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Abstract: The 1-, 2-, and 3-dimensional structures obtained from conjugated rings of carbon atoms are reviewed. They 
include finite small and large molecules (benzenoids, collarenes, beltenes, cyclacenes, cyclophenacenes, Möbius analogs, 
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I. INTRODUCTION 

 Benzenoids have a long history as prototypical “aro-
matic” species, involving delocalized bonding. Indeed there 
have been different theoretical perspectives to describe aro-
maticity, including the classically based ideas of E. Clar [1], 
on which we focus here. But with the great variety of new 
conjugated-carbon nano-systems in the last few decades 
some extensions of Clar’s ideas are needed, with a natural 
starting point being the interpretation of Clar’s ideas in a 
quantum theoretic perspective, perhaps most directly by way 
of Pauling-Wheland resonance theory [2, 3]. Thence such an 
extension is sought here, mostly in a qualitative format. 

I.1. Theoretical Perspective 

 Pauling and Wheland’s theory of benzenoid molecules 
goes back a few decades before Clar’s seminal publication, 
and has been much more thoroughly investigated in a quanti-
tative mode, though still relatively meager compared to mo-
lecular-orbital (MO) theory. Indeed even for resonating va-
lence-bond theory, which is closely related to Clar’s ideas, it 
has only been in the last few decades that quantitative treat-
ments have been made for the case of extended systems. 
First, about 3 decades ago, there were some resonating VB 
computations on polyacetylene [4]. Then soon after, there 
followed a resonating VB treatment [5, 6] of the electronic 
structure of a general “armchair” class of benzenoid poly-
mers – for which a suggestive 3-periodicity of behavior as a 
function of the polymer strip width was found. Indeed this 
periodic behavior was indicated and verified to be reflected 
[7, 8] in the Hückel model description of this same (infinite) 
class of polymers. And later in carbon nano-tubes much the 
same 3-periodicity was observed [9], with 1/3 of the nano-
tubes being conducting. Yet further the triple periodicity 
appears also in some form in the leap-frog characterization  
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of fullerenes, particularly the icosahedral-symmetry ones 
[10]. Recently, several authors have briefly discussed the 
Clar-Kekulé structuring in armchair nano-tubes, finding a 
correlation of properties to a 3-periodicity [11-17], but with-
out an explanation of why the correlation should be of the 
form it is – indeed often a comment is made that the correla-
tion is backward from what is (by these authors) imagined 
would be expected from Clar’s classical theory [1]. In par-
ticular, the nano-tubes with 0-band-gaps are the ones for 
which they interpret Clar’s theory to say that the HOMO-
LUMO gap is large. In fact, the above authors make several 
assumptions beyond Clar, who does not mention HOMO-
LUMO gaps, but rather speaks of chemical reactivity. Here a 
clear (but typically unmentioned) difference appears between 
Clar’s (finite) benzenoids and the bucky-tubes these more 
recent authors consider: Clar’s favored benzenoids are those 
where the “Clar sextets” tend to be frozen into place by the 
boundaries, while the bucky-tubes have no such boundaries 
to freeze in the locations of the Clar sextets. The seeming 
counter-correlation (involving HOMO-LUMO gap) for ex-
tended conjugated-carbon networks is out of step with Clar’s 
wide success for finite benzenoids. Further with Clar’s the-
ory being viewable as a special case of resonating VB the-
ory, this counter-correlation would seem out of step with the 
overall concurrences otherwise found amongst resonating 
VB theory, MO theory, and experiment, at least in applica-
tions to finite benzenoids, to fullerenes, and even to a select 
few of the extended systems [4-8] such as already noted, as 
well as some further systems also.  

I.2. The Exciting Realm of Conjugated Carbon Nano-
Structures 

 The literature of conjugated carbon nanostructures has 
grown considerably over the last few decades, starting with 
the development of polyacetylene [18] and also other conju-
gated-carbon polymers (such as poly-para-phenylene) [19-
22]. Upon the discovery and study of polyacetylene, doped 
versions were prepared and found to behave as “synthetic” 
metals (H. Shirakawa [23], A. G. MacDiarmid [24], and A. 
J. Heeger [25]), and many related polymers followed, with 
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an extensive growth of the theory as well. This was seen to 
herald a new possibility of molecular engineering of differ-
ent sorts of nano-circuits. There was perhaps an even more 
dramatic nano-structural extension to fullerenes, first with 
their detection and characterization [26] (R. F. Curl Jr. [27], 
H. W. Kroto [28], and R. Smalley [29]), soon followed by 
their preparation (W. Krätschmer, D. R. Huffman, and co-
workers [30]). And then further, nano-tubes (S. Ijima [31, 
32]) were developed, with a general belief following that 
these were to be centrally important in the design and con-
struction of nano-devices – as incredibly strong supports, 
and with the possibility of either conduction or semiconduc-
tion. Then additional related nano-structures were prepared: 
nano-cones (M. Ge and K. Sattler [33]) and nanotori (R. 
Smalley and coworkers [34]). At the same time, the classical 
field of molecular benzenoids was extended to ever larger 
molecules (Müllen and coworkers [35]) and nano-belts (J. F. 
Stoddart with coworkers [36-40], and other authors [41-50]). 
But still more developed, with the characterization of differ-
ent types of edges for graphite, and finally the preparation, 
manipulation, and study of single graphene sheets (first 
made by Geim and Novoselov [51, 52]; see also refs. [53, 
54]).  

  All these various discoveries have triggered the 
publication of numerous reviews, books, and journals (too 
many to enumerate), concerning fullerenes, nano-tubes, 
nano-cones, nanotori, cyclacenes, cyclophenacenes, their 
Möbius counterparts, and graphene. Throughout all of this 
the theoretical treatments of such extended nano-structures 
have almost always been completely within an MO-band-
theoretic framework. And further there are a number of types 
of structures which seem not to have yet been realized. 
Really the whole range of possibilities has somewhat an ap-
pearance of different topological mathematical possibilities 
for (locally Euclidean) surfaces embedded in space – just 
with hexagon-rich networks embedded on these surfaces. 

 But even before this fantastic flurry of the last few dec-
ades, there is a long history of benzenoids corresponding to 
small planar polyhex molecules – that is of the benzenoids, 
which were seen as the prototypical example of delocalized 
bonding and “aromaticity”. Indeed this idea of “aromaticity” 
seems to be perennially developing, with a special issue of 
Chemical Reviews recently devoted to the subject [55], but 
not containing all the different viewpoints. One theoretical 
high point of the theory of benzenoids is found in the books 
of Pauling [56] and of Wheland [3], and yet another high 
point of the development of simple ideas for benzenoids is 
found in Clar’s simple ideas [1]. Indeed Clar rather neatly 
explains (and even predicts) qualitative aspects of several 
molecular properties – including chemical reactivity, 1H-
NMR chemical shifts, conjugated C–C bond lengths, and 
electronic absorption spectra. And again in the more recent 
few decades most treatments of benzenoids have devolved to 
MO-theoretic considerations, the simplest following 
Hückel’s (also now “old”) ideas. And again even a much 
greater proportion of the theoretical work on conjugated-
carbon nano-structures has been via MO-based approaches. 
That Clar’s ideas have so far been so little successfully con-
sidered for these novel nano-structures seems peculiar – and 
especially there has been practically no reasonable attempt to 
suitably extend his considerations to the characterization of 

properties including HOMO-LUMO gap, electronic conduc-
tivity, or magnetic susceptibility of such species.  

I.3. Current Overall Aim 

 Thus it seems appropriate to examine Clar’s ideas care-
fully with a view to their extension to the new conjugated-
carbon meso-scale nano-systems, and beyond. Indeed we 
have recently already made some of this extension to link 
such ideas [57-59] with Pauling-Wheland resonance theory 
[2, 3] and also to apply [60] such an extended Clar theory to 
meso-scale nano-structures. Thus here we review and yet 
further extend such ideas in the framework of a systematic 
generalization of Clar’s ideas beyond finite benzenoids, to 
attain a fairly comprehensive perspective of conjugated 
nano-structures. For instance, we find that there are sextet-
resonant species (also frequently called “all-benzenoid” or 
“fully benzenoid” species) which, in contrast to Clar’s finite 
benzenoids, do not have their Clar sextets localized, and 
have new “emergent” properties. We show that upon folding 
graphene sheets into various 3D-carbon nanostructures, the 
properties of the resulting meso-scale structures depend on 
the congruence or incongruence of overlap of Clar sextets 
from a parent graphene sheet. But also in such foldings to 3-
dimensional structures (strips cut from graphene, nano-tubes, 
nano-tori, nano-cones, etc) various sorts of “defects” natu-
rally enter into the picture, so that they need to be appropri-
ately incorporated in the extended theory. If after such opera-
tions the overlapping Clar sextets coincide, then special 
properties of the congruently-folded 3D structures become 
manifest. In geometrical terms, the result of the operation (i. 
e., yielding a 3D-structure) and the structure’s properties 
depend on two integer vector-components h and k (h  k) 
manifesting a 3-periodicity of the difference h k . The 
analysis encompasses a very wide range of conjugated-
carbon species based upon benzenoids or graphene. In the 
present review, conditions for electronic conduction and for 
reactivity in polymers and graphene are noted in the context 
of this qualitative extended Clar-theoretic picture. 

II. FUNDAMENTALS OF CLAROLOGY 

 Here it is intended to describe first Clar’s classical ideas, 
especially with attention to their relation to the quantum me-
chanically based resonating VB ideas of Pauling and Whe-
land [2, 3, 56] though often this connection is not pursued. 
But such a connection naturally provides an indication of the 
direction to be taken for a quantum-theoretically consistent 
extension of Clar’s ideas. 

II.1. Clar’s Ideas  

 Clar developed classical ideas of “aromaticity” to a sim-
ple elegant form which yet made diverse predictions, surpris-
ingly reasonably for the case of conjugated benzenoid mole-
cules for which he illustrated his scheme [1]. Clar’s ideas 
may be viewed as a refinement of the classically based ideas 
of Armit and Robinson [61, 62] from 1922, such as indeed 
Clar said was the case. In Clar’s approach Kekulé structures 
are “condensed” so far as possible into “aromatic sextets”. 
More formally, one considers coverings of the -centers in 
terms of two types of disjoint subgraph components: 6-
cycles (or sextets); and lone pairings (i.e., edges) between 
adjacent centers. This is done so that amongst the pairings, 
no triple occurs around a hexagon – if such a so-called con-
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jugated 6-circuit were to occur it would be recast as an aro-
matic sextet (i.e., as a Clar-cycle). Thus for naphthalene 
there are two such Clar structures, each with a sextet for one 
ring and two pairings remaining in the neighboring ring. See 
Fig. (1), where following Clar, the ring associated to a sextet 
is indicated with a circle inscribed within the hexagonal ring. 
One benzenoid may have Clar structures with different num-
bers of sextets, with those Clar structures having a maximum 
number of sextets being favored. These thus-favored Clar 
structures are here termed sextet-maximum. Thus for triphen-
ylene in Fig. (2), there are two Clar structures with the first 
one in the first formula with the maximum of 3 sextets 
significantly favored over the second one with but a single 
sextet.  

 

Fig. (1). Two equivalent Clar structures of naphthalene, each con-
taining the three Kekulé structures. 
 

 

Fig. (2). Two nonequivalent Clar structures for triphenylene; only 
the first has three Clar sextets. 
 
 Clar gave special attention to an exceptional class of ben-
zenoids with a Clar structure consisting entirely of sextets. 
These were identified by Clar as especially stable, especially 
aromatic, and we have termed them sextet resonant. They 
have been also called "all-benzenoid", “fully-benzenoid”, 
and “total-resonant sextet”, though here and in a recent arti-
cle [60] we term them claromatic. For the class of finite 
molecules, the sextet covering is unique, and each ring of the 
benzenoid is either "full" or "empty" in correspondence with 
this sextet covering. In a recent paper, for such sextet-
resonant structures the triangulated sextet-dualist and the 
anti-sextet dualist have been introduced [63]. The latter is 
formed by points at the centers of “empty” rings and by lines 
connecting such points when they correspond to condensed 
benzenoid rings (i.e. rings sharing one edge). As an illustra-
tion, Fig. (3) shows the anti-sextet dualist for the sextet-
resonant hexa-peri-benzocoronene (which was displayed 
with its sextet-resonant Clar structure on the cover of Clar’s 
book [1]). 

 For the general case of Kekuléan benzenoids, Clar par-
ticularly correlated the (sextet-maximum) Clar structures 
with molecular properties, primarily chemical reactivity (for 
electrophilic reactions), thermal stability, bond lengths, 1H-
NMR chemical shifts, and UV/optical spectra. The more 
highly reactive positions were identified as the positions 
where lone (bond) pairings were located, and these bond 

lengths were identified as shorter (more like those of local-
ized double bonds), and any hydrogen atoms attached thereto 
manifested 1H-NMR chemical shifts like those attached to 
localized double bonds. More recently the quantum-chemical 
NICS aromaticity index [64-66] has been found to correlate 
well in a qualitative sense with full and empty rings in the 
sextet-maximum Clar structure, and quantitative correlations 
have been demonstrated [58] when using the whole collec-
tion (including sextet-nonmaximum Clar structures). Indeed 
such work using the full set of Clar structures has also been 
found [58, 67] to correlate quantitatively with resonance 
energies, as computed by different suitable methods. Indeed, 
(especially sextet-maximum) Clar structures show some cor-
relation with a range of different aromaticity indices, both 
local and global. 

 

Fig. (3). Anti-sextet dualist graph for hexabenzo-coronene.  
 
 But again Clar's ideas (framed in a qualitative manner) 
were developed in the context of benzenoid molecules, and 
typically fairly small non-radicaloid ones. For these species 
the lone double bonds in the sextet-maximum Clar structure 
are typically on the boundary, e.g., such as where electro-
philic reactions would be plausible and where there were H-
atoms to chemically shift their 1H-NMR levels. Thence it is 
plausible that if the sextets and double bonds are not so lo-
calized on the boundary, then there may be some modifica-
tion to Clar's argumentation. And notably it is precisely these 
altered circumstances which apply not only to radicaloid 
species but also to many perfectly stable extended nano-
structures – to graphene, to nano-tubes, and to nano-cones. 

II.2. Clar Sextets in Chemical Graph Theory 

 In fact a certain amount of attention was paid to Clar’s 
theory, with its incipient novel graph-theoretic definitions 
and ideas. Clar’s ideas presented by way of illustration were 
thus formalized, with definitions and a few associated con-
sequences. For example, Clar structures were defined [5, 68-
71] much as above, but on the other hand several authors 
defined [72-74] Clar structures to be what we term the “sex-
tet-maximum” Clar structures, in as much as these were 
clearly illustrated by Clar as the more important. The Clar 
number C has been defined as the maximum number of sex-



30    The Open Organic Chemistry Journal, 2011, Volume 5 Klein and Balaban 

tets, and sometimes related polynomials were introduced. 
Often schemes were devised to identify families of “sextet-
resonant” benzenoids (being those with Clar sextets and no 
remnant double bonds). But seldom in most of this work 
were correlations drawn to connections either to other well-
founded theoretical pictures or to experiment.  

II.3. Relation to Resonance Theory 

 In fact, some of the motivations of Pauling and Wheland 
were rather like those of Clar, in that they saw how to for-
malize previous classical ideas, such as those of Armit and 
Robinson. The part of their motivation which was different is 
that they believed that they saw how to connect [2] this clas-
sical work to a quantitative quantum mechanical description, 
in terms of a covalent-space valence-bond model, and par-
ticularly to use a resonating VB basis of states (following 
Rumer [75, 76]). But the then-current difficulty of solution 
of this model drew them to suggest resonance theoretic solu-
tions in terms of neighbor-bonded Kekulé structures, and 
ultimately even more simply (especially in Pauling’s mas-
terwork [56]) to deal just with enumerations of such Kekulé 
structures.  

 Indeed it is natural to view each Clar-sextet to be com-
prised from two Kekulé sub-structures involving the two 
possibilities for conjugation around the ring of the Clar sex-
tet. That is, for naphthalene, the Pauling-Wheland resonance 
theory would consider the three Kekulé structures 

a
, 

b
, 

and 
c

 depicted in Fig. (4), and this natural view of Clar 

structures would take the two respective Clar structures 
I
 

and 
II

 of Fig. (1) to correspond to 
a b
+  and 

b c
+ . 

The ground-state so interpreted in terms of Clar structures 
then would be 

I II
+ , which of course is just 

2
a b c
+ + . There are in fact different approaches which 

indicate this central 
b

 to be more important than 
a

 and 

c
. This 

b
 is an example of a Fries structure [77] de-

scribed (for benzenoids) as a favored Kekulé structure mani-
festing a maximum number of conjugated 6-circuits. Fries 
described such favored Kekulé structures as the best by 
which to describe a benzenoid, with bonds tending some 
towards localization as indicated by his Fries structures. 
Such a structure with a maximum of conjugated 6-circuits is 

unique for cata-condensed species [78], but otherwise there 
generally are more than one. In the Pauling-Wheland VB 
theory, the weight of 

b
 for naphthalene is bigger than that 

for 
a

 and 
c

, but in fact much smaller than 2 (it has a 

weight of 1.15 ). But for the resonance theoretic model of 
Simpson [79], one finds a slightly larger relative weight for 

b
, around 1.25 . Also an improved VB model [80] gives 

such a slightly higher weight. Yet further the Clar-sextets 
need not entail equal weights of the pair of Kekulé substruc-
tures with different conjugations around the considered ring 
– say with the Clar structures of naphthalene being non-
symmetric as indicated by arrows, which as in Fig. (5) indi-
cate the possibility of a Clar sextet to move, while all the 
others remain fixed. Thus for instance, the Clar sextets of the 
first structure of triphenylene in Fig. (2), would not entail 

any such arrows, while the second structure would. That 
there is some ambiguity of agreement evidently appears to 
depend on just exactly what one understands by a Kekulé 
structure, with there being a quite wide range of views, and 
what it should be for application of Clar-theoretic ideas has 
not yet been well explored.  

 

Fig. (4). The three Kekulé structures of naphthalene (the Fries 
structure is denoted by b). 
 

 

Fig. (5). Modified (arrowed) Clar structures, for naphthalene. 
 
 One view [57] of Clar’s theory [1] is that it provides a 
classically based motivation for the structure-resonance the-
ory of Herndon [81, 82] or conjugated-circuits theory of 
Randi  [83-85] for computing resonance energies of benze-
noids, and even related molecular species with a few 4- or 5-
membered rings. Indeed this theory has been used fairly 
widely on ordinary molecular species, as well as on 
fullerenes [86-89] and there are several papers dealing with 
polymers [90-95] and extended 2-dimensional systems [96, 
97]. 

 A general view of Clar’s theory is [99] that it operates 
with a reduced-size space in which to model each conju-
gated-carbon network. In fact, one may view Clar’s theory to 
provide but one of a sequence of models, with the Herndon-
Simpson model (associated with conjugated-circuits theory) 
to precede it in terms of the size of the structure space, and 
preceding this in terms of the size of the structure space is 
the full-covalent space Pauling-Wheland VB model, and yet 
further preceding this is the covalent-ionic space VB model. 
The situation is summarized in Fig. (6), and the final resul-
tant Clar-theoretic model is anticipated to be similar to that 
described by Herndon and Hosoya [99]. But here rather than 
focusing on such a quantitative model Hamiltonian, or re-
lated invariants representing expectation values, we try to 
approach the problem in a manner somewhat like Clar’s (and 
Pauling’s less mathematical more chemical presentations) to 
seek immediate qualitative insight, covering wide classes of 
materials, especially of the novel nano-structural type.  

II.3. Extension of Clar’s Theory 

 For general application to conjugated-carbon nano-
structures it is natural to consider some further properties 
and further circumstances where the sextets (and possibly 
lone spin-pairings) are not localized, say due to a boundary. 
As to 1H-NMR chemical shifts, our extended nano-structures 
without boundaries then have no H atoms to manifest chemi-
cal shifts. As to bond lengths, without localization of sextets 
(and lone spin-pairings) there is no fluctuation in bond 
lengths. And similarly NICS ring aromaticity indices should 
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have smeared out aromatic values. Finally resonance ener-
gies should retain much the same correlation as in benze-
noids with localized sextets and lone pairings in their Clar 
structures – that is, the resonance energy should increase 
with the number of sextets, and also should be slightly en-
hanced through their delocalization. This last point indicates 
that boundary-less sextet-resonant species are of higher 
resonance energy per site than for the conventional (highly 
stable) sextet-resonant benzenoids where sextets tend to be 
frozen in place. Thence the sextet-resonant nano-tubes with 
zero-band-gap should have the greatest resonance energy, 
and possibly similar distinctions apply for nano-cones.  

 Clar’s arguments might even be sought to be quantified, 
as we have done in application to ordinary benzenoids [58], 
and even benzenoid radicals [59]. In particular, averages 
over Clar structures including those with non-maximum 
numbers of Clar sextets were needed to attain good quantita-
tive agreement. This can be notably relevant when the sextet-
maximum is unique, while at the same time there are very 
many Clar structures with but slightly fewer aromatic sex-
tets. That is, though a Clar structure's weight increases with 
the number of sextets, those with fewer than the maximum 
number still contribute (even as indicated by Clar) and can 

perhaps even dominate if their number is suitably larger. 
Moreover, this effect can be further exaggerated for extended 
systems as it turns out that the boundary facilitates the freez-
ing in of aromatic sextets if things are otherwise favorable. 
This final qualification here is usually irrelevant for ordinary 
benzenoids, where almost all rings are at or near the bound-
ary. However, for extended species with a large fraction of 
the rings away from the boundary, the pattern which the 
boundary would tend to freeze in aromatic sextets might turn 
out to be inconsistent with the pattern of their delocalization 
in the (bulk) interior.  

 It should be emphasized that for Clar’s “high-lighted” 
sextet-resonant benzenoids, the simplified zero-order aver-
ages based on the single sextet-resonant Clar structure may 
be expected to be quite reasonable so long as the system is 
small enough that a major portion of it is on the boundary. 
That is, for such a system (as in Fig. 2), a sextet-non-
maximum Clar structure 

( )b
C  turns out to have especially 

fewer sextets than can otherwise occur with systems which 
are not sextet-resonant. To see this, note that in a sextet-
resonant molecular benzenoid such a structure 

( )b
C  must 

have a sextet in a position which is “empty” in the favored 

 

Fig. (6). Hierarchy of models.  
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Clar structures 
( )a

C  (consisting only of sextets) whence the 

three adjacent which are full in 
( )a

C  must be empty in 
( )b

C , 

so that there is a net cost of two Clar sextets. In contrast for 
systems which are not sextet-resonant the net cost from a 
sextet-maximum Clar structure can be just one. See, e.g., 
phenanthrene in Fig. (7), where the approximation neglect-
ing the sextet-non-maximum Clar structures is less severe as 
involving a cost of just one sextet. This then makes a more 
severe correction to the bond and ring indices noted in the 
two preceding paragraphs, e.g., as seen on comparing Fig. 
(7) to the previous triphenylene results of Fig. (2). Thence 
Clar’s singling out of the sextet-resonant species as excep-
tional is further supported. 

 

Fig. (7). Two nonequivalent Clar structures for phenanthrene; only 
the first has two Clar sextets. 
 
 The argumentation is a little more subtle for reactivity 
and especially its oft-assumed correlation to HOMO-LUMO 
gap. Basically we argue that the direct correlation to HOMO-
LUMO gap is naïve – that is, just because there are no local-
ized double bonds in a sextet-maximal Clar structure, there is 
no immediate rationale for a large HOMO-LUMO gap. Gen-
erally even if the HOMO-LUMO gap is small, the reactivity 
for electrophilic reactions need not be necessarily high – the 
reactivity being governed by local values of a reactivity in-
dex, which can have a large sum over all vertices while be-
ing small at all local positions. That is, the reactivity towards 
electrophilic agents is to be correlated to a high bond order 
(at the boundary), which does not occur if there is no bond 
localization, regardless of the HOMO-LUMO gap. E.g., 
though the HOMO-LUMO gap is zero for graphite, or in-
deed for any metal, these substances do not always act like a 
(zero-gap) radical species. Actual reactive radical species, in 

addition to having a small HOMO-LUMO gap, also have 
(thermally accessible) unpaired spin density concentrated on 
a few sites. Such species should (within an MO framework) 
have a notable local density of states for energies near the 
Fermi energy ( = 0 for the simple Hückel model) if a species 
is to be so radicaloid. Or returning to the question of electro-
philic reactivity, this is predicated upon localization of local-
ized double bonds, such as may be induced by boundaries, 
but also perhaps if somehow a degree of localization of un-
paired sites occurs. A large band gap occurs with localization 
of sextets. Further a small band gap occurs either with local-
ized unpaired spins, or possibly with suitably extensively 
delocalized bonding, such that slight local modifications of 
the manner of delocalization can lead to an excited state of 
very nearly the same energy.  

 The question of electronic conduction within a resonating 
VB framework (such as is so close to Clar’s ideas) can be 
addressed by either adding or removing an electron, and ex-
amining whether there is any subsequent cost of the reso-
nance energy. This idea is elaborated by way of illustration 
in the benzenoid polymer section.  

 The consideration of unpaired electrons and associated 
magnetic properties takes one yet a little farther from Clar’s 
discussion [1]. And this extension is delayed to the radi-
caloid section.  

III. “ZERO-DIMENSIONAL” STRUCTURES: MOLE-
CULES 

 It seems proper to provide some brief discussion of 
Clar’s ideas in his original realm of work, on the benzenoids 
of say a dozen rings or less – i.e., on systems with no dimen-
sion of great extent. Even in this regime if the species is 
radicaloid, Clar gave less discussion, so that some discussion 
of this case needs to be addressed. 

III.1. Benzenoid Molecules 

 These somewhat extended ideas of Clar may now be ap-
plied to different classes of nano-structures. As already noted 
in the Introduction, there are a great variety of these to which 
Clar's ideas have been little applied, including polymers, 
semi-infinite graphite, vacancy defected graphite, nano-
tubes, defected nano-tubes, and more. Most of our ameliora-

 

Fig. (8). Peri-fused benzenoids with hexagonal symmetry having 7 rings (coronene), 19 rings, and 37 rings. 
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tion of Clar’s ideas extends consideration to HOMO-LUMO 
gaps and unpaired spin density, and a main structural elabo-
ration concerns the influence of boundaries. Thus the situa-
tion, which notably differs from what Clar considered [1], 
involves a lot of boundary. In the two preceding sections 
there are found typical examples for a couple of smaller ben-
zenoids (with relatively fractions of the rings on a boundary). 
But even if one considers benzenoids which traditionally 
would be considered rather large, say such as the hexagonal-
symmetry 7-, 19-, and 37-ring benzenoids of Fig. (8), it turns 

out that they still have a considerable fraction of rings on the 
boundary: namely 6/7, 12/19, and 18/37 for the three benze-
noids of Fig. (8). 

 Clar's ideas and related arguments may be more compre-
hensively tested by considering some other extended nano-
structures which differ from those of Clar in being infinite 
(or even finite if they manifest unpaired electrons). This we 
do in the following, starting with those which retain a degree 
of similarity with the systems considered by Clar in having a 

 

Fig. (9). Some of the large claromatic benzenoids synthesized by Müllen and coworkers. 
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significant extent of boundary (in comparison to the number 
of carbons). 

II.2. Claromatic Benzenoids 

 Again these are the (exceptionally stable and aromatic) 
benzenoids for which there is a Clar structure which consists 
entirely of Clar sextets. In fact many such exceptionally sta-
ble hydrocarbons have been recently synthesized and studied 
by Klaus Müllen and his coworkers, as illustrated in Fig. (9) 
[35]. Their stability have made possible their formation by 
Scholl- and Kovacic-type dehydrogenations [20] leading to 
the formation of dozens of new C–C bonds in a single step, 
exemplified by eliminating H2 from ortho-terphenyl to form 
triphenylene. 

 In principle, long strips of claromatics can be cata-
condensed (Fig. 10) or peri-condensed (Fig. 11). For peri-
fused strips one can imagine a synthetic approach (Fig. 12) 
modeled after Mandelbaum’s known method for obtaining 
triphenylene derivatives [100]. On the theoretical side, there 
has been much work on different chemical graph-theoretic 
characterizations of Claromatic benzenoids, as referenced in 
Balaban and Schmalz [63] The nontraditional and extended 
structures of focus here have rather infrequently been con-
sidered from Clar’s point of view, though we have recently 
begun such considerations [58] with some further related 
elaboration here. 

 

Fig. (10). Cata-condensed claromatic strips. 

 

Fig. (11). Peri-condensed claromatic strips. 
 

II.3. Benzenoid Radicals 

 Clar [1] was very brief in considering radicaloid species, 
but really his ideas apply fairly well [59] in this context also. 
Here structures with unpaired electrons are entertained, such 
as for perinaphthyl as in Fig. (13). Then in addition to bond 
orders (and ring aromaticity indices), counts for unpaired 
electrons are appropriate, with the consequent Clar free va-
lence for a site i being 

CFV ( )
i C iC

A w u C=
 

with 
C

w  and A as before, and ui(C) the number (= 0 or 1) of 

unpaired electrons on site i in Clar structure C. The bond-
order and ring-aromaticity indices remain much as before. 
For the first of the summary structures of Fig. (13), the com-
ponent structures are listed in Fig. (14), along with the con-
tributions for the Clar-based bond order, free valence, and 
ring aromaticity for each one of these contributing compo-
nent structures. Thence for peri-naphthyl one Clar-based 
obtains overall free valences, bond orders, and ring aromatic-
ity indices as in Fig. (15). The Pauling bond orders in this 
case come out to be similar (but slightly different when the 
two Kekulé structures with an unpaired electron in the center 
site are taken into account).  

 As another example, note the benzyl radical which has 
just a single sextet-maximum structure, which if used to 
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Fig. (12). Putative approach to synthesizing cata-condensed polymer strips via Diels-Alder reactions, to be followed by reductions and 
dehydrogenations. 
 

 

Fig. (13). Representation of radicaloid Clar structures of the perinaphthyl free radical. 

compute these various indices give the results in Fig. (16). 
But it is emphasized that if we were to include the three dif-
ferent structures with no Clar sextet rings (involving a dou-
ble bond directly from the ring to the benzyl radical), a 
modification to this is obtained, but we are faced with an 
assignment of relative weights of different structures with 
different numbers of Clar sextets.  

 Typically only structures with a minimum of unpairing 
are considered, as when dealing with Kekulé structures, for 
ordinary finite polyhex structures. That is, peri-naphthyl 
structures with triples of unpaired electrons are not consid-
ered. This rule though is not firm, especially in dealing with 
larger systems where the introduction of some small extent 
of unpairing achieves a much greater freedom in the remain-
ing mode of pair (and sextet) formation. This is addressed 
later in the next section. 

The Clar free valence (CFV) is related [59] to the Clar bond 
orders (CBO) thusly 

@
1 CFV CBO

i

i ee
= +

 

where the sum is over edges incident to site i. This is in close 
analogy for the Pauling free valences and bond orders. 

 A further point is that in what might be termed "typical" 
radicals, the unpaired electrons occur solely on sites of one 
type, starred or unstarred. But this does not always occur, as 
for the bis-perinaphthyl species of Fig. (17), where the 
maximum-paired Clar structures are indicated – and it is 
seen that one unpaired electron is on a starred site while the 
other is on an unstarred site.  

IV. “ONE-DIMENSIONAL” CASE: POLYMERS 

 The case of polymer strips provides a nice beginning to 
the consideration of nano-structures, where not only unpair-
ing can occur, but also properties such as magnetic suscepti-
bility and electrical conduction become relevant.  
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Fig. (14). Resolution of the first radicaloid structure of Fig. 13. Here the 1st row gives the resolution, the 2nd row gives bond order assign-
ments for each corresponding structure of the 1st row, and the last row gives corresponding free valence assignments. 
 

 

Fig. (15). Results in the 1st row for the 1st of the summary structures of Fig. 13 (obtained by averaging the results in Fig. 14). The 2nd row here 
is for the average over all the three summary structures of Fig. 13. 

IV.1. Benzenoid Polymer Strips 

 Benzenoid polymers with boundaries on opposite sides of 
a polymer "chain" or "strip" have comparably as much 
boundary (per C atom) site as ordinary benzenoid molecules. 
Thence there is an opportunity for extensive freezing-in of 
sextets and lone pairings. This may be approached by way of 
example. 

 First, consider poly-para-phenylene, which is readily 
seen to be sextet-resonant as seen in Fig. (18). Evidently 
each ring is aromatic while the intervening bonds are near 
single, which is in agreement with ordinary resonance the-
ory, VB theory, and also with Hückel MO theory. Just as for 
finite-molecule benzenoids, one can expect the species to be 
stable with a large band-gap, which indeed is the case at the 
Hückel and higher levels [98]. 
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Fig. (16). The sextet-maximum Clar structure of the benzyl free radical. Along with bond order, free valence, and ring aromaticity indices, 
assuming negligible contribution from the sextet-maximum Clar structures. 
 

 

Fig. (17). The maximum-paired Clar structures for the diradical bis-perinaphthyl. 
 

 

Fig. (18). Poly-para-phenylene. 

 One “wider” benzenoid polymer has a uniform width of 
one hexagon, with armchair edges. This is not sextet-
resonant as seen from the Clar structure of Fig. (19) with 
alternating rings containing lone pairings. Of course, here 
there are different Clar structures with many sextets but ap-
pearing in different rings, so that there is no overall sextet 
localization. The overall effect (at least in the interior away 

from the ends) might be viewed in terms of two sextet-
maximum Clar structures: one as in of Fig. (7), and a second 
with the sextet rings displaced one position along the chain. 
Then Clar bond-orders in terms of these two sextet-
maximum Clar structures are as in Fig. (20).  

 Furthermore, from our slight extension of Clar’s ideas, 
still to the case of the long poly-para-phenylene polymer, 

 

Fig. (19). A poly-phenacenic benzenoid strip with a uniform width of one hexagon. 
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Fig. (20). Maximum-sextet Clar bond orders for the polyphenacenic polymer of Fig. (19). 
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one may argue that the band-gap is not zero here, in that if it 
were, then conduction of electrons would be facile. But even 
within a Clar-theoretic framework it can be seen that conduc-
tion is not favored. That is, if we introduce a site with an 
extra electron as in Figs. (21a-21d), on either a starred or 
unstarred site, while otherwise drawing in a fully paired Clar 
structure, something very interesting happens: namely, the 
pairing pattern on one side from this singular negative site is 
forced such that there are no sextets (while there are sextets 
on the other side). That is, with the introduction of such an 
electron the occurrence of sextets is sacrificed so that much 
resonance is eliminated, and consequently there is a signifi-
cant energy cost to the introduction of the extra electron, and 
there is a notable gap. This too is in agreement with more 
conventional resonance theory [7, 8] and also with Hückel 
MO theory [7, 8] and beyond [98], the Hückel band gap be-
ing 0.344 | |. And it is emphasized that this is not in dis-
agreement with experimental results concerning the conduc-
tivity of doped poly-para-phenylene, in as much as in this 
case there is a fixing of the number of electrons away from 
one -electron per carbon atom – and at present we focus on 
the electrically neutral (non-ionized) regime.  

 The next wider species in this sequence is a polymer a 
uniform width of two hexagons, still with armchair edges. 
As seen in Fig. (22a), this species is sextet resonant, and 
moreover the sextets are localized, so that again considering 
just this sextet-maximum Clar structure, one obtains the Clar 
bond orders of Fig. (22b) limited to consideration of the sex-
tet-maximum structure. Again a great similarity is seen. Fur-
ther as concerns conduction, again consider the introduction 

of an extra electron, for which its site is internally paired, 
and one continues to otherwise draw in a Clar structure with 
a maximal number of Clar structures, whence one obtains a 
result like that of Fig. (23) depending on whether the new 
electron is introduced on a starred or unstarred site. Notably, 
no matter how the electron is introduced, the Clar pattern on 
one side or the other of the extra electron has half the density 
of sextets as for the undefected chain, and again there is a 
resonance energy cost, so that from the point of view of 
resonance theory the system should not be conductive. 
Moreover, Hückel theory gives a band gap of 0.494 | | so 
that also the system is predicted in this MO picture not to be 
conductive. That the system is sextet resonant indicates a 
high degree of stability to reactions (i.e., aromaticity in the 
classical sense) and a high resonance energy, as is consistent 
with conjugated-circuit computations on this polymer.  

 The yet next wider species is a polymer with a uniform 
width of three hexagons, still with armchair edges. This spe-
cies is no longer sextet-resonant, and has a sextet-maximum 
Clar structure as in Fig. (24a), and the arrows attached to the 
sextet circles indicate that they may move about from the 
ring at the tail of an arrow to the ring at the head of an arrow, 
whence one perceives that there are many such sextet-
maximum Clar structures. In fact there are many more not 
found from Fig. (24a), as indicated in Fig. (24b), where the 
multiplicity of structures is only partially manifested and the 
sextets are localized. Both types of sextet-maximal Clar 
structures of (a) and (b) have the same density of sextets, at 

 

Fig. (21). The poly-phenacenic benzenoid strip having a uniform width of one hexagon as in Fig. 19, but with one extra p-electron on a 
"starred site" in (a) and (b), and on an "unstarred site" in (c) and (d). 
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Fig. (22). A benzenoid strip with a uniform width of two hexagons, allowing a sextet resonant Clar structure having only Clar sextet rings and 
empty rings in (a). Then consequent Clar-like bond orders in (b) are shown with thick lines for those with value 1/2 and thinner lines for 
those with value 0. 
 

 

Fig. (23). The benzenoid strip with a uniform width of two hexagons plus one -electron. 

one per column of the polymer. But the two types of Clar 
structures are very different in another way – namely in 
terms of the total Clar-bond order for horizontal bonds in any 
column, it being 1 for the structures of Fig. (24a), while for 
24(b), it is 2. That is, these two sets of Clar structures in 
Figs. (24a) and (b) for a very long polymer are different in 
every column, and so can not be changed from one class to 
the other without making changes in every column. That is, 
these two sets of Clar structures must be (essentially) non-
interacting, and the proper averaged bond-orders for the 
ground state should come from just one of these classes – 
which class it is depending on a computation of the (reso-
nance) energies associated to each of these classes. Here the 
two classes should manifest similar (resonance) energies 
since each has the same density of sextets.  

 To understand a little more clearly what is going on, note 
that the structure of 24(b) is of the same class of 25(a) or 
25(b) – even though there is a difference in every other col-
umn (as to the placement of the sextet rings). The equiva-
lence of 24(b) and 25(a) arises because there are step-by-step 
“local” changes (from one Clar structure to another) which 
can be made, each resulting structure being in the same 
(equivalence) class as the one before, all in such a way that a 
whole string of such locally changing structures may be 
identified, starting with 25(a) and ending with 25(e). [Here a 
“local” change is understood to mean just a shifting of a 
(small) finite number of bonds and or rings around.] To illus-
trate this we note: the first step in such a local change in Fig. 
(25b) where the structure of 25(a) has been changed locally 

to have one new Clar sextet moved to the new row of 25(a); 
and a second step in such a local change is found in 25(d); 
and after a long sequence of such local steps, a next to last 
step before arriving at 25(a) is shown in 25(e). Notice that 
these various local motions do not change the number of 
horizontal -bonds in each of the columns – all such local 
changes (which do not introduce unpaired electrons) pre-
serve the number of such horizontal -bonds per column, so 
that 24(a) and 24(b) are in different such equivalence classes. 
Here the two classes [one of 24(a) and the other of 24(b)] 
should manifest similar (resonance) energies since each has 
the same density of sextets, and each seems to manifest no-
table resonance (amongst a number of different locally dif-
fering Clar structures). Thence to render a distinction, a more 
detailed computation is warranted. To distinguish which of 
the two equivalence classes is more stable one could apply 
conjugated resonance theory, or quantitative Pauling-
Wheland resonance theory, to yield that the class of 24(a) is 
the more stable.  

 An average Clar bond-order over even just the sextet-
maximum structures is not fully trivial, but one immediately 
sees that the sum of the horizontal bond orders in each col-
umn is 1, while the sum for the diagonal bonds in either of 
the two directions is 2. For considerations on conduction and 
band-gap something interesting happens, as illustrated in 
Fig. (26), where one sees that the introduction of a single 
extra electron in fact leads to a manifestation of what is oth-
erwise a Clar structure such that on one side of the electron it 
looks like it is associated to that of the class of Fig. (24a) 
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Fig. (24). A benzenoid strip with a uniform width of three hexagons: classes (a) and (b) have different horizontal bond orders per column, 
namely 1 and 2, respectively. 
 

 

Fig. (25). Strips with width of three hexagons belonging to the same class with bond order per column equal to 2. 
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while on the other side it appears like that associated to the 
class of Fig. (24b). And because as we have already decided 
that these two distinct classes have similar sextet densities 
and energies, there should not be much cost to the introduc-
tion of the extra electron. That is, the gap should be small, 
notably smaller than for the previous two cases, again in 
agreement with corresponding resonance theory computa-
tions [6], and also with the simple Hückel result [8] of zero 
for the band gap. [The simple Huckel theory is a 0-order 
approximation, which in this case should be lifted with better 
band-theoretic computations – there being many (other) 
cases where the 0-band gap is not lifted in higher orders be-
cause of symmetry – it being understood that the gap can be 
lifted with a distortion to a lower symmetry which does not 
preserve the 0-band gap. Indeed this is part of the message of 
the theory of Peierls distortions, which however we do not 
pursue here. But for a connection of this theory with VB 
rationales such as pursued here see ref. [7]. 

 One can proceed on up, to ever wider strips of the se-
quence begun with Fig. (18) (for 1 hexagon width), Fig. (22) 
(for 2 hexagons width), and Fig. (24) (for 3 hexagons width). 
There emerges a pattern of period 3: for hexagon-width w = 
3n – 1 the polymers are sextet resonant, with localized sex-
tets, and a relatively large band gap; for hexagon width w = 
3n there are two sextet-maximum classes with delocalized 
sextets, and a small band gap; and for hexagon-width w = 3n 
+ 1 there is a single class of sextet-maximum Clar structures 
with delocalized sextets, and a notable band gap. Moreover, 
both within the simple Hückel MO theory [9] and the sim-
plest resonance theory [7, 8] this pattern of band gaps is re-
produced. And yet further the simple Kekulé-structure enu-
merating resonance theory yields this same pattern of classes 
(of Kekulé structures rather than Clar structures). 

 Of course there are many possible benzenoid polymers 
other than the sequence described in the preceding five para-
graphs. But in fact for every single one of the cases we have 
investigated, the consilience with Kekulé-structure-
enumerating resonance theory and simple Hückel theory 
persists. This includes another infinite class manifesting a 
similar period-3 oscillation between the three types of behav-
iors noted in the preceding paragraph – this class is that 
again with armchair boundaries, but columns alternating in 
width between two values which differ by 1. Another class is 
that with polyacenic zigzag edges and deserves consideration 
under a separate category of benzenoid polymers, with espe-
cially low densities of sextets, so that we attend to this in the 
next section. 

 The mode of prediction of conductive band gap via the 
use of Clar structures deserves some more general attention, 

along with the associated circumstance found for the width-3 
polymer of Fig. (24) regarding the two equi-energetic but 
non-interacting classes of Clar structures. This really is a 
manifestation [7] of a "long-range order (LRO)", such as is 
of the same sort which distinguishes different thermody-
namic phases. But regardless of this, it is very easy to iden-
tify (if one knows what to look for). To this end, it can be 
shown that the considered sum of bond orders for horizontal 
bonds dividing a polymer identify the different LRO classes 
to which Clar structures belong (at least for any alternant 
network such as are all benzenoids). Indeed for any dividing 
set of parallel bonds in any direction the different bond order 
sums correspond to different classes.  

IV.3. Radicaloid Polymers  

 There are many radicaloid benzenoid polymers to which 
Clar's ideas follow much the same pattern of prediction indi-
cated in the examples given here, though one may need to 
take a some care in listing all the Clar structures, and one 
looks to see how what occurs in one monomer unit affects 
what appears in neighboring monomer units. For instance, 
for poly-(meta-phenylene-methylene) that can also be called 
poly(meta-benzylidene), there is the possibility of having an 
aromatic sextet in a monomer in just one way, with the un-
paired electron occurring on the methylene bridge as in the 
first entry in Fig. (27), though there are 7 ways in which the 
unpaired electron can be moved from the bridge into an ad-
jacent ring, as in the later parts of Fig. (27).  

 

Fig. (27). The different local resonance patterns possible in a long 
poly(meta-benzylidene) chain. 

 

Fig. (26). The benzenoid strip with a uniform width of three hexagons as in Fig. 24 plus one -electron. 
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 Of these 8 monomer arrangements without an aromatic 
sextet: 3 (denoted by B ) involve transferring one unpaired 
bridge electron from the bridge on the left of a ring, 3 (de-
noted by B

¬
) involve transferring one unpaired electron into 

the ring from the bridge on the right, and 1 (denoted by B  ¬) 
involves transferring unpaired electrons from both adjacent 
bridges. Thence, further denoting the monomer arrangement 
with the no unpaired electrons transferred into a ring by B , 

we have 4 types of local Clar structures, and there are only 
certain possibilities for the type of ring which may follow a 
given one: 

B B B B B

B B B B B

B B B

B B B

+ + +

+ + +

+

+
 

 That is, following an A-type any one of the types of rings 
may follow, whereas following a B

¬
-type there may only 

follow A and B
¬
 types, which do not involve an unpaired 

electron from the intervening bridge being transferred into 
the following ring, as it has already been transferred into the 
preceding ring. Thence the number 

1# ( )
N+

of Clar structures 

in an 1N + -ring chain such that the last ring is of type  is 

given by 

1

1

1

1

# ( ) # ( )3 3 1

# ( ) # ( )3 3 1

# ( ) # ( )0 3 0

# ( ) # ( )0 3 0

N N

N N
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N N

x

x

x

x

+

+

+

+
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where also we have introduced a weight x  when the result-
ing 1N + th ring is a Clar sextet. That is, to obtain the literal 
(unweighted) Clar-structure count, one should take 1x = , 
whereas if one were to seek Kekulé-structure counts, one 
should take 2x =  (corresponding to the two ways to conju-
gate around a Clar-sextet ring). But other weights might be 
relevant in a quantitative treatment, and a derivative with 
respect to x  provides an elegant way to average numbers of 
Clar sextets in the various rings (with of course the weight 
x  favoring different structures differently). Also other aver-

ages, say as to the location of the unpaired electrons might 
be handled similarly. This indeed leads to a transfer-matrix 
approach to deal with such long polymers, as has been dis-
cussed in a fairly general context elsewhere [92]. 

IV.4. Non-maximum Pairing, Incipient Radicalism, and 
Defected Polymers.  

 There are examples of where say for a Kekuléan struc-
ture, it may be worthwhile to introduce a few unpaired elec-
trons, so as to obtain many more resonance structures. That 
is, in suitable circumstances the stabilizing effect of the 
resonance may overwhelm the destabilizing cost of the un-
paired electrons. A prototypical example of this is provided 
by the case of the polyacenes. For instance, for tetracene 
there are four Clar structures with a single Clar sextet and no 
unpaired electrons, while there are six Clar structures with 
two Clar sextets and two unpaired electrons. In this case 
there is not very much gain in the number of resonance 
structures by unpairing electrons to gain an extra Clar sextet, 
so that these extra structures do not make overly great con-
tributions to the ground-state wave-function. But as one goes 
to higher N-acenes, the situation changes notably. The num-
ber of single-sextet Clar structures in N-acenes is N while the 
number of double-sextet structures (with 2 unpaired elec-
trons) is 21

12 ( 1) ( 2)N N N , as is illustrated in Fig. (28) 

(for the case of tetracene). Thus the ratio between the dou-
ble-sextets and the single sextets is (N–1)2(N–2)/12, and 
eventually, for sufficiently large N, the number of double-
sextets becomes overwhelming: 

rings single-sextets

double-sextets

# #  1    2    3    4    5     6      7       8      9      10    11      12

                 #   0    0    1    6   20   50   105   196   336   540  825   1210

N = = =

=  

 That is, the double-sextet structures with 2 unpaired elec-
trons eventually come to dominate, and the structure appears 
diradicaloid. This is, in fact consistent with much more 
elaborate ab initio quantum chemical computations – that is, 
they reveal that the ground-state approaches (say as N in-
creases through 6, 7, 8) having two singly occupied MOs, 
with a low-lying triplet pairing of these 2 MOs also possible. 
Moreover, the present argument reveals that for large enough 
N, it is appropriate to describe the polyacenes as polyradi-
caloid, with a number of unpairings increasing in proportion 
to N. Of course, the reactivity of such radicaloid species in-
creases rapidly, so that the experimental situation finds hex-
acene as the highest well-characterized (but very reactive) 
species.  

 Organic chemists know that anthracene and the espe-
cially higher N-acenes undergo easily addition of hydrogen 
and halogens at meso-positions, they form moloxides with 
oxygen from air (i.e., with a peroxide linkage between two C 
atoms) or meso-quinones, and react with dienophiles. The 
longest stable acene known till now with several specially 

 

Fig. (28). Radicaloid Clar structures in an acene with an even number 2n (n = 2) of benzenoid rings.  
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devised bulky substituents has nine benzenoid rings [101]; 
the unsubstituted nonacene was obtained by photo-
generation in argon matrix at 30 K [102]. 

 This result might be contrasted with a stable species rich 
in fully paired Clar-structures (and Kekulé-structures), such 
as the armchair chain of hexagons, for which a Clar structure 
has already been indicated in Fig. (29). Here there is basi-
cally no opportunity to introduce more Clar sextets, though 
one can obtain additional structures with unpaired electrons 
if one sacrifices one of the Clar sextets. In particular, for a 
chain of 2 1N n= +  hexagons, one sees that there is a single 
sextet-maximum Clar structure with n + 1 Clar sextets, and 
that any one of them might be sacrificed to give structures 
with unpaired electrons, so that the number of diradicaloid 
structures one short of the maximum number of Clar sextets 
is ~ ~n N . Here it is noted that the two unpaired electrons 
cannot be far separated (for a lone unpaired electron induces 
a change from one long-range-order class to another, as dis-
cussed in conjunction with Fig. (26), which costs a number 
of Clar sextets proportional to the distance), till one switches 
back to the Clar-structure-rich phase with the second un-
paired electron. For the present case, switching between two 
phases is indicated in Fig. (30). That is, not only can one not 
introduce an additional Clar sextet by adding unpaired elec-
trons, but one in fact one loses one Clar sextet, while one 
gets back only ~ N  resonance structures.  

 

Fig. (29). Diradicaloid Clar structure of a zigzag fibonacene with 
2n + 1 (n = 2) benzenoid rings. 

 Another sort of circumstance occurs when at the end of a 
long polymer the pattern of termination does not match up 
correctly with the Clar-sextet-rich phase of the bulk of the 
polymer chain. This can be simply illustrated by a circum-
stance, such as indicated in Fig. (31), where a (small) poly-
para-phenylene chain of just 6N =  links is imagined to 
have each end with a lone bond. The result is seen to be 

Kekuléan – but with only a single Kekulé structure, as indi-
cated. The point is that there are many more Kekulé struc-
tures, and indeed a 6-Clar-sextet Clar structure as also indi-
cated. Thence at least for a sufficiently long chain the Clar-
sextet-rich structure will be favored (with much more sextet 
resonance). Indeed this is supported by MO-band-theoretic 
computations [103,104].  

 In fact such occurrences at the ends of benzenoid poly-
mer strips can be anticipated to be typical – because of the 
long-range order already noted to be present in such strips.  

V. “TWO-DIMENSIONAL” STRUCTURES 

 The two-dimensional structures considered here are those 
based largely on graphene, and are generally imagined to be 
confined to a plane, though they need not fill it, and though 
they need to have two distinct directions of large (e.g., ap-
proaching infinite) extent. 

IV.1. Graphene  

 One might seek to see if ideas similar to that of the pre-
ceding section apply to localized defects in graphene, but 
first it is appropriate to address simple extended bulk gra-
phene. Large portions of graphene (monatomic-thickness 
graphite flakes) have been first made by mechanical ap-
proaches out of natural graphite by Geim, Novoselov and 
coworkers [51,52] and these flakes have proved to have es-
pecially novel electronic conductivity, along with other fas-
cinating properties, giving rise to an intense field of research. 
Numerous applications are likely to appear. Thence graphene 
research has become a quite intense field, and various other 
ways of making graphene have been devised. On looking at 
a piece of a graphene sheet with Clar circles drawn in as 
densely as possible it is evident that the Clar circles may be 
viewed to follow poly-para-phenylene chains. Indeed they 
follow every third poly-para-phenylene chain in a consid-
ered acenic direction – and there are 3 choices then for the 
selected poly-para-phenylene chain, so that infinite graphene 
manifests 3 equivalent sextet-maximum Clar structures. Now 
since graphene manifests but a single bond length in the 
bulk, the Clar-sextets cannot be localized (with shorter aro-
matic length bonds and longer inter-sextet bonds). Evidently 
the sextet-maximum Clar structures must admix to such an 
extent with the non-maximum ones, that one should describe 
bulk graphene in terms of the triple of sextet-maximum ones, 
as well as the related underlying Clar structures with less 
than the maximum number of Clar sextets. [The sextet-non-
maximum structures must be admixed since between the 
sextet-maximum there is essentially no direct interaction, as 
they are “infinitely” different (i.e., different in an infinite 
number of locations, when dealing with infinite graphene).] 
This situation with a multiplicity of sextet-maximum Clar 
structures contrasts sharply with the finite benzenoids stud-

 

Fig. (30). The poly-phenacenic benzenoid strip having a uniform width of one hexagon as in Fig. 19, but with two extra -electrons at a cer-
tain distance from one another. 
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ied by Clar, where the boundaries of the benzenoid often 
freeze in a particular set of Clar sextets, at least for the usual 
benzenoids which are claromatic. When there is a single sex-
tet-maximum Clar structure in a finite benzenoid, this freez-
ing in (sextet localization, and if not claromatic, typically 
also double bond localization) gives localized structures 
(e.g., with near-single bonds) and a large HOMO-LUMO 
gap. With graphene there are no localized double bonds, so 
that the reactivity is like that of a claromatic, but with the 
delocalization of Clar sextets, there is a great deal of freedom 
in the electronic structure, so that slight modifications of this 
can lead to low-lying excitations. That is, for our nano-
structures, the band gap can become quite small – and even 0 
for bulk graphene. 

IV.2. Vacancy-Defected Graphene 

 As to the possibilities of defects in graphite, we might 
consider the example of a defect consisting of a single va-
cancy in an otherwise perfect graphite net. In this case one 
has a circumstance as in Fig. (32), where also we show a 
portion of one of the three sextet-maximum Clar structures 
of graphene, deleting parts of it which would be otherwise 
incident with the missing site at the vacancy. In this figure 
one sees that the bulk characteristic of the sextet-maximum 
Clar structure leaves a net of one site in the neighborhood of 

the vacancy unpaired. Each of the other two sextet-maximum 
Clar structures similarly leave one site unpaired near the 
vacancy. Thus overall one can expect a single defect-
localized unpaired electron in the neighborhood of the va-
cancy – and indeed one can see that the bulk of the spin den-
sity of this unpaired electron should appear on sites of the 
opposite type (starred vs. un-starred) of that the site missing 
at the vacancy. Indeed this prediction [105,106,] also appears 
from a resonating VB picture, and is also found [105,106] 
from numerical evidence for the Hückel model.  

 The prediction of the preceding paragraph may be con-
trasted with that for a neighbor-pair double vacancy, such as 
indicated in Fig. (33). There one sees again a similar portion 
of a grapheneic sextet-maximum Clar structure, and some 
remnant sites near the defect not included in any Clar-sextet 
of this structure. In this case there remain no unpaired elec-
trons, which in this case again agrees with a general resonat-
ing VB picture, as well as numerical evidence from the 
Hückel model. 

 

Fig. (33). A graphene portion with a C–C fragment deficiency. 
 

V.3. Semi-Infinite Graphene  

 A graphene sheet has sextet-maximum Clar structures 
with a Clar sextet for every third benzenoid ring along each 
linear acene direction. If the topological (ring-center to ring-
center) distances between two “sextet rings” along the acenic 
portions of an interconnecting path is denoted by h and k (h 

 

Fig. (31). Diradicaloid character versus loss of aromaticity in poly(para-phenylene) chains. 

 

Fig. (32). A radicaloid graphene portion with one carbon defi-
ciency. 
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 k), then the difference h – k is always a multiple of 3, as 
has some significance in relations to nano-tori and nano-
tubes (in Fig. 34, h and k are 2 and 5, respectively). Being 
sextet-resonant, the species should be especially stable, with 
a notable resonance energy, such as is indeed found from 
conjugated-circuits computations [96,97], quantitative 
Pauling-Wheland resonance theory [6], and even Hückel MO 
theory. Since there are 3 different sextet-maximal Clar struc-
tures, and further very many other Clar structures, overall 
with sextets uniformly spread out over the sheet, there is no 
sextet (or pairing) localization.  

 

Fig. (34). Part of a graphene sheet with h = 5 and k = 2 vectors (red 
arrows) between two “sextet” hexagons. 
 
 A further application concerns semi-infinite graphite 
which is a sheet of graphite from which half the sheet has 
been cut away, so that a long boundary remains. For these 
structures one naturally presumes that in the deep interior the 
relevant Clar structures there look somewhat like that for 
infinite graphite with a complex of disjoint Clar sextets. Im-
plementation of this idea for the circumstance of an acenic 
(zigzag) boundary gives a result as indicated in Fig. (35a), 
where one sees that a fully paired structure cannot be propa-
gated all the way up to the edge. Indeed one sees that un-
paired electrons necessarily arise somewhere in the region of 
the edge – with 1 unpaired electron per 3 hexagons of edge. 
One understands that the Clar sextets are not localized in the 
interior, so that equally one can imagine a relevant Clar 
structure with the Clar sextets translated one unit along the 
direction of the edge. Thence it is better to say that there is 
1/3 of an unpaired electron per unit cell of edge. Notably this 
is in agreement with more conventional resonance-theoretic 
arguments [105,107] and rather impressively with simple 
UHF-MO computations. [105,107,108] That is, these com-
putations give a band gap of zero and a boundary localized 
density of states at the Fermi energy corresponding to 1/3 of 
an electron per unit cell of boundary – and furthermore this 
unpaired spin density is localized near the edge on the same 
class of sites (i.e., starred vs. un-starred) as indicated in Fig. 
(35a).  

 As a second example, one may similarly consider the 
boundary of Fig. (35b), drawing in a sextet-resonant network 

in the interior of the network away from the boundary, and 
extending the sextets and pairings in so as far as possible up 
to the boundary, as illustrated in this figure. Then one sees 
that 2/3 of an unpaired electron per unit cell of edge is pre-
dicted, as again is in agreement with more conventional 
resonance theory [109] and with simple UHF-MO computa-
tions [108]. 

 

Fig. (35). Part of a graphene sheet with Clar sextet hexagons 
(black) and with the anti-sextet dualist (red) circumscribing sextet 
rings. 
 
 A third example manifests a different sort of conse-
quence. Consider the armchair edge as of Fig. (36) whence 
one sees that the structure is sextet resonant, with the bonds 
in the bottoms of the armchairs more nearly single (than 
aromatic), and hence longer. There are further bonds in the 
indicated Clar structure which appear as single, and they 
may be anticipated to be so when near the boundary. But in 
the interior very far from the boundary the situation should 
locally appear much as in (boundary-less) graphite, so that 
there Clar sextets are delocalized to other rings, and in the 
deep interior all the bonds appear somewhat "aromatic" 
(Pauling pi-bond order 1/3). Moreover, with this delocaliza-
tion one anticipates a small band gap, indeed = 0 as for gra-
phene (since the interior looks like graphene). The prediction 
of no boundary-localized unpaired spins is verified [6, 109] 
by more conventional resonance-theoretic arguments, and 
the predictions of zero band gap without edge-localized spin 
density is verified [109, 110] by simple UHF-MO computa-
tions, while the localization of near single bonds near the 
edge does not seem yet to have been so tested, but it is mani-
fested to a degree in simple Hückel-theoretic computations 
on large benzenoid fragments [111, 112]. Local aromaticity 
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indices near this boundary should show some localization of 
aromatic and non-aromatic rings, with the degree of localiza-
tion falling off toward the interior. Here there seem to be no 
MO-theoretic tests of this prediction, though one can see 
such a tendency in NICS values [35] for large benzenoid 
fragments. 

 Yet further there is experimental (STM) evidence which 
is consistent with the predictions for the zig-zag and arm-
chair predictions, as seen in Figs. (35a and 36). In conclu-
sion, the Clar arguments as extended here seem to be quite 
consistent with chemical reality, at least for the case of semi-
infinite graphite. Of course, one should perhaps not be too 
surprised after the success of resonating VB theory, such as 
we have argued is intimately related to Clar theory.  

V.4. Fractal Benzenoids 

 One may imagine benzenoids which exceed one dimen-
sion yet do not quite get to two dimensions, but are indicated 
here since they need the Euclidean plane for the proper de-
scription. The idea is that there are empty regions at ever 
larger scales, so that the number of atoms in an area depends 

on the length scale L  of the area 2
~ L . That is, the number 

of atoms at a scale of L  would be ~
D

L , with D  the so-
called fractal dimension of the structure – following B. 
Mandelbrot’s view [113]. Note here that for a linear polymer 
(or polymer strip) we have 1D = , and for graphene we have 

2D = . An example of a fractal is typically best built up in 
stages, and in Fig. (37) are the 3 lead stages of one [114]. 
The first stage structure (as is eminently appropriate for ben-
zenoids) is benzene, and the second stage may be viewed to 
be obtained by fusing 6 copies of benzene together around a 
ring – to give coronene. The third stage takes 6 copies of 
coronene and fuses them together around a (larger) ring. To 
obtain the ( 1)N + th stage, 6 copies of the N th stage struc-

ture are taken and fused together. Continuation of this proc-
ess yields structures which approach a fractal benzenoid. 
Here one may note that the number #

n
 of carbon atoms at 

the n  th stage is # (3 6 2) / 3n

n
= +  and the distance across 

the structure is 
0(3 3) / 6n

n
l l= + , so that its fractal dimension 

D  should be such that #
n

 and D

n
l  approach proportionality 

to one another (as n ), which gives 

lim log# log 6
1.63093

log log3

n

n
n

D
l

= =

 
which is a nice intermediate dimension.  

 There is a question of what novel properties such struc-
tures might manifest. The Kekulé structures and conjugated-
circuits resonance energies appear [114] much like that of 
other stable benzenoids, and one imagines qualitatively the 
same from drawing in Clar sextets to make Clar structures 
(of which there are many). Of course, the mass density is 
anomalous, but also there presumably should be a variety of 
“self-similarity” characteristics, suspected from the mode of 
construction. For instance, it has been argued [114] that the 
C H stretching spectrum, the proton-NMR spectrum, and 
the 13C-NMR spectrum should show fractal characteristics. 
We also imagine that the Hückel eigenvalue spectrum should 
be fractal for this molecule, which should have a notable 
HOMO-LUMO gap even in the limit of large structures. If 
one constructs a fractal species which manifests fractality in 
the eigen-spectrum near the Fermi level, then this should 
manifest notable behavior in terms of the temperature de-
pendence of electrical conductivity. The heat capacities 
should also have “anomalous” (i.e., non-Debye) behavior. 
Relatively few theoretical studies have been made (from any 
theoretical perspective). But such species have not yet been 
prepared – at least in any remotely well characterized form. 
One might plausibly imagine that coal can be viewed as frac-
tal, but of a random sort, with regions where there are un-
paired electrons, and various impurity hetero-atoms attached.  

 There are of course, many other possible structures con-
ceivable for fractal benzenoids. One other based on the so-
called “Sierpinski gasket” has been considered in some detail 
[115]. Yet another possibility, based on a different iteration 
of a coronene (and then later of a different “super-
coronenic”) unit, is illustrated in Fig. (38). One may specu-
late that coal may be well viewed as a random fractal of con-
jugated benzenoid network, with holes at ever larger scales 
(as well as occasional substitutional side groups, involving 
other types of atoms). 

VI. “3-DIMENSIONAL” CONJUGATED-CARBONS 
CURVED IN 1 DIRECTION 

 Here we have in mind structures which globally bend the 
conjugated -network away from the local molecular plane. 
The bending away from a plane generally introduces some 
degree of stress and strain, so that some general considera-
tion of the relation of this to curvature of the molecular 
“plane” is appropriately first discussed. Yet further because 
now we use “dimensionality” somewhat differently than in 
the preceding sections, and because there is a great diversity 
of such 3-dimensional structures, just the finite ones are dis-
cussed in this chapter while the extended ones are considered 
in the next chapter.  

 

Fig. (36). Armchair border of a semi-infinite graphene sheet. 
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VI. 1. Single-Direction Curving into Three Dimensions 

 Given a conjugated network defining a locally Euclidean 
surface, a curving into three-dimensions may take place with 
the curving occurring either in one or two directions in the 
surface. But the simpler curving occurs in only one direction 
identified with a straight line in the parent surface. Then the 
linear curvature  measures the rate of change of direction 
with distance, so that  

1/ r  

with r  the radius of the circle which “kisses” as closely as 
possible the curve (this circle occurring in a plane normal to 
the network surface at the point of contact). If this curvature 
remains constant the surface circles back on itself, to give 
either a circular polymer (if the extent in the transverse di-
rection is limited) or else a nano-tube (if the structure is ex-

 

Fig. (37). Fractal benzenoid composed of coronene fragments (thick lines) examined in ref. [114]. 
 

 

Fig. (38). A fractal benzenoid, indicating how 6 coronene units combine into a unit U that surrounds a “coronenic hole” by merging 6 3 C–C 
bonds, and how 6 such resultant units U combine into a larger unit surrounding the larger hole modeled after U, by merging 6 9 C–C bonds. 
In the latter case the merging of these 6 9 C–C bonds has not yet been quite completed. 
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tended in the transverse direction). If the curvature is not 
constant, the surface can still join back to itself, after an in-
tegrated curvature change say of a full cycle (2  radians) is 
achieved. Of course, something else could happen, with the 
structure wrapping into a layered or scroll-like structure, 
which however in many cases would tend to unwrap unless 
there were something to keep it in this curved state. The net 
curvature 

net
 along a piecewise straight path is the sum of 

the curvatures integrated along each straight segment. 

 Even without curvature reaching the full cycle value a 
benzenoid structure may turn about within its molecular 
plane and return to itself, most simply to form a so-called 
coronoid. But also the structure can turn about to return to 
the same region without bonding to its original self, if steric 
hindrance keeps the curving from relaxing. Indeed this is 
what happens with helicenes [116], where the conjugated-
network surface then overlays itself – the structure in the 
common helicenes just being a cata-condensed chain of 
hexagons just a single hexagon wide. If such a benzenoid 
chain continues on after passing over its original beginning, 
it can still ultimately rejoin to its beginning. Though the cur-
vature needs to deviate from 0, the net integrated curvature 
can still be 0. In such cases, cycles can be imagined to form 
knots, or two or more cycles can form links [117]. A simple 
graphical measure of the amount of turning of such a benze-
noid cycle in the surface is in general relevant, and may be 
given in terms of a path traced out from ring-center to adja-
cent ring center, with the path being straight at a given ring if 
it passes through opposite sides of the hexagon, and being 

o
60 / 3 rad± = ±  for a turn with the path entering and 

exiting through next-neighbor sides of a ring to the left or 
right. Thus the turn at the central ring of anthracene is 0, and 
at the central ring of phenanthrene, it is o

60± . The net turn 
 of such a path then is the sum of the local turn values in 

each hexagon along the path. Thus usual coronoids, one of 
which appears in Fig. (39a), exhibit 2= , whereas Fig. 
(39b) exhibits a cyclic chain with = , and Fig. (39c) 
shows a cyclic chain with 0= . Note however that the net 
curvature is 0

net
=  in the first combinatorially “flat” case, 

net
 in the second case, and 2

net
=  for the third case 

“bracelet”. That is, for such cyclic chains one expects a 
complementarity  

2
net

+
 

where we have defined  in a combinatorial graphical way, 
and 

net
 in a geometrical way. This mixing of graphical and 

geometric invariants makes the result approximate, though 
we anticipate that for the equilibrium structures it should be 
close to correct.  

VI.2. Molecular Belts: Cyclo-acenes, Cyclo-phenacenes, 
Möbius Analogs, Etc. 

 Molecular belts may be viewed as polymers without 
ends, but rather with cyclic boundary conditions. If it is a 
strip of single hexagons, we term it a cyclo-phenacene, and if 
every ring in such a strip is conbinatorially straight (with the 
ring-center to adjacent ring-center passing through opposite 

sides of a ring), then it is termed a cyclo-acene, or cyclo-
polyacene. Granted non-Mobius connection, the cyclacenes 
have net curvature 0

net
=  (as in Fig. (39c)), while the gen-

eral poly-phenacenes can have other nonzero values of net 
curvature, though often the literature considers just the case 
of 0

net
= . 

 

Fig. (39). Three coronenes or cyclophenacenes with different net 
turn angles. The rings which make /3 contributions are marked 
with an asterisk. The first coronene is kekulene, and the last is 
[12]cyclacene. 
 
 Unlike non-conjugated molecular belts such as collarenes 
(Fig. (40a)) or beltenes (Fig. (40b)), cyclo-polyacenes (Fig. 
41) do possess conjugation and the reduction of p-orbital 
overlap decreases with increasing number of benzenoid 
rings; however, as argued earlier, the stability of acenes de-
creases markedly under this circumstance.  

 

Fig. (40). Collarenes (benzenoid rings separated by pairs of CH2 
groups) and non-conjugated beltenes. 
 
 So far, no such simple polyacenic molecular belts are 
known [117-119]. But as a first estimate they should be not 
too unlike the poly-acene strips considered earlier, though 
these belts differ in not being geometrically flat, and further 
the cyclic ones do not admit even a single Clar sextet with-
out unpaired electrons. To obtain a single Clar sextet in a 
cyclo-N-acene, one needs to introduce 2 unpaired electrons – 
there are N possible positions for the Clar sextet, and 

2( 1)N  positions for the unpaired electron, so that again the 

structures with 2 unpaired electrons become more numerous 
by a factor now of 21

4
( 1)N N , and are expected to domi-

nate for sufficiently high N. That is, much as for the flat 
poly-acenes, our extension of Clar’s ideas predicts that the 
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cyclo-polyacenes should manifest incipient diradicalism (and 
for larger cycles, polyradicalism). However, one can imagine 
that adding benzenoid rings for obtaining claromatic conju-
gated molecular belts, one could obtain stable 3D-systems; 
one example is shown in Fig. (42).  

 

Fig. (41). Stereo-view of [8]cyclacene with hydrogens (blue). 
 

 

Fig. (42). Stereo-view of a conjugated belt with sextet-resonant 
(claromatic) structure. 
 
 Gleiter and coworkers [120] synthesized a non-benzenoid 
conjugated system: [6.8]3-cyclacene with three benzenoid 
rings condensed with three crown-shaped cyclo-octatetraene 
rings, shown in Fig. (43). Whereas all bonds of the 6-
membered rings are practically planar, the 8-membered rings 
are in crown (tub) form, as in cyclo-octatetraene – where the 
stress due to the linear curvature is presumably relieved, in 
as much as such an anti-Hückel eight-membered ring, even 
on its own, prefers to so distort. Such systems are actually 
related to collarenes, in which the pairs of CH2  groups 
have been replaced by pairs of vinylene groups CH=CH . 

 If an armchair construction is taken, the situation is much 
different, as these structures (cyclophenacenes) are rich in 
Clar structures with many Clar sextets (up to every other 

ring) without the introduction of any unpaired electrons. 
Again these structures are much like their open-chain ana-
logues, and both are predicted to be stable species, with a 
notable HOMO-LUMO gap. The [10]-cyclo-phenacene is 
illustrated in Fig. (44). It can be considered to be a short 
nano-tube. An ingenious approach for the synthesis of [10]-
cyclo-phenacene (as part of a fullerene skeleton) was devised 
by Nakamura and coworkers [11-13]: (i) buckminster-
fullerene was converted by a methyl-copper reagent into its 
penta-methyl derivative; (ii) the acidic proton of the cyclo-
pentadienic “north pole” was protected by replacement with 
a cyano group; (iii) the “south pole” was similarly pheny-
lated with a phenyl-copper reagent; (iv) the cyano-
pentamethyl-pentaphenyl-C60-fullerene on treatment with 
molecular oxygen afforded C60Me5Ph5O3(OH)2, with an 
“equatorial [10]-cyclo-phenacene” belt containing 40 sp2-
hybridized carbon atoms that showed less bond alternation 
(by X-ray analysis) than C60-fullerene, which presents 
marked bond alternation (1.36 vs. 1.47 Å). Only the rings in 
this belt have high negative NICS values indicative of aro-
maticity, whereas the remaining rings have negligible NICS 
values. 

 

Fig. (44). Stereo-view of [10]cyclophenacene (hydrogens are not 
shown). 

 

Fig. (43). Stereo-view of the [6.8]3-cyclacene with three benzenoid 
rings condensed with three crown-shaped cyclooctatetraene rings, a 
pseudo-conjugated belt synthesized by Gleiter and coworkers 
[120]. 
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 One can also imagine claromatic conjugated molecular 
belts derived from various other Fibonacci-like benzenoid 
strips other than zigzag ones. In the case presented in Fig. 
(45), however, steric hindrance between hydrogen atoms 
may destabilize the molecule; the molecular mechanics 
model shows the slight helicity due to this steric interaction. 

 

Fig. (45). Stereo-view of a congruent (claromatic) cyclo-crown 
(C60H32) related to fibonacenes; hydrogens are shown in blue. 
 
 A further consideration concerns what happens for a 
rather general chain with a mixture of aceneic zig-zag 
(aceneic) and armchair sections is considered. In such a case 
one could continue with the Clar-theoretic considerations, 
and something like this has already been done [48] – in 
terms of Kekulé structures, though because of the closeness 
of these ideas to Clar’s, one can anticipate similar successful 
results. Dobrowolski [47] has reported ab-initio computa-
tions for each of the 52 (non-Möbius twisted) [6]cyclophen-
acenes with all various degrees of curvature, and it has been 
found [48] that the net turning angle  correlates well with 
the stress involved in these species.  

 There is also the possibility of other sorts of benzenoid 
cyclic strips of more than hexagon width, even with the pos-
sibility of some being claromatic. Fig. (46) presents such a 
claromatic hydrocarbon, which is actually a short nano-tube. 

 

Fig. (46). Stereo-view of congruent sextet-resonant cyclo-bis-
polyphenacene (cyclic strip 2,2) with 20 benzenoid rings. In the 
upper view, dotted lines denote 10 Clar sextet rings. 

 We end this section by mentioning that belt para-
polyphenylenes are conjugated claromatic molecules, and 
could be considered to be the shortest possible nano-tubes. 
One must also mention cyclic 3D-systems derived from 
higher benzenoids, such as the belt formed from four anthra-
cenic fragments attached by 9,10-bonds synthesized by 
Herges and coworkers [121a] and shown in Fig. 47). With 
substituted anthracene fragments, chiral molecules resulted, 
and they could be separated into enantiomers [121b]. Inter-
estingly, pyrolysis converted the compound of Fig. (48) into 
a system with a 7-membered ring [121c] as seen in Fig. (48). 

 

Fig. (47). Stereo-view of a belt formed from four anthracenic frag-
ments attached by 9,10-bonds. 
 

 

Fig. (48). Stereo-view of the hydrocarbon formed by thermal rear-
rangement of the tetra-anthracenic belt shown in the previous  
figure. 
 
 A modified situation is encountered with Möbius analogs 
of conjugated belts. Herges and coworkers [121d] have re-
cently reviewed a number of theoretical and experimental 
facts connected with Möbius molecules, starting with the 
theoretical and experimental contributions of Heilbronner 
[41,42], Zimmerman [122a,b], Rzepa [122c,d] and Türker 
[122e], but evidently restricted to the circumstance of com-
binatorial “flatness” 0

net
= . A survey of recent theoretical 

work including non-zero net curvature along with Möbius-
twisting is found in [48]. Indeed with the stress introduced 
by such twisting, there seems to us to be no special reason to 
imagine that the combinatorially “flat” case is preferred. The 
coupling between linear (geometric) curvature, combinato-
rial turning, and twisting seems not to have yet been system-
atically explored. In so far as claromaticity is involved, one 
may expect that the Möbius analog (Fig. 49) of the molecule 
presented in Fig. (42) would not benefit from aromaticity 
since it distorts the system more severely from planarity. 
More than a single twist of the plane could be considered 
also, whence the full treatment of such systems would in-
clude a twist number (which would be an indicator of geo-
metric “torsion”). 
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Fig. (49). A Möbius analog of the conjugated belt with decorated 
structure from Fig. 42. 
 

VI.3. Nano-Tubes and Clar-Sextets 

 As shown above, Geim, Novoselov and coworkers could 
isolate graphene flakes one-atom thick. On rolling such a 
flake into a cylinder, one obtains a single-wall nano-tube 
(SWNT). Ijima discovered in 1991 [31] that in the presence 
of transition metal atoms, carbon atoms at high temperatures 
and under controlled inert-gas conditions are able to generate 
multiple-wall nano-tubes (MWNTs). From them under oxi-
dizing conditions one can obtain SWNTs. 

 The case when the folding of the graphene sheet proceeds 
without any full sector (q = 0) leads to a nano-tube, which 
can be considered as a nano-cone with apical angle 0º. Multi-
walled collections of such nano-tubes were first obtained by 
Ijima, with their ends capped by hemispherical half-
fullerenes [15]. Because the 5-membered rings are more re-
active, the caps may be removed chemically by oxidation, 
and also one may obtain single-wall nano-tubes (SWNTs) of 
various lengths. Their study revealed interesting features 
which has led to an intense research activity and various ap-
plications. 

 For a nano-tube one may select 44 the earlier mentioned 
vector displacements h and k to be such that they lead back 
to the initial ring, and so characterize the tube. When 0k = , 
one obtains a so-called “zig-zag” SWNT, and when h = k, 
one obtains an “armchair” SWNT. When 0 k h , one ob-
tains an (intrinsically) chiral nano-tube, often described as 
“helical”. Most interestingly, the electrical conductivity and 
the HOMO-LUMO gap depend on whether the folding 
makes Clar-sextets (in a sextet-maximum Clar structure) 
congruent or incongruent. When h – k = 0 (mod 3) the over-
lap is congruent, whence the material is like graphene, and 
like graphene has [9] a band-gap = 0 (neglecting curvature 
variations of the Hückel parameters), so that such claromatic 
nano-tubes should be readily conductive. Otherwise (with 
incongruent overlap) there is [9] a non-zero band gap, and 
the nano-tube is semi-conductive. As a result, all armchair 
SWNTs and ~1/3 of zigzag and chiral SWNTs are readily 
conductive, whereas ~2/3 of zigzag SWNTs are semi-
conductive. Moreover, following Clar’s ideas, the non-
claromatic nano-tubes should manifest greater chemical re-
activity. 

 Three stereo-views of claromatic (sextet-resonant) nano-
tubes illustrate the above statements: a congruent armchair 
SWNT is presented in Fig. (50), a congruent zigzag SWNT 
in Fig. (51), and a congruent chiral SWNT in Fig. (52). An 
example of incongruent folding is shown in Fig. (53). In 
these cases, congruent means “claromatic” with only full and 
empty sextets, whereas incongruent means that the 3D archi-
tecture must contain double bonds associated with higher 
reactivity. 

 

Fig. (50). Stereo-view of a sextet-resonant congruently-folded arm-
chair SWNT with Clar sextet rings denoted by black dotted lines. 
 

 

Fig. (51). Stereo-view of a sextet-resonant congruently-folded zig-
zag SWNT with Clar sextet rings denoted by dotted lines (upper 
views, black) and with the anti-sextet sextet dualist (red dotted 
lines, lower views). 
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Fig. (52). Stereo-view of a sextet-resonant congruently-folded 
chiral SWNT with Clar sextet rings denoted by black dotted lines. 
 

 

Fig. (53). Stereo-view of a chiral incongruently-folded SWNT: the 
red-colored carbon atoms break the Clar sextet-resonant structure of 
the folded graphene sheet. 
 
 The folding obeys [60] the same vector rules (h, k) as 
indicated in Fig. (34) and eq. (1). When k = 0, the folding 
occurs along an acenic portion and leads to an achiral SWNT 
with a zigzag edge. In this case a congruent folding of Clar 
sextet rings occurs if h is a multiple of 3. When h = k, the 
folding occurs along a poly-para-phenylenic direction and 
affords also an achiral SWNT but now with an armchair 
edge. In this case a congruent folding occurs if h – k is a 
multiple of 3. Otherwise (h  k  0) chiral SWNTs result, 
and congruent folding occurs whenever eq. 1 is fulfilled, 
which covers also the previous situations with achiral 
SWNTs. 

h – k  0 (mod 3)           (1) 

 The resulting band-gap is zero when curvature variations 
of the Hückel parameters are neglected, so that the nano-tube 
will have a metallic conductivity, and otherwise it will be-
have as a semiconductor. As a result, all armchair SWNTs 
and one-third of zigzag and chiral SWNTs are metallic, 
whereas two-thirds are semiconducting.  

 Interestingly, the same purely graph-theoretic condition 
(1) holds if the positions of sextet rings overlap after rolling 

the Clar structured graphene sheet to a tubular structure. In 
this case the resulting structure is sextet-resonant (except 
perhaps at the tube ends) and so may be expected to have 
enhanced stabilization.  

 Some fullerenes which are doubly-capped nano-tubes 
and some fullerenes that obey the isolated-pentagon rule 
have Clar structures which are also sextet-resonant. Such 
Clar structures which are sextet-resonant (except possibly at 
the ends) are reasonably termed bulk resonant (as this identi-
fies a bulk property of the tubes, rather than some global 
feature which would involve attention to the ends of the 
tube).  

 By contrast, on rolling up a Clar-structured graphene 
sheet into a nano-tube so that Clar sextet rings do not over-
lap, there result Clar structures with residual C=C double 
bonds that do not belong to Clar-sextet rings, and the result-
ing SWNT does not have a bulk resonant Clar structure . 

 Thence the occasional assertions of a contradiction with 
Clar's ideas that the 0-band-gap nano-tubes are sextet reso-
nant is premature (or even incorrect) – rather the failure 
comes with a presumed correspondence of zero HOMO-
LUMO-gap with reactivity. What Clar's ideas predict for 
these sextet-resonant nano-tubes then is that they are "aro-
matic" in terms of reactivity, and further that there is no bond 
localization. Indeed, both these things are also true for the 
nano-tubes which are not sextet resonant. The differences in 
behavior between small benzenoids and extended nano-
structures is that the boundaries of small benzenoids play a 
significant role – e.g., for the sextet-resonant case, the 
boundaries tend to “freeze in” the Clar sextets and thereby 
lead to bond localization – while extended sextet-resonant 
nano-tubes (or also graphene) do not have frozen in Clar 
sextets, or localized bonds. 

VII. “3-DIMENSIONAL” CONJUGATED-CARBONS 
CURVED IN TWO DIRECTIONS 

 When there is curving of the conjugated-network surface 
the relevant geometric curvature has different features. And 
this we briefly review in the first section here, where-after 
various possible nano-structures involving such curvature 
ideas are considered. 

VII.1. Double-Direction Curving into Three Dimensions 

 For curving in two directions in the network surface, the 
appropriate measure is conveniently given in terms of the net 
Gaussian curvature of the cone, when one assigns [123,124] 
a formal combinatorial curvature to each ring , which for 
the present case with an ambient condition of degree-3 verti-
ces and 6-membered faces gives combinatorial curvatures of  

(6 | |)/3  

where | |  is the number of sites in  (or also the number of 

edges around ). Alternatively one can consider combinato-
rial curvatures 

2 (3 | |)/6
i

i  

for each site of degree | |i  (also the number of edges around 

i ). These combinatorial curvatures come in multiples of 
/ 3  (for these cases), and is exactly equal to this for either 
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a pentagon or a degree-2 vertex. E.g., 12 pentagons yields 
4  of curvature which matches to that for a polyhedron (a 
fullerene), and 6 pentagons give a fullereneic cap to a nano-
tube. Leaving out this common factor of / 3 , we obtain a 
succession of equivalences of combinatorial curvatures for 
different “defects”: 

5-gon (or )  

4-gon (or )  2   degree-2-vertex. 

3-gon (or )  3   1  + 1   deg.-2-vertex + 1  

2-gon (or )  4   2   1  + 2 , etc. 

5   2  + 1    + , etc. 

respectively for 5q = , 4, 3, 2, or 1 sectors. Here construc-
tions solely with curvature from pentagons are the bucky-
structures, with only up to 5 allowed for cones. If the total 
curvature is to match that of a closed compact surface S with 
Euler-Poincaré characteristic 

S
, then this leads to: 

(6 ) 2 (3 ) 6d k Sd k
v d f k+ =

 

where 
kf  is the number of k-membered faces and vd is the 

number of vertices of degree d. Indeed, for such a case for 
closed compact surfaces, this is a rigorous theorem following 
from the Euler formula (as extended to general genus 

1 / 2Sg = , from the case of a polyhedron with 2
S
= ). 

Also this is equivalent to the statement, that 

2
i Si
=

 or 
2

S
=

 

which are natural (and rigorous) analogues of the Gauss-
Bonnett theorem (involving geometric curvatures). 

VII.2. Nano-Tori 

 Nano-tori, just like graphene, have no boundary and no 
defects, i.e., no rings of any sizes other than 6, so that such 
nano-tori can be [125,126] viewed as elemental benzenoids 
(in having no H atoms). Indeed they can be viewed as gra-
phene with cyclic boundary conditions (in two dimensions). 
It has been found [127] that SWNTs with a diameter 

1.4 nm can be induced to coil and form tori (nano-tube 
rings or “crop circles”) with much larger overall diameters of 
600 – 800 nm on treatment with acids plus hydrogen perox-
ide under sonication. Again, one expects enhanced stabiliza-
tion when “sextet-resonant rings” denoted by circles in the 
Clar structure overlap on connecting the ends of the nano-
tube to form a torus (that is, when a claromatic nano-tube 
forms a claromatic nano-torus). In Fig. (23) such a nano-
torus is presented in stereo-view with a colored portion indi-
cating Clar sextets. There are different ways [125,126,128] 
to describe nano-tori, but especially for the experimentally 
realized ones (with a very large ratio of the overall torus ra-
dius to the tube radius), it seems desirable as a first step to 
characterize it in terms of the underlying nano-tube. Thus to 
start, we characterize nano-tori in terms of the ( , )h k  pair 

for the nano-tube out of which it is constructed (h and k 
again indicating lengths of acenic portions of a circumscrib-
ing annular path around the generator nano-tube). Next there 

is a length of the nano-tube, and this might be attempted to 
be specified by the number L  of these complete ( , )h k  sec-

tions in the nano-tube used to construct the nano-torus. And 
finally there is a twist t indicating the extent to which the 
first and last annular paths are twisted with respect to one 
another.  

 The wrapping of a finite nano-torus to fuse ends together 
is perhaps simplest when the nano-tube has ( , ) ( ,0)h k h= , 
for then the two ends of the nano-tube can each be viewed as 
zig-zag ends, and it is seen that there are h different ways to 
fuse them together, depending on how much each end is 
twisted. Actually there are more than h different twistings, 
though only those twistings within less than a range of 360o 
give rise to distinct graphs. [Though two twists different by 
360o give graphs which are the same, they are [126] embed-
ded into Euclidean 3-space in topologically distinct ways, 
but this problem we do not address here. There is [126] also 
another embedding possibility interchanging the order of 
introduction of the two cyclicizing boundary conditions on a 
grapheneic fragment from which the torus is to be made – 
but this is more-or-less avoided in our present considerations 
when we presume that the boundary conditions first intro-
duced are those which make the smaller diameter nano-tube.] 
Thus even when the nano-tube is provisionally claromatic 
with 0,mod3h = , the adjoining of the two ends succeeds in 
preserving claromaticity only in 1/3 of the cases – only for 
1/3 of the twists do Clar-sextet rings lie over one another. 
Again as for graphene and these claromatic species manifest 
3 sextet-maximum Clar structures, and should (disregarding 
effects of curvature) have a HOMO-LUMO gap = 0, whereas 
if the twist condition is not met (or if 0,mod3h ) then the 
gap should be 0> . This is in fact the case. 

 The fusing of the ends of a finite nano-tube in the case 
when 0k >  is a little different. Then the two ends of the 
nano-tube are still conveniently chosen to have two aceneic 
sections of lengths h and k, but these two end sections (to be 
fused) need not be related by a translation down the length of 
the tube. That is, given two translationally equivalent ends of 
a nano-tube, one can add short k-length acenes to one end 
such that the end remains of type ( , )h k ; and after adding h  

such strips, one will have again an end that is translationally 
equivalent to the other end, and have increased L  by k . We 
take the number of these k-length aceneic strips added to be a 
twist t h<  (and 0t ), whence the number of rings is 

( )h k L kt+ + . Of course, now once the two ends are chosen 

(regardless of whether the two ( , )h k  ends are translation-

ally equivalent) there is no possibility for connection other 
than by a multiple of a full rotation of 360o, which again 
leads to the same graph. Again even when 0,mod3h k =  

the nano-torus may end up not having Clar-sextets at the two 
ends of the nano-cylinder whose ends are to be matched co-
incidently together to form a nano-torus, and thereby miss 
claromaticity. Again claromaticity is (disregarding curvature 
effects) necessary and sufficient for a zero HOMO-LUMO 
gap.  

 Overall for nano-tori we see that 1/3 of them have 
( , )h k -values consonant with claromaticity, though of these 
only 1/3 of them achieve claromaticity when the two ends 
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are joined together. One might expect similar difficulties 
with retention of claromaticity when one puts bucky-caps on 
the ends of a nano-tube (whence there could occur the possi-
bility of unpaired electrons in the bucky-caps, somewhat as 
we have already noted for edges of graphene). For the nano-
tori the claromaticity problem can be viewed to arise since 
the condition (1) on a cyclic path becomes for tori twice as 
complicated, as there are (h,k)-cycles both around the tube-
like direction as well as circumscribing all the way around 
the whole torus. If around this long way the requisite cycle is 
described as having values ( , )H K , while around the short 
way, we use the notation ( , )h k , then if 0,mod3h k =  
and 0,mod3H K , one can anticipate an exceptionally 
small HOMO-LUMO splitting as the ratio H K+  becomes 
very large. Indeed this is somewhat as for the nano-tube case 
where one anticipates the band gap to approach 0 as h k+  
approaches the grapheneic limit (of ). Indeed the bucky-
tori may be seen as just being grapheneic fragments with 
cyclic boundary conditions, and the conditions on ,h k  and 

,H K  for claromaticity to just be conditions that one selects 
from the Brillouin zone the (isolated) points where the gra-
pheneic band-gap falls to 0.  

 Nano-tori, just like graphene, have no boundary and no 
defects (in the sense of no rings of any sizes other than 6, on 
the toroidal surface). It has been found that SWNTs with an 
average diameter of 1.4 nm can be induced to coil and form 
tori (nano-tube rings or “crop circles”) with diameters of 600 
– 800 nm on treatment with acids plus hydrogen peroxide 
under sonication. Again, one expects enhanced stabilization 
when “sextet resonant rings” denoted by circles in the Clar 
structure overlap on connecting the ends of the nano-tube 
when forming a torus (that is, when a bulk resonant bucky-
tube forms a globally sextet-resonant bucky-torus). In Fig. 
(54) such a nano-torus is presented with a colored portion 
indicating Clar sextets. In general, nanotori are characterized 
by a sequence of numbers: h and k, indicating lengths of 
aceneic portions of a circumscribing annular path around the 
narrow part of the torus, L indicating the number of paths 
which are repeated around the torus, and a further number t 
indicating the extent to which the first and last annular paths 
are twisted with respect to one another. (A further specifica-
tion is needed if topological aspects beyond graph-theoretic 
aspects are to be encoded, but its value does not change the 
molecular graph, and is not considered here.) Here if h k  is 
a multiple of 3, then the nano-torus is potentially sextet-
resonant, depending on the values of L and t, it needing that 
L t  also be a multiple of 3. If h k  is a multiple of 3 while 
L t  is not, then there are relatively few lone pairings, and 
in particular no more than h k  as we can locate in the re-
gion where the two ends of a long tube of length L are joined 
to form the torus – that is such a species (for the stress-
favored case when L h k>> + ), the nano-torus is nearly sex-
tet-resonant. In all these cases, the sextets and any lone pair-
ings are delocalized, so that no bond localization is pre-
dicted.  

VII.3. Nano-Cones 

 These species may be theoretically constructed on cutting 
away from a graphene sheet q = 1 through 5 wedge-shaped 
sectors with planar angle 60º and then folding the remaining 

sheet so as to connect the dangling bonds in some fashion. 
The so obtained single-wall nano-cones (SWNCs) are 
formed such as to fall into classes according to whether the 
Clar sextets can be arranged to be separated by cross-cut 
paths complying (or not complying) with condition (1).  

 Earlier we discussed [129] the classification of nano-
cones with a part of the basic description being the number q 
of constituent 60o-sectors: with q = 6 sectors we have a flat 
graphene sheet with apical angle  = 180º; when q = 0, the 
nano-cone has an apical angle  = 0º, and is actually a nano-
tube. In each of these one may view there to p = 6 – q “dis-
clinations” – a type of defect. It was also shown that for q = 
2, 3, and 4, in each case two classes of cones resulted, so that 
a total of eight classes of positive-curvature nano-cones ex-
ist. We show now that the pairs of classes for q = 2, 3, and 4 
correspond to congruent (“class-1”) versus incongruent fold-
ing of the corresponding sector (“class-2”). These classes are 
fundamental since a cone in one of these classes cannot be 
changed [129,130] into one from any other class with only a 
finite number of permutations/additions/deletions (in the 
apex region of the hypothetically infinitely extended cone). 
However, no such set of finite inter-conversions can trans-
form a class 1-into a class-2 nano-cone, or vice versa. Data 
on the eight classes of nano-cones are presented in Table 1. 
The solid angle is denoted by  (in steradians). The follow-
ing relationships hold: 

Q = q/3 in radians 

 = 2 arcsin(Q/2 )  

 = 2 [1 – cos( /2)] = 2  – (4 2 – Q2)1/2 in steradians 

 Thus, Fig. (55) shows a front stereo-view of a class-2, i. 
e. an incongruent, nano-cone formed by cutting off a 120º-
sector from a graphene sheet and reconnecting the dangling 
bonds of the remaining the 240º-sector of the graphene sheet 
so as to have two adjacent pentagons at the apex of the re-
sulting nano-cone. In this case (q = 4), one pentagon replaces 
a “sextet” hexagon, and the other pentagon replaces a “non-
sextet” hexagon from the 240º-sector of the graphene sheet. 

 By contrast, a class-1, i. e. a congruent, nano-cone results 
when a 240º-sector of the graphene sheet is folded and re-
connected so as to form a nano-cone such that both penta-
gons at the apex replace “sextet” hexagons (Fig. 56). In con-
sonance with the Euler theorem, two pentagons are equiva-
lent to one 4-membered ring at the apex, and Fig. (57) pre-
sents such a nano-cone. 

 

Fig. (54). Stereo-view of a sextet-resonant nano-torus whose red-
colored portion has Clar sextet rings denoted by dotted lines. 
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Fig. (55). Stereo-view from top of an incongruently-folded class 2 
nano-cone with two adjacent pentagons (red) at the apex. The 
green-colored carbon atoms break the Clar structure of the folded 
240º-sector of the graphene sheet. 
 

 

Fig. (56). Stereo-views (side and top views) of a class 1 sextet-
resonant congruently-folded nano-cone with two pentagons at dis-
tance 1 at the apex (red color), and with Clar sextet rings denoted 
by dotted lines in the folded 240º-sector of the graphene sheet. 
 

VII.4. Fullerenes 

  The leap-frog transformation of fullerenes [10,131-133] 
converts one fullerene into another special one which has 

three times as many vertices, preserving its symmetry and 
achieving a “Fries electronic structure” with a closed-shell 
electronic configuration. Such Fries electronic structures 
have a maximal number of benzenoid rings with three dou-
ble bonds, for example the first resonance structures of phe-
nanthrene and triphenylene in Figs. (2 and 3) where the sex-
tet rings are converted into Kekulé structures such that two 
rings share a double bond. These ideas may be extended 
back to the benzenoids, whence a large number of leap-frogs 
of smaller benzenoids turn out to be benzenoids which are 
sextet-resonant, particularly for the circumstance [78] where 
the benzenoids are cata-condensed. The leap-frog idea may 
be even extended [134] to other structures. 

 

Fig. (57). Top stereo-view of a class 1 sextet-resonant congruently-
folded nano-cone having a 4-membered ring at the apex (red) and 
with Clar sextet rings denoted by dotted lines in the folded 240º-
sector of the graphene sheet. 
 
 Icosahedral-symmetry fullerene cages with N carbon 
atoms can also be characterized [60,87,131,135] by a pair of 
integer non-negative numbers h and k such that:  

N = 20(h2 + hk + k2) 

 It was also shown that such cases with h – k  3m (with 
m an integer) have a HOMO-LUMO gap of 0.Taking into 

Table 1. The Eight Cases of Single-Wall Nano-Cones 

60º sectors Angle Q Apex  Class  Solid angle  Single Wall Nanostructure 

folded q (degrees) (degrees)   (steradians)  (SWNT or SWNC) 

0  0  0 many  0 nano-tube (SWNT) 

1  60  19.2 congruent  0.087 first (sharp) nano-cone (SWNC) 

 120  38.9 congruent   0.36 second nano-cone (SWNC) 2 

 120  38.9 incongruent   0.36 second nano-cone (SWNC) 

 180  60 congruent   0.84 third nano-cone (SWNC) 3 

 180  60 incongruent   0.84 third nano-cone (SWNC) 

 240  83.6 congruent   1.60 fourth nano-cone (SWNC) 4 

 240  83.6 incongruent   1.60 fourth nano-cone (SWNC) 

5  300  112.9 congruent  2.81 fifth (blunt) nano-cone (SWNC) 

6  360  180 pure or defect  6.28 = 2  graphene 
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account that h2 + hk + k
2 = 49 when the pair (h,k) is either 

(7,0) or (5,3), one may conclude that nano-tubes with both 
these parameter pairs have the same diameter. However, they 
are not Clar-sextet-resonant nano-tubes, and neither are the 
same diameters as (14,0)- and (10,6)-nano-tubes because 
they do fulfill relationship (1). However, the same-diameter 
nano-tubes with (h,k) being (21,0) and (15,9) have sextet-
resonant Clar structures. 

 The Clar-theoretic ideas may also be sought to be applied 
to general fullerenes, with special attention to those mani-
festing a high maximum number C of Clar sextets. Again we 
anticipate the Clar number C at a given number of hexagonal 
rings to be an indicator of higher stability C. For buckmin-
sterfullerene, the structure is that of a truncated icosahedron, 
without any abutting 5-membered rings, which is to say that 
it satisfies the “isolated pentagon rule” (IPR), such as has 
been suggested [87,136,137] (and indeed found) to be a rea-
sonable indicator of higher stability. In fact this C60 structure 
is [87] the smallest fullerene to satisfy the IPR, and the next 
smallest fullerene satisfying the IPR is [138] the experimen-
tally observed C70. As to Clar-theoretic ideas, some of these 
are found [139] to be in correspondence with leap-frog theo-
retic ideas for stability, and the leap-frog cages satisfy the 
IPR. The Clar number is C = 8 for buckminsterfullerene, as 
is [140] reasonably high, probably a maximum at N = 60 
atoms, and the Clar sextet polynomial has been generated 
[141]. For C70 one has [142] C = 9 , which is also high. 

VII.5. Negatively Curved Species 

 There have been a number of extended species proposed 
with negative Gaussian curvature everywhere, or at least 
almost everywhere [142-144]. That is, the surface on which 
the carbon network is to be embedded is to have one or more 
saddle shaped regions (where the Gaussian curvature is 
negative), and in consilience with our earlier discussion, the 
combinatorial curvature should be negative in the same re-
gions. Clearly combinatorial curvature is relevant, as also are 
the idea of matching the combinatorial curvature and its 
matching to geometric Gaussian curvature (as earlier men-
tioned) are certainly relevant. Indeed the idea of combinato-
rial curvature is implicit in different considerations made in 
physics or chemistry, e.g., as indicated by Sadoc and Moseri 
[145], but the more explicit recognition of the ideas, as in 
[123,124,146] should be relevant. In any event the usually 
considered simple translationally symmetric structures em-
bedded on negatively curved surfaces do not seem to have 
been experimentally observed – and here we do not further 
discuss these (interesting) structures. 

VIII. COMPOSITE CONJUGATED-SATURATED 
SYSTEMS 

 Besides the various purely conjugated systems indicated 
in the previous sections, there are a number of systems 
which though extended allow a limited range to the conjuga-
tion. That it, there are just many fragments of planar pi-
networks, separated either by sp3-hybridized (or saturated) 
carbons, or else by near orthogonal orientations for neigh-
boring planes of conjugation. There of course is a vast num-
ber of small mixed-sp2, sp3 molecules, say based on ordinary 
benzenoids, but these we generally avoid here, mentioning 
only a few novel possibilities of extended nano-structures. 

VIII.1. Buckminsterfullerene Super-Atoms, Super-
Molecules, Super-Polymers, Etc. 

 Granted the (arguably “uniquely elegant”) buckminster-
fullerene structure, there is the possibility of joining them 
together via bonds between the different C60 units. Such a 
dimeric (C60)2 structure has been experimentally found [147-
150] with two adjacent C atoms in each C60 unit becoming 
sp3 hybridized to bond to a corresponding atom in the second 
C60 unit. Also even longer oligomeric chains are known 
[151-153].  

 Indeed such chains (with two �-bonds between each 
pair of C60s) may be continued to give a linear chain of C60 
“pearls”, for which there is experimental evidence, that the 
chains arise from either high-pressure [154] or photo-
induced [155] polymerization. In fact one may make other 
more complicated structures, such as an infinite triangular 
net of C60s, as studied by Xu and Scuseria [156], and as such 
seemingly occurs [154]. These generally are believed to 
manifest bonding between two C60s by way of a pair of sp3-
� bonds from neighboring C atoms on one C60 to similar 
neighboring C atoms on the adjacent C60. In fact, C60 mani-
fests a variety of possible arrangements [157] for bonding 
patterns, with there being several possible super-polyhedra 
which one can make, as well as different extended networks. 
E.g., one can place the C60 units at the corners of a simple 
cubic lattice and interlink them in this fashion or simply 
form a cube from eight C60 units. 

 Another rather amusing case involves taking 60 units of 
C60 to be placed at the corners of giant truncated icosahe-
dron, and institute the same sort of bonding pattern (without 
any angle strain beyond that already present in the dimer 
connection) to obtain [157] a bucky-ball bucky-ball (C60)60. 
But a distinction for all these mentioned constructions is that 
this sacrifices some of the conjugated-carbon network, for 
the introduction of sp3 carbons to make the interconnections. 
Indeed there are enormous numbers of possibilities, with the 
C60 units playing the parts of complicated “super-atoms” 
which might be connected up in any of the sorts of patterns 
considered for our element C atoms to make different conju-
gated-carbon networks – and indeed many more ways can be 
imagined since the C60 “super-atoms” allow rather high ef-
fective “valences” – and yet further one could entertain the 
possibility of other fullerenes as such basic “super-atom” 
building blocks. Though some of these other fullerenes are in 
fact realized, and though one can imagine that the Clar-
theoretic ideas are still applicable to the remnant -network 
portions, these species are not our current subject of focus, 
so that we go on to different possibilities.  

 In passing it may be noted that one can imagine ways in 
which to interconnect C60 fullerenes, possibly without the 
use of sp3 hybrids. Thus Fig. (58a) shows the result of join-
ing two pentagonal rings in C60 units: the bonds within each 
ring are deleted and two new bonds from each atom are 
made to two atoms in the other ring. Then in Fig. (58b), the 
possibility of fusing two rings in the two fullerenes is indi-
cated. It is understood that the faces at which the adjoining is 
made, instead of being pentagons, could be hexagons – with 
there being two possible orientations of the two hexagons 
relative to one another (as pentagons alternate with hexagons 
around each hexagon). For the fusion joining, this then leads 
to C114 from two C60 units, with each C60 unit having 60 – 6 = 
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54 -centers, whilst for the displayed C115 case each C60 unit 
has a radicaloid number 60 – 5 = 55 -centers. This ends up 
with regions of negative curvature (both combinatorial and 
Gaussian, so that we are led back to consideration of our 
structures which are extensively negatively curved. 

 

Fig. (58). Strategies for interconnecting two C60 fullerenes at two 
neighboring faces, here chosen to be pentagons. In (a) the ith atom 
in one ring is disconnected from the (i – 1)th and (i + 1)th bonds in 
that ring and joined to the corresponding atoms in the other ring. In 
(b) the two rings are fused together (thereby giving sp3 atoms and a 
net C115 structure for just two C60-units). 
 

VIII.2 Three-Dimensional Nets 

 Besides diamond and graphene one may imagine other 
extended networks not C60-based, with perhaps even all the 
C atoms equivalent, but at least very few different equiva-
lence classes of C atoms. In fact there is a tremendous range 
of such possibilities for carbon networks. Some of these cor-
respond to the everywhere negatively curved surfaces al-
ready previously mentioned, though sometimes one may 
imagine to contain some sp3-hybridized carbons. With the 
restriction to all sp2 one might imagine that there should be 
rather few possibilities susceptible to comprehensive charac-
terization. But even for purely sp2-conjugated networks al-
lowing twisted orientations between different sets of sp2 
sites, there are many possibilities – though it may be that that 
there is no infinite network communicating through compa-
rably oriented -bonding. Several such networks were early 
on [158] identified, and then later numerous computations 
were performed [159,160] on such. Additional classes of 
such species sometimes with mixes of sp2 and sp3 hybrids 
have been identified [161]. But again none of these species 
seem yet to be realized as translationally symmetric struc-
tures, and we do not here try to treat these in any detailed 
way. It should perhaps be mentioned that mixed sp2-sp3 spe-
cies of an amorphous nature do occur [162]. For either the 
translationally symmetric or amorphous materials, Clar-
theoretic ideas generally have not yet been explored. 

IX. CONCLUSIONS 

 In the previous pages, we could not do justice to a series 
of important contributions to developments of Clar’s theory 
(and we try to compensate by adding a few bibliographic 
references) due to several authors, such as Ivan Gutman and 
Sven Cyvin [163,164], Oskar E. Polansky [165], Yuansheng 
Jiang [166], and Milan Randi  [167]. 

 We find that there is a surprising richness to the possibili-
ties for conjugated-carbon nano-structures, and that Clar’s 
ideas seem to be quite generally applicable across the range 
here considered – at least when these are properly extended 
as outlined in a qualitative format indicated here. In particu-
lar, it is noted that for small benzenoids (with < 10 hexago-
nal rings) such as Clar considered, the boundary tends to 
“freeze in” the Clar sextets, especially when there are few 
double bonds (remaining after introduction of the sextet cir-
cles). It is emphasized that for larger systems with a smaller 
fraction being on the boundary, such sextet localization does 
not (typically) occur, thereby leading to “novel” properties, 
e. g. there are naturally smaller excitation energies (which 
translate to small HOMO-LUMO gaps) even for Clar’s fa-
vored “sextet resonant” species. And then the species can be 
electrically conducting, as for graphene. But there are nu-
merous other predictions, concerning unpaired electrons, and 
their localization. 

 There is an immensely rich array of possibilities for em-
bedding hexagon-rich networks on surfaces in turn embed-
ded in Euclidean space, and there are great many of these 
structures which have been experimentally realized, mostly 
in the last 3 decades – so that one wonders what the next 3 
decades may bring. There still are enormous numbers of 
speculated structures of various types which have not yet 
been experimentally observed, though seemingly well 
founded not only in terms of classical chemical ideas, but 
also often in terms of modern quantum chemical computa-
tional methodology. It would seem that Clar’s ideas, rather 
than being archaic classical ideas deserving to be left behind, 
still actually provide much qualitative insight to characteris-
tics of these various novel structures. It is surmised that more 
quantitative versions of Clar’s ideas should yield further in-
sight, and therefore should be pursued. 
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