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Abstract: In the present study, stability analysis of a multi-point slack moored buoy is performed under the action of 

wave and wind forces. The effect of non-linearities due to hydrodynamic damping, geometric nonlinearity due to mooring 

lines, nonlinearity due to restoring force and excitation force have been considered.. The dynamic analysis is done using 

time domain integration scheme. The wave force has been calculated using the Eatock Taylor and Hung’s approach while 

the fluctuating wind force has been considered as a sinusoidally varying force the amplitude of which has been obtained in 

conjunction with  IS:875-1987 (Part 3) Code. The approximate response of the system is determined by a two term 

harmonic balance method [1]. The stability analysis of the approximate solution is then performed using perturbation 

technique coupled with Hill’s variational equation and Floquet’s theory and the frequency ranges in which instability 

phenomena can occur are derived. Phase plots are obtained for finding bifurcation of solution like symmetry breaking 

bifurcation, period doubling bifurcation etc. Results are presented which illustrate the effects of the geometric nonlinearity 

of the mooring lines on the response of the buoy. 
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INTRODUCTION 

Ocean mooring systems include both single and multi 
point mooring systems. Multi-point mooring systems or 
spread mooring systems exhibit nonlinear behavior because 
of inherent nonlinearities in the system. These nonlinearities 
are produced either due to damping nonlinearity or due to 
nonlinearity in the restoring force or due to nonlinear 
excitation force or any combination of these. Amongst them, 
the nonlinearity of the restoring force generally leads to 
complex response behavior of the moored structure. The 
reason for the nonlinear restoring forces is the geometric 
nonlinearity or the catenary’s effect of the mooring lines. As 
the moored vessel undergoes large excitation due to a 
combination of wave, wind and current, some of the mooring 
lines slacken and others become taut, thus providing a net 
nonlinear restoring force to the vessel.  

The geometric nonlinearity of the mooring lines not only 
makes the problem nonlinear but may also lead to conditions 
of sub harmonic and super harmonic resonances, bifurcation 
of solutions and sensitivity to initial conditions. Therefore, 
the study of the response behaviour of the moored vessel 
needs a careful consideration of the consequences of the 
above factors. Phase plots are extensively used for finding 
bifurcation of solution like symmetry breaking bifurcation, 
period doubling, etc. 
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A few studies have been carried out on the nonlinear 

analysis of moored vessels under both wave and wind 

excitations. [2] carried out a study on nonlinear dynamic 

analysis of a moored vessel under wave forces in regular sea. 

[1, 3] presented a methodology for carrying out stability 

analysis of compliant structures under wave forces. They 

duly considered diffraction effect in the analysis. [4] carried 

out reliability analysis of taut and flexible mooring lines 

against instability. [5] introduced a linear, frequency-domain 

method for dynamic analysis to calculate large motions of 

slender structures such as towing and mooring cables and 

flexible risers. [6] studied the dynamic behaviour of tension 

leg platforms (TLP’s) under the simultaneous action of 

random wind and wave fields. [7] carried out dynamic 

analysis of compliant offshore structures under wave and 

wind excitations. [8] presented the state of art review of the 

compliant structures. [9] derived three theories of the low-

frequency dynamics of ships and disks moored with multileg 

mooring systems in deep water.  [10] carried out the analysis 

of offshore guyed tower platforms to wind and forces. The 

response analysis was performed by iterative frequency 

domain procedure. For obtaining the time histories of the 

wind velocity and water particle kinematics from their 

respective spectrums, Monte Carlo Simulation procedure 

was used. [11] studied the dynamic response of Tension Leg 

Platform in time domain to investigate the influence of 

nonlinearities due to hydro-dynamic drag force, variable 

cable submergence, long excursions and fluctuating wind 

together with the effect of coupling. Fluctuating wind was 

estimated using Emil Simiu’s wind spectrum for compliant 
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offshore structures. Random wind and wave were were 
modelled by Monte Carlo simulation.  

Although the above studies provide a good understanding 
of the nonlinear behaviour of moored vessel under different 
conditions of excitations, there are certain areas where more 
work is needed. One such area is the stability analysis of the 
moored vessel under the action of wave and wind forces. 
Therefore, in the present study, a methodology for the 
stability analysis is presented and then stability analysis of a 
moored buoy is carried out.  

FORMULATION 

Following assumptions and simplifications are made: 

(1) Sea waves are considered as regular sine waves. 

(2) Wind force is considered as a sinusoidally varying 
force. 

(3) Frequency of wave force and wind force is same. 

(4) The mooring system is a single degree of freedom 
system. 

(5) Motion of vessel is in surge (uncoupled) direction 
only. 

(6) The restoring force determined is approximated by 
a 5

th
 order anti-symmetric polynomial. 

System Modeling 

To derive the equation of motion of the system shown in 
the Fig. (1), the equilibrium of the geometric restoring forces 
and small body motion under wave and wind excitation has 
been considered. The equation of motion is given as under 

)sin()( 1 +=++ tFxRxCxM                    (1) 

Rearranging the equation of motion, Eq.1 yields the 
following first order autonomous equations.  

)sin()( 1 +=++ tfxrxx  ;   
M

C
= ,    
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F
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1 =  

 and 
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Where, M is the system’s mass including added mass; C 
is the damping, which also includes the hydrodynamic 
damping; R(x) is the displacement dependent non-linear 
restoring force; and F1 is the amplitude of wave or the wind 
force.  

The wave force is calculated using the Eatock Taylor and 
Hung’s approach [1987]. Wind is essentially a random 
phenomenon. In the present study wind force amplitude is 
calculated in conjunction with IS:875-1987 (Part 3).  

Mooring Restoring Force r(x) 

For obtaining the total mooring restoring force, 
formulation given by Oppenheim and Wilson (1982) is used. 
A 5

th
 order antisymmetric polynomial is used to represent the 

restoring force r(x) of the mooring system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). 
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The coefficients of polynomial are obtained as 

c1 = 0.03100    c3 = -0.007864  c5 = 0.004607  

The static force excursion relationship of the entire 
mooring system for the vessel is shown in Fig. (2). It is 
observed that antisymmetric polynomial closely describes 
the actual force displacement behaviour of the system. 
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Fig. (2). Restoring force with excursion. 

 
Approximate response of the system at different 

frequencies is obtained by solving Eq. (2) using Harmonic 
balance method (HBM). A two-term HBM solution is 
presented in the following section. 

HBM SOLUTION 

In the present study, approximate solution of equation of 
motion has been obtained by a well known Harmonic 
Balance Method (HBM). Considering two term solution for 
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HBM, let the solution of the equation of motion Eq. (2) be 
given by 

)  cos(3  )  cos(  )( 31 +++= tAtAtx                      (5) 

) t sin(3  3  )   sin( -  )( 31 ++= AtAtx                (6) 

) t cos(3  9  )  t cos( -  t)( 3

2

1

2
++= AAx          (7) 

Substitution of r(x),x, ,x and x  etc. in Eq (1) and 
equating like terms on L.H.S and R.H.S of equation gives 
four sets of nonlinear equations with four unknowns  i.e. A1, 

A3 ,  and .. Solving the set of nonlinear equations 
(Appendix I) by iterative Newton Raphson method [1], the 
unknowns A1, A3,  and  can be determined. Once these 
unknowns are obtained, the approximate response is given 
by Eq. (5) to Eq. (7)  

STABILITY ANALYSIS 

For a very strong nonlinear system under strong 
excitation, it is practically impossible to look into the 
problem of instability in totality. Examination of the subset 
of the problem is possible through analytical and numerical 
techniques. For not very strong nonlinear systems, various 
analytical methods have been forwarded for investigating 
these problems. For the mooring system, the nonlinearity 
mainly arises due to the geometric nonlinearity of the cables, 
which are the mooring lines. This geometric nonlinearity is 
neither very small nor it is too strong. Therefore, it may be 
possible to investigate the problem of instability of the 
mooring system by some analytical methods. 

The proposed method consists of first finding the fixed 
points for the equation of motion without excitation. Then 
the limit cycle response of the system under forced condition 
is established and the global stability of the system is 
performed.  The approximate response of the system is 
obtained by the harmonic balance method. Stability analysis 
of the approximate solution is then obtained using 
perturbation technique coupled with Hill’s variational 
equation and Floquet’s theory.  

GLOBAL STABILITY OF THE SYSTEM  

The potential energy P(x) of the system is given by 

= dxxrxP )()(                                  (8) 
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where C  is a constant  

The Hamiltonian energy H(x,y) is given by 

)(
2

),(
2

xP
y

yxH +=               (10) 

in which xy =  as defined before. 

Since the Hamiltonian is invariant for the autonomous 
system represented by Eq. (2), it is possible to write  

)()(
2

0

2

xPxP
y

=+                         (11) 

in which )( 0xP is a function of the initial condition. From 
Eq. (11), it follows that  

)]()]([2 0 xPxPy =                        (12) 

Eq. (12) shows that the system has phase diagram with 
stable centres in two-dimentional space, although it does not 
have any fixed point in three-dimentional space (x, y, ). 

Local stability analysis of the unforced linearized system 
yields a unique asymptotically stable sink since eigenvalues 
of the linearized system have negative real parts. 

i.e., 
2

42

2,1

±
=             (13) 

in which the linearized unforced equation is given by 

 01 =++ xcxx  
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1    and       c

M

C
==  

If the eigenvalues given by Eq. (13) are complex, then 
the sink is called a stable focus. 

For the forced system with small harmonic wave 
excitation, the limit cycle motion  about the fixed point is 
anticipated. The global stability of the system is performed 
by Liapunov function approach.   

For the undamped Hamiltonian system, a weak Liapunov 
function may be considered by subtracting the constant term 
C to the Hamiltonian energy given by Eq. (10). 

CxP
y

yxV += )(
2

),(
2

             (14) 

From Eqs. (9) and (14), V(0,0) =  0       

Differentiating V(x,y) with respect to t, we obtain the 
following nonlinear differential equation.  

dt

xdP
yy

dt

dV )(
+=                (15) 

Therefore, 0
)0,0(

=
dt

dV
   or    0)0,0( =V                  (16) 

Since )0,0(V and )0,0(V  are zero, therefore the origin is 

neutrally stable. 

If damping is accounted for, then a strong Liapunov 
function is found as 

)
2
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22 x

xyCxP
y
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Where   is the small constant multiplier 

][)(),( xxyxyxxxryyyxV ++++=          (18) 
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Since the system is unforced, from Eq. (2)  

yxry = )(                               (19) 

Substituting y  from Eq. (19) in Eq. (18) 

]})({[)(})({),( 2 xyyxrxyyxryxryyxV ++++=

 2)()( yxxr=                                  (20) 

Choice of  sufficiently small (0< < ) results in a global 
stable unforced system, where V(x,y) is  positive definite and  
dV/dt  0. 

For a forced system  

yxrfy = )(sin1
                        (21) 

Substituting the value of y  in Eq. (18) 

})(sin{),( 1 yxrfyyxV +=  

]})(sin{[)( 1
2 xyyxrfxyyxr +++                (22) 

Simplifying Eq. (22) 

2
1 )()(sin)( ),( yxxrfxyyxV +=              (23) 

),( yxV  is maximum when sin   = 1 and  the absolute 

maximum  value of ),( yxV  is 

1100

2

max
)()(),( yfxfyfxfyxxryxV ++++=  (24) 

Therefore, 

max

2
1 ),()()(sin)( ),( yxVyxxrfxyyxV +=   (25) 

For small f1 and in the neighbourhood of (x,y) = (0,0), 
solution of the systems remains bounded (dV/dt  0) and the 
limit cycle is globally stable for small excitation. Strong 
excitation and coexistence of solutions are examined by local 
stability analysis. 

LOCAL STABILITY OF THE SYSTEM 

Let xo(t) be the approximate solution obtained by HBM. 
Local stability of the approximate solution is determined by 
considering a perturbed solution given by 

)( )()( 0 t t  x tx +=                              (26) 

Differentiating with respect to time 
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Substituting for )( 0 +xr and rearranging terms, Eq. 
(29) becomes 
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From Eq. (2) 
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Therefore, Eq. (32) becomes 
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Eq. (33) can be written as 

0],[ 0 =++ xG                     (34) 

where 
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Linearizing the above variational equation yields a linear 

ordinary differential equation with a periodic coefficient 

)]([)]([ 00 TtxHtxH +=  

)]([ 0 txH  is defined  in the following manner. 

Differentiating Eq. (35) with respect to . 
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Expanding by Taylor series, ),( 0xG may be written as 
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),0(),0(),( 000 xGxGxG +=                    (38) 

where G represents 
d

xdG ),( 0  

Therefore, }53{0),( 4
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Substituting for ),( 0xG in Eq. (34) 
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Where ]53[
1
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2
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Expanding H[x0(t)] in a Fourier series )(H , leads to a 
general Hill’s variational equation [3]. 
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H
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The particular solution to the variational equation 

)()exp( tZt=  can be found by Floquet theory [13] with Z(t) 

= Z(t + T) and Z(t) = Z(t + T/2) for the symmetric solution. 

The unsymmetric solution results in non-zero odd harmonic 

components with a period doubled solution form Z(t) = Z(t + 

2T) in Eq. (43) 

The lowest order instability of the solution form Z(t) = 

Z(t + 2T) is obtained by inserting the period doubled 

)2/cos()( 2/1bt =  into Eq. (42). The boundaries of the 

unstable region are given by   

Table 1. Numerical Data Used in the Study 

• Buoy (dia,height,thickness)    

• Submerged depth of the buoy     
• Mass of the buoy             

• No of mooring lines                  
• Total length of each mooring line 

• Mass of the mooring line in water 
• Young’s modulus of mooring lines 

• Clamp length of the cable     
• Mass of the clamp in water        

•  Depth of the sea    
• Specific gravity of concrete     

 
• Initial angle of inclination 

• Initial horizontal tension   
• Structural damping 

• Basic wind speed                           

12.5mx10mx0.3m 

4.75m 
275957.5 kg 

6 
500m 

21 kg/m 
20.595 x 109 N/m2 

30m 
90 kg/m 

125 m 
 

2.4 
 

600 

19000 N 

3.25 % 
44 m/s 

 

Table 2. Wave Forces 

 

Wave 
Primary Wave Force F

(1)    

(N) 

Second Order Oscillatory Wave Force 

Fo
(2)

 (N) 

Total Second Order 

Wave Force F
(2) 

(N) 

5m/5s 333581.8 16833.41 20834.79 

12m/10s 1467107.79 94929.38 14818.91 

18m/15s 2201669.68 22076.60 3366.68 

 

Table 3. Hydrodynamics  

 

Wave 

Added Mass 

Coefficient 

cmi 

Hydrodynamic 

Damping 

Coefficient 

cdi 

Added Mass 

m  

(kg) 

Hydrodynamic 

Damping 

c  

N/(m/s) 

Total 

Damping 

C N/(m/s) 

Total Mass 

M 

(kg) 

 =C/ M 

5m/5s 0.253 0.130 151163.9 97604.09 100762.3 427121.44 0.2359 

12m/10s 0.2375 0.0225 141902.88 8446.51 11604.21 417860.38 0.02777 

18m/15s 0.226 0.02 135031.79 5004.54 8162.75 410989.30 0.01986 
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For the undamped system Eq. (46) simplifies to 

02 a . Proof of Eq. 46 is given in Appendix II. 

Symmetric solutions such as cos)( 10 Atx = , do not 

exhibit a period doubling phenomenon Z(t)  Z(t + 2T) but 

determine secondary resonances in which the Z(t) = Z(t + 

T/2). Such solution may be unstable and the instability is 

obtained by inserting the unsymmetric solution form 

)2cos()( 20 bbt +=  into Eq. (42). The unstable super 

harmonic region is given by 
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40
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2 22
8

1
aaaaaaaaa
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    (47) 

For the undamped system Eq. (47) simplifies to 

8/0a . Eq. (47) may be derived in the same way as it is 

done for Eq. (46). 

DISCUSSION OF THE RESULTS 

Fig. (3) shows the variation of maximum response 

(amplitude, A) of the moored buoy with frequency ( ) for 

 21 =f  and   = 0.02777. The responses are obtained using 

(i) harmonic balance method (ii) Adam’s integration scheme 

(with initial condition x, y = 0,0). For higher frequency (  > 

1.4 rad/sec), the variation of response obtained by the two 

methods is the same. For (  < 1.4 rad/sec), the amplitude of 

the response using harmonic balance method is smaller. As 

discussed earlier, the responses obtained by harmonic 

balance method are approximate. From the variation of 

response with frequency as obtained from the harmonic 

balance method, it is observed that the system shows some 

kind of instability for 0.35 <  < 0.83 rad/sec. Time domain 

solution also indicates some kind of instability in this region. 

From Hill’s equation, Eq. (47), the frequency range for 

which instability phenomenon are expected to occur is 

computed as 0.34 to 0.374 rad/sec. For  greater than 1.30 

rad/sec, system is expected to experience no instability 

phenomenon. 

For verifying the above, stability analysis has been 
carried out for three different regular sea-states namely (i) 
5m/5sec; (ii) 12m/10sec; and (iii) 18m/15sec. The wave 
periods are selected so that frequency of excitation lies in the 
range of 0.35 to 0.83 rad/sec i.e. periods ranging from 8 to 
20 sec in which instability phenomenon is expected to occur. 
Thus, regular sea states having periods 10 sec and 15 sec are 
expected to show some kind of instability. The numerical 
data, the wave forces and the hydrodynamics used in the 
study, are given in Tables 1, 2 and 3 respectively. 

The response of the system is obtained in the time 

domain using Adam’s time integration scheme. Time history 

of the responses and phase plots have been plotted for 

various forces. The system is stable if the time history of the 

response is periodic with the same time period as the 

excitation force and the system is not sensitive to initial 

conditions and the phase plot is symmetrical. Moreover, if 

the time history of the response is not periodic or periodic 

but the time period of the response is not same as excitation 

force and the phase plot is not symmetrical, then the system 

shows instability phenomenon. If the phase plots are not 

symmetric, then system shows symmetry breaking 

phenomenon. If the period of response is twice the period of 

excitation force, the system shows period doubling 
phenomenon. 

Responses Due to 5m/5sec Wave 

Figs. (4) and (5) show the response and phase plots 

respectively of the moored buoy for 5m/5sec wave due to 

first order wave force for the initial condition (x, y = 0,0). 

The steady state response is harmonic and phase plot is 

symmetrical. The maximum response is 0.32 m. It was found 

that even for the changed initial condition (x, y = 1,1), the 

steady state response and the phase plots have not changed. 

Thus, it can be concluded that for 5m/5sec wave, the moored 

system does not show any stability problem under primary 
wave force.  

Since the frequency of excitation is twice the frequency 

of the primary wave force, it is likely that the response of the 

moored system will not have any stability problem due to 

second order wave force. However, this is verified by 
examining the response and phase plots of the system. 

Response and phase plots of the buoy, when subjected to 
second order force are shown in Figs. (6) and (7) 
respectively for the initial condition (x, y = 0,0). The 
response due to total second order forces is larger than the 
response due to the first order force. This is due to the steady 
component (Fm) of the force. The maximum response is 
1.71m, while the maximum response due to primary wave 
force is 0.32 m. Response and phase plots for the changed 
initial condition (x, y = -1,0.5) were found to be identical to 
those found for the initial condition (x, y = 0,0) (Figs. 6 and 
7) indicating that the system remains stable under total 
second order force. 

The response and phase plots of the buoy when subjected 

to the total wave forces i.e. combination of first and second 

order wave forces are shown in Figs. (8) and (9) respectively 

for the initial condition (x, y = 0,0). From the Figs. (8) and 

(9), it is seen that the response is periodic and the phase plot 

is symmetrical. The maximum response is 2.03 m. Phase 
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Time integration
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Fig. (3). Variation of maximum amplitude (A) with frequency of 

excitation. 



Complex Dynamics of Slack Mooring System The Open Oceanography Journal, 2010, Volume 4    15 

plots for two other initial conditions (x, y = 1.0,1.0 and         

–1.0,0.50) are found to be identical. 

Response Under Wind Force 

The response and phase plots of the buoy when subjected 

to the wind force of frequency 1.2566 rad/sec are shown in 

Figs. (10) and (11) respectively for the initial condition (x, y 

= 0,0). From the Figs. (11) and (12), it is seen that the 

response is periodic and the phase plot is symmetrical. The 

maximum response is 0.22 m. 

Response Under the Combination of Wave and Wind 
Force 

The response and phase plots of the buoy when subjected 

to the combination of wave (5m/5sec wave) and wind force 

are shown in Figs. (12 and 13) respectively for the initial 

condition (x, y = 0,0). From the Figs. (12 and 13), it is seen 

that the response is periodic and the phase plot is 

symmetrical. The maximum response is 2.25 m. Thus, 

response is governed by wave forces. 
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Fig. (4). Time history of the response (x) due to primary wave force [5m/5s wave;(x,y)=(0,0)]. 
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Fig. (5). Phase plot of the response (x) due to primary wave force [5m/5s wave;(x,y)=(0,0)]. 
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Fig. (6). Time history of the response (x) due to total second order wave force [5m/5s wave;(x,y)=(0,0)]. 
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Fig. (7). Phase plot of the response (x) due to total second order wave force [5m/5s wave;(x,y)=(0,0)]. 
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Fig. (8). Time history of the response (x) due to the combination of primary and second order wave force [5m/5s wave;(x,y)=(0,0)]. 
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Fig. (9). Phase plot of the response (x) due to the combination of primary and second order wave force [5m/5s wave;(x,y)=(0,0)]. 
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Fig. (10). Time history of the response (x) due to wind force. 
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Fig. (11). Phase plot of the response (x) due to wind force. 
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Fig. (12). Time history of the response (x) due to the combination of total wave force [5m/5s wave] and wind force. 
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Fig. (13). Phase plot of the response (x) due to the combination of total wave force [5m/5s wave] and wind force. 
 

For a 5m/5sec wave, the response of the moored buoy 
does not show any stability problem for (i) the primary wave 
force (ii) the second order wave force and (iii) combination 
of the primary and second order wave force (iv) wind force 
and (v) combination of wave and wind forces.  

Responses Due to 12m/10sec Wave 

Fig. (14) shows the response of the buoy for a 12 
m/10sec wave for primary wave force with initial conditions 
(x,y =0,0). The maximum amplitude of the response is about 
5.25 m. The nature of response is periodic with a period of 
10 seconds. The phase plot of the response (Fig. 15) shows 
symmetry breaking bifurcation.This shows that there is a 

possibility of dynamic instability in the form of bifurcation 
of response although the response may be within the limits. 

The response of the buoy due to total second order force 
is shown in (Fig. 16) for the initial condition (x,y = 0,0). The 
response is periodic with maximum response equal to 1.74 
m. The significant increase in the maximum response is due 
to the presence of steady component Fm 

(2)
 of the second 

order force. The phase plot (Fig. 17) shows that the system is 
stable under the second order force for 10-second wave. This 
is expected since the second order force is a double 
frequency force having a period of 5 second for which the 
response was found to be stable. 
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Fig. (14). Time history of the response (x) due to the primary wave force [12m/10sec wave;(x,y)=(0,0)]. 

 

Fig. (15). Phase plot of the response (x) due to the primary wave force [12m/10s wave;(x,y)=(0,0)]. 
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Fig. (16). Time history of the response (x) due to total second order wave force [12m/10sec wave;(x,y)=(0,0)]. 
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Fig. (17). Phase plot of the response (x) due to total second order wave force [12m/10s wave;(x,y)=(0,0)]. 
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Fig. (18). Time history of the response (x) due to the combination of primary and second order wave force [12m/10s wave;(x,y)=(0,0)]. 
 

The response and phase plots of the buoy when subjected 
to total wave force, i.e. the combination of first and second 
order wave forces, are shown in Figs. (18 and 19) 
respectively, for the initial condition (x,y=0,0). It is seen that 
the response is periodic. The maximum response is about 
6.99 m. The phase plot (Fig. 19) shows symmetry breaking 
bifurcation. This was expected as primary wave force 
governs the response. Moreover, the wave frequency lies in 
the frequency bounds for which it was predicted that 
instability may occur Thus, there is a problem of instability 
due to (12m/10sec) total wave force.  

Response Under Wind Force 

The response and phase plots of the buoy when subjected 
to the wind force of frequency 0.6283 rad/sec are shown in 

Figs. (20) and (21) respectively for the initial condition (x, y 
= 0,0). From the Figs. (20) and (21), it is seen that the 
response is periodic and the phase plot is symmetrical. The 
maximum response is about 3 m. 

Response Under the Combination of Wave and Wind 
Force 

The response due to combination of total wave force 
(12m/10sec wave) and wind force is as shown in the Fig. 
(22). The response is periodic with maximum amplitude 
equal to about 10 m. The phase plot of the response (Fig. 23) 
shows symmetry breaking bifurcation under the combination 
of both wave and wind force. 

Thus, for the 12m/10sec wave, moored system exhibits 
problems of instability when it is subjected to either primary  
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Fig. (19). Phase plot of the response (x) due to the combination of primary and second order wave force [12m/10s wave;(x,y)=(0,0)]. 
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Fig. (20). Time history of the response (x) due to wind force. 
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Fig. (21). Phase plot of the response (x) due to wind force. 
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Fig. (22). Time history of the response (x) due to the combination of total wave force [12m/10sec wave] and wind force. 
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Fig. (23). Phase plot of the response (x) due to the combination of total wave force [12m/10sec wave] and wind force. 
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Fig. (24). Time history of the response (x) due to the primary wave force [18m/15sec wave;(x,y)=(0,0)]. 
 
or the combination of primary and second order wave force 
or the combination total wave forces and wind.  

Responses Due to 18m/15sec Wave 

From the characteristics of the approximate responses 
discussed earlier, it may be expected that the system would 

exhibit problems of instability for 18m/15sec wave. In order 
to verify it, the response and phase plots are obtained. 

Figs. (24) and (25) show the response and phase plots 
respectively of the moored system due to 18m/15sec primary 
wave for the  initial  condition (x, y = 0,0). Figures  show  the  
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Fig. (25). Phase plot of the response (x) due to the primary wave force [18m/15sec wave;(x,y)=(0,0)]. 
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Fig. (26). Time history of the response (x) due to total second order wave force [18m/15sec wave;(x,y)=(0,0)]. 
 
response to be sub-harmonic (T-periodic solution). The 
maximum response obtained is 5.30 m. As expected, for the 
18m/15sec wave, moored system exhibits problems of 
instability. 

Figs. (26) and (27) show the response and phase plots of 
the moored system due to second order wave force. The 
response is harmonic and the phase plot is symmetrical. For 
the changed initial condition (x, y =-1,0.5), identical response 
and phase plots are obtained. These plots are identical to 
those shown for the initial condition (x, y  = 0,0).  

Thus, the moored system does not show any instability 
problem under second order wave force for 18m/15sec wave.  

Response and phase plots for the wave forces comprising 
of both primary and second order forces have been plotted in 
Figs. (28) and (29) for the initial condition (x, y = 0,0). The 
maximum response is 9.40 m. The response, shown in Fig. 
(28), is periodic with a time period of 15 seconds. The phase 

plot (Fig. 29) represents symmetry breaking phenomenon. It 
is interesting to observe that the effect of second order wave 
force was to change the nature of phase plot from that 
observed for primary wave force alone. While the phase plot 
for primary wave force showed nT periodic solution, the 
phase plot for the combined action of wave force showed 
symmetry breaking. Thus, in this particular example, the 
second order effect contributed to change of instability 
phenomena (i.e. from nT periodic solution under primary 
wave force to symmetry breaking solution under the action 
of combined wave force). 

Response Under Wind Force 

Figs. (30) and (31) show response of moored buoy under 
the action of wind force of frequency 0.4188 rad/s. The 
figures show a period doubling phenomenon. The response 
is periodic with a time period of 30 seconds. The maximum 
amplitude is 3.8 m. 
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Fig. (27). Phase plot of the response (x) due to total second order wave force [18m/15sec wave;(x,y)=(0,0)]. 
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Fig. (28). Time history of the response (x) due to the combination of primary and second order wave force [18m/15sec wave;(x,y)=(0,0)]. 
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Fig. (29). Phase plot of the response (x) due to the combination of primary and second order wave force [18m/15sec wave;(x,y)=(0,0)]. 
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Fig. (30). Time history of the response (x) due to wind force. 
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Fig. (31). Phase plot of the response (x) due to wind force. 
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Fig. (32). Time history of the response (x) due to the combination of total wave force [18m/15sec wave] and wind force. 
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Fig. (33). Phase plot of response (x) due to the combination of total wave force [18m/15s wave] and wind force. 
 

Response Under the Combination of Wave and Wind 
Force 

Figs. (32) and (33) show response of moored buoy under 
the action of combination of 18m/15sec wave force and wind 
force of  frequency 0.4188 rad/s. The figures show a period 
doubling phenomenon. The response is periodic with a time 
period of 30 seconds. The maximum amplitude of the 
response is 13.2 m. Thus the moored system, as expected, 
show instability under the action of combination total wave 
and wind force. 

Thus, for 18m/15sec wave, the moored system exhibits 
instability problem when it is subjected to either primary or 
the combination of primary and second order wave forces or 
wind force or the combination of total wave force and wind 
force. 

CONCLUSIONS 

The stability of a moored buoy is investigated under 
regular sea-state and wind forces. Excitations due to primary 
(first order) wave force, second order wave force and a 
combination of the two, wind force and the combination of 
wave and wind forces are considered in the stability analysis. 
Both primary and second order wave forces are calculated 
using the procedure adopted by [12] which duly considers 
the effects of diffraction, added mass and hydrodynamic 
damping. Nonlinearity in the system causing the problem of 
instability, is offered by the nonlinear restoring force of the 
mooring lines. The nonlinear force-excursion relationship of 
the mooring system is represented by a 5th order 
antisymmetrical polynomial. Using the two term harmonic 
balance method [2], the approximate response of the system 
to harmonic excitations is obtained. The frequency ranges in 
which instability phenomena can occur are derived using 
Eqs. 46 and 47. Within this frequency range, various 
instability phenomena are shown to occur for the moored 
system. The stability analyses of the moored system are then 
carried out for three regular waves namely 5m/5sec, 
12m/10sec and 18m/15sec and wind forces of the same 

frequency. The results of the stability analysis lead to the 
following conclusions.   

1. For 5m/5sec regular wave and wind force of 
frequency 1.2566 rad/sec, the moored system is 
found to be stable under the action of first order, 
second order and the combination of first and second 
order wave forces (total wave forces), wind force 
and the combination of wave and wind forces. 

2. For a 12m/10sec regular wave, the system shows 
symmetry breaking bifurcation due to first order 
wave force but it is stable under  second order wave 
forces and wind force. The system shows instability 
problem due to the combination of primary wave 
force and total second order wave forces. This may 
be due to the fact that primary wave force governs 
the motion. Instability occurs under the combination 
of wave and wind force. 

3. For an 18m/15sec regular wave, the system shows 
sub harmonic response due to primary wave force, 
whereas the system is stable under total second order 
wave force. The system shows symmetry breaking 
bifurcation due to total wave force, wind force and 
combination of wave and wind force. 

4. For 12m/10sec and 18m/15sec regular waves, the 
system is found to be stable when subjected to 
second order wave force. 

5. Thus, the instability phenomena (period doubling or 
symmetry breaking bifurcation etc.) observed under 
the combined action of primary and second order 
wave forces for 12m/10sec and 18m/15sec regular 
waves are not due to the natural consequences of 
second order effects. However, for 18m/15sec 
regular wave, the second order effect contributed to 
change of instability phenomena (i.e. from nT 
periodic solution under primary wave force to 
symmetry breaking solution under the action of 
combined wave force). 
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6. Wind forces with lower frequencies can create 
problems with the stability of the structure, as is seen 
with the case when wind force frequency is reduced 
from 1.2566 rad/sec to 0.4183 rad/sec. 

7. The responses due to wind generally vary from about 
10% to 50% of the response obtained due to total 
wave forces. 

8. The response of the buoy is generally governed by 
wave forces. 

APPENDIX I 
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APPENDIX – II 

Derivation of the Stability (Frequency) Bounds 

Hill’s equation is given by 
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where  represents differentiation with respect to t. 

After substitution, Eq. (83) becomes 
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Substitution of the above values in Eq. (87) leads to 
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Substitution of the values of Z(t), 
 

Z (t )  and 
 

Z(t) in Eq. (90) leads to 
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                 (94) 

Considering only values of k = n = 1 in the series term of Eq. (94). It will give 2T period doubled solution with a0 and a1 

coefficients only.  

2

4
sin(

t

2
+ ) cos +

2

4
cos(

t

2
+ )sin + cos(

t

2
+ ) cos +

sin(
t

2
+ )sin + { 2

+ 0 + 2 1 cos( t + )} {sin(
t

2
+ ) cos

cos(
t

2
+ )sin } = 0                                                                                             

                (95) 

Separating out sin(
t

2
+ )  terms from Eq. (95) and equating to zero, leads to following equation 

sin + ( 2
+ 0

2

4
)cos 1 cos = 0                                          (96) 

Separating out )
2

cos( +
t  terms from Eq. (95) and equating to zero, leads to following equation 

cos ( 2
+ 0

2

4
)sin 1 sin = 0                                    (97) 

Multiplying Eqs. (96) and (97) by   sin and   cos respectively and adding 

2 1 sin cos = 0                                                 (98) 

Therefore, sin 2 =

1
                                                   (99) 

and cos 2 = 1 sin2 2  =  
1
2 2 2

1

                                      (100) 

Multiplying Eqs. (96) and (97) by cos   and sin   respectively and subtracting 

{ 2
+ 0

2

4
) 1(cos2 sin2 } = 0                                (101) 

Therefore,  cos 2 =

0 +
2

2

4

1

                                        (102) 

Equating Eqs. (100) and (102) 

1
2 2 2

1

  =   
+

1

2
2

0
4                                       (103) 

Squaring both sides of Eq. (103) 

( 0

2

4
)2 +

4 2 2 ( 0

2

4
) = 1

2 2 2
                                     (104) 

Simplifying Eq. (104) 
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4 2 2 ( 0

2

4
) +

2 2
1
2

+ ( 0

2

4
)2 = 0                                    (105) 

or 
2

= ( 0

2

4
) ± ( 0

2

4
)2 { 2 2

1
2

+ ( 0

2

4
)2 }                                  (106) 

For unstable condition 
2 0  

0})
4

({)
4

()
4

( 2
2

0

2

1

222
2

0

2

0 =+±
                                             (107) 

Squaring and simplifying Eq. (107) 

0
2

+

4

16
0

2

2
=

2 2
+ 1

2
                                             (108) 

Since at the unstable regime,  = 0, therefore by Eq. (89), 
2

=  

Substituting the value of   in Eq. (108), it becomes 

4 4 2 (2 0
2 ) + 16 0

2 16 1
2

= 0                                   (109) 

Solution of the quadratic equation in 
2

 leads to 

2
=

4(2 0
2 ) ± 4 (2 0

2 )2 + 4( 0
2

1
2 )

2
                                    (110) 

Substituting the values of 0  and 1  from Eq. (89) 

2
= 2[( a0

2 ) ±
4 2 2a0 +

2a1
2 ]                                       (111) 
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