 

results concur with all literature values including the recent 

values predicted by Sanyasiraju & Manjula [9]. 

 It is well known that, for the convection-dominated 

problems, approximating the derivatives by the five-point 

second-order central difference scheme (CDS) has a 

truncation error of order O( h2 ) but may produce 

nonphysical oscillations for large Re. Approximating second 

order derivatives by central differences and convective terms 

by upwind scheme (UDS) prevents oscillations but reduces 

the order of accuracy to O(h). The results obtained by UDS 

can be extended to second order accuracy by applying defect 

correction technique (DC) [14]. In this study, the results are 

also simulated with UDS and DC techniques with a large 

domain of 120.023 times the radius of the cylinder and 

compared with HOCS. The drag coefficients at Re = 40  in 

different grids are compared with the UDS and DC 

technique in Table 3. It can be verified from the table that the 

results obtained from UDS and DC are not grid independent 

even in 256 256  grid and hence the results are simulated 

over a high resolution grid of 512 512 , whereas HOCS 

achieves grid independence in a 64 64  grid. It is observed 

that the smallest possible grid for convergence of upwind 

scheme and DC at Re = 40  is 128 128 , while for fourth 

order HOCS, it is 16 16 . It is evident from Table 3 that DC 

technique improves the accuracy of the solution in 

comparison with UDS and the solutions obtained by both the 

schemes can be achieved by the computationally inexpensive 

32 32  grid by HOCS. This clearly illustrates the 

superiority of HOCS in comparison with upwind scheme and 

DC technique and can be concluded as follows. (i) HOCS 

can be used in large domains (ii) HOCS gives convergence 

even in coarser grids (iii) Results obtained by upwind 

scheme and DC technique in finer grids can be achieved by 

HOCS in coarser grids. 

 The surface pressure is calculated using the following 

relations: 

p( = 0, = ) = 1
4

Re 0
=1

d  (45) 

and 

p( = 0, ) = 1
4

Re 0
=1

d
4

Re

1

=0

d .  (46) 

 The surface pressure obtained by the above formula is 

presented in Fig. (1a). The surface vorticity is also presented 

in Fig. (1b). The pattern of these graphs is in good 

agreement with those presented by Dennis and Chang [26] 

and Fornberg [27]. The surface pressure at front and rear 

Table 1. Grid independence of Fourth Order Accurate Drag Coefficient Values 

 

 Re  16  16  32  32  48  48 64  64  96  96  128  128  

 20   1.67429   1.96844   2.01082   2.01832   2.02040   2.02049  

 40   0.89796   1.32116   1.45845   1.49321   1.50762   1.50965  

 
Table 2. Comparison of Separation Length, Separation Angle and Drag Coefficient Values with Literature for Re = 20, 40 

 

   Re  Ref. [26]  Ref. [27]   Ref. [28]   Ref. [9]   Ref. [29]  Ref. [30]  Present Results  

 20   1.88   1.82   1.842   1.77   1.92  --   1.797  
 L 

 40   4.69   4.48   4.49   4.21   4.51   --   4.383  

 20   43.7   42.9   42.96   41.328   42.79   --   42.891  
 s 

 40   53.8   51.5   52.84   51.025   52.84   --   52.734  

 20   2.045   2.001   2.152   2.060   2.111   2.05   2.020  
CD  

 40   1.522   1.498   1.499   1.530   1.574   1.57   1.510  
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stagnation points of the cylinder are in line with the results 

of Dennis & Chang [26] and Fornberg [27] as shown in 

Table 4. 

 The separation occurs initially at Re = 6.5  and the 

separation point increases with increase of Re  as expected. 

This is due to the increase of adverse pressure gradient in the 

out flow region with increase of Re  as illustrated in Fig. 

(2a). The transverse velocity gradients in the radial direction 

on the surface of the cylinder is presented in Fig. (2b) for 

0 < Re 40 , in which the point 
q

r
= 0  indicates the point 

of separation. The radial velocity gradient in the radial 

direction on the surface of the cylinder is also presented in 

Fig. (2c) wherein 
qr
r
< 0  in the wake region. To 

understand the superiority of the HOCS, the pressure, radial 

and transverse velocity gradients are computed on the 

surface of the cylinder and compared with upwind scheme 

and defect correction technique at Re = 40  as shown in Fig. 

(3a-c). It can be verified from Fig. (3a) that the HOCS 

captures pressure gradients up to the lowest value than other 

schemes. It can be noted from Fig. (3b) that the radial 

velocity gradient differs significantly with HOCS although 

there is not much difference in transverse velocity gradient 

(Fig. 3c). This difference resulted in slightly higher 

separation length 4.69 units and separation angle  53.08  for 

Re = 40  by upwind and DC techniques and significantly 

differs in drag coefficient as shown in Table 3. 

 The pressure is computed in the entire computational 

domain by solving pressure Poisson equation using HOCS 

and the fourth order accurate pressure fields are presented in 

Fig. (4a, b) for Re = 5  and 40 respectively. The surface 

pressure at front and rear stagnation points obtained from the  

pressure Poisson equation is also presented in the Table 4. 

These values are reasonably in good agreement with those 

obtained from vorticity (Relations (45) & (46)) and also with 

other literature values. 

 The heat transfer due to forced convection from a circular 

cylinder is analyzed by solving energy equation using HOCS 

on the nine point 2-D stencil. Numerical investigations were 

carried out for the Reynolds numbers in the range 

1 Re 40  and different values of Prandtl numbers ( Pr ) 

such that the Peclet number (Pe = Re.Pr)  is restricted to 

400. The heat flux q( )  from the cylinder to the fluid is 

computed using 

q( ) = k
Ts T

a

T

=0

 

where k  is the thermal conductivity. The local Nusselt 

number is defined by 

Nu( ) =
2aq( )

k(Ts T )
=

2 T

=0

 (47) 

and the mean Nusselt number as 

Nm = 0

1
Nu( )d .  (48) 

 In equations (47) and (48) the derivative 
T

 is 

approximated with fourth order finite differences. The 

calculated fourth order accurate mean Nusselt number values 

in the range 1 Re 40  for Pr = 0.73  are compared with 

the results of Kramers [31], Zijnen [32], Dennis et al., [33] 

and Lange et al., [34] in Fig. (5). The results are in 

agreement with the numerical results of Dennis et al., and 

the recent results of Lange et al., The calculated mean 

 

Table 3. Comparison of HOCS Drag Coefficient Values with UDS and DC Technique for Re = 40. Here NC Means No 

Convergence 

 

 Scheme   16  16    32  32    64  64  128  128    256  256    512  512    L  s 

 UDS   NC   NC   NC   1.228   1.365   1.437   4.69   53.08  

 DC   NC   NC   NC   1.232   1.368   1.439   4.69   53.08  

 HOCS  0.898   1.321   1.493   1.510   1.510   --  4.38   52.73  

 

Table 4. Comparison of Pressure at Front and Rear Stagnation Points Obtained from the Relations (45) & (46) and Pressure 

Poisson Equation with Other Literature Values. 

 

 Re   Ref. [26]   Ref. [27]   Using (45) & (46)   Poisson Equation  

   p(0)  p( )  p(0)  p( )   p(0)  p( )    p(0)  p( )   

 5   -1.044   1.872   --   --   -0.977   1.851   -0.954   1.874  

 7   -0.870   1.660   --   --   -0.821   1.645   -0.802   1.665  

 10   -0.742   1.489   --   --   -0.702   1.482   -0.686   1.497  

 20   -0.589   1.269   -0.54   1.28   -0.565   1.266   -0.555   1.274  

 40   -0.509   1.144   -0.46   1.14   -0.493   1.143   -0.491   1.142  
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Fig. (1). (a) Angular variation of the surface pressure for different 

Re and (b) Angular variation of the surface vorticity for different 
Re. 

Nusselt number values for Re = 2  at Pr = 50  and for 

Re = 20  at Pr = 5  are compared with the results of Kramers 

[31], Kurdyumov & Fernandez [35] and Juncu [36] in Table 

5. The results agree with the results of Kurdyumov & 

Fernandez and the recent numerical results of Juncu. 

 The dependance of mean Nusselt number on Re  and Pr  

are presented in Fig. (6). As Re  or Pr  increases, the mean 

Nusselt number increases as expected. The mean Nusselt 

number Nm  is found to vary with Re . This behavior can 

be seen in Fig. (7). The Colburn heat transfer factor (j) is 

calculated using the formula 

j =
Nm

Re(Pr1/3 )
 

 

Fig. (2). Angular variation of (a) pressure gradient (b) transverse 

velocity gradient (c) radial velocity gradient for different Re on the 
surface of the cylinder. 
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Fig. (3). Comparison of angular variation of (a) Pressure gradient 

(b) radial velocity gradient (c) transverse velocity gradient along 
the surface of the cylinder with other schemes. 

 

 

(a) 

 

(b) 

 

Fig. (4). Fourth order accurate pressure fields for (a) Re = 5 and (b) 
Re = 40. 

 

Fig. (5). Comparison of fourth order accurate mean Nusselt number 

Nm values with other experimental and theoretical results for 

various Re with Pr = 0.73. 

 Fig. (8) shows that Colburn heat transfer factor (j) varies 

linearly with Re  on log-log scale [37]. The angular variation 

of local Nusselt number on the surface of the cylinder is 

presented for Re = 5 , 40 with various values of Pr ; and for 

Pr =1 , 10 with various values of Re  in Fig. (9). At low Re  

( Re < 20 ), the local Nusselt number decreases along the 

surface of the cylinder [33, 38], where as for Re 20 , the 

local Nusselt number decreases along the surface of the 

cylinder until it reaches near the point of separation beyond 

which it increases in the far downstream [39, 40]. This is due 

to the separation and reversal of flow. It can also be noted 

that the maximum heat transfer takes place near the front 

stagnation point =  (Fig. 9). 
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Table 5. Comparison of Nm Values for Re = 2, Pr = 50 and Re 

= 20, Pr = 5 with the Literature Values 

 

 Re   Pr   Nm   Authors  

 3.8881   Kramers [31]  

 3.6314   Kurdyumov & Fernandez [35] 

 3.5930   Juncu [36]  

 2  

  

  

  

 50  

  

  

  

 3.6182   Present  

 4.9384   Kramers [31]  

 4.5960   Juncu [36]  

 20  

  

  

 5  

  

  
 4.6006   Present  

 

 

 

Fig. (6). Dependance of mean Nusselt number Nm on Re and Pr. 

 In the absence of exact solution, the rate of convergence 

of the results (drag coefficient CD , pressure at rear 

stagnation point p(0, 0)  and mean Nusselt number Nm ) are 

tested by forming divided differences d(CD ) / dh ,  

 

 

Fig. (7). Linear dependance of mean Nusselt number Nm on Re.  

 

Fig. (8). Colburn heat transfer factor (j) as a function of Re at 
different Pr. 

dp(0, 0) / dh  and d(Nm ) / dh  for Re = 40  with respect to 

step sizes h  of the data in Table 1. The decay of d(CD ) / dh , 

d(p(0, 0)) / dh  and d(Nm ) / dh  as function of h  is presented 

in Fig. (10) on log-log scale. Here, the value of 'h' in x-axis 

is taken as the average of step sizes of the grids 

corresponding to the divided differences. The slopes of the 

curves in Fig. (10) are in line with the dotted line of O(h3 ) . 

This shows that d(CD ) / dh , dp(0, 0) / dh , d(Nm ) / dh 0  

at the rate of O(h3 )  and hence the presented results are 

fourth order accurate. Here we have stopped our 

computations with the finest grid of 128 128  in which 

fourth order accuracy is maintained for momentum, pressure 

Poisson and energy equations. The increase of grid 

points/decrease of step size h  may degrade the accuracy of 

the results [41]. 
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 The fourth order compact scheme is combined with 

multigrid technique to enhance convergence rate so that CPU 

time can be minimized. Although multigrid methods are well 

established with first and second order discretization 

methods its combination with higher order compact schemes 

for coupled Navier-Stokes equations are not found in the 

literature especially with regard to cylindrical polar 

geometry. In order to verify the effect of the multigrid 

method on the convergence of the Point Gauss-Seidel 

iterative method while solving the resulting algebraic system 

of equations, the solution is obtained from different 

multigrids starting with five grids 8 8 , 16 16 , 32 32 , 

64 64 and 128 128  and by omitting each coarser grid 

until it reaches single-grid 128 128 . The computations are 

carried out on AMD dual core Phenom-II X2 555 (3.2 GHz) 

desktop computer. To verify the effect of multigrid method 

on restriction operators, the following nine point restriction 

(full weighting) operator [25] is also used in addition to the 

injection operator. 

 

 

 

Fig. (10). Decay of 
d

dh
 as a function of h where = CD , p(0, 0),Nm . 

Here the values of d(Nm ) / dh  and d(CD ) / dh  are respectively 

multiplied by 3 and 1.5 to avoid overlapping. 

 

 

Fig. (9). Angular variation of local Nusselt number Nu on the surface of the cylinder for different Re and Pr. 



Higher Order Compact Scheme Combined with Multigrid Method The Open Numerical Methods Journal, 2012, Volume 4    57 

(Rk
k 1uk )i+1, j+1 =

1

4
u2i+1,2 j+1
k

+
1

8
[u2i+2,2 j+1

k
+ u2i+1,2 j+2

k
+ u2i,2 j+1

k
+ u2i+1,2 j

k ]  

+
1

16
[u2i+2,2 j+2

k
+ u2i,2 j+2

k
+ u2i+2,2 j

k
+ u2i,2 j

k ]  

 This experiment is done with full weighting and injection 

operators for Navier-Stokes equations at Re = 20 . The CPU 

time (in minutes) taken in different multi-grids and single-

grid are presented for Navier-Stokes equations at Re = 20  in 

the Table 6. It is clear from the Table 6 that full weighting 

restriction operator takes slightly more CPU time than 

injection operator and the multigrid method with coarse grid 

correction is very effective in enhancing the convergence 

rate even when it is combined with higher order compact 

scheme. 

Table 6. Effect of the Multigrid Method on the Restriction 

Operator for Re = 20 

 

 CPU Time (Min)  

 No. of Grids  Fine Grid  Coarsest Grid  
 Nine  

Point  
 Injection  

 1   1282    1282    8.2688   8.2688  

 2   1282    642    8.7746   8.7628  

 3   1282    322    4.6254   4.6051  

 4   1282    162    4.5220   4.4817  

 5   1282    82    4.5109   4.4694  
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