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Abstract: Clar's aromatic sextet theory provides a good means to describe the aromaticity of benzenoid hydrocarbons, 

which was mainly based on experimental observations. Clar defined sextet pattern and Clar number of benzenoid 

hydrocarbons, and he observed that for isomeric benzenoid hydrocarbons, when Clar number increases the absorption 

bands shift to shorter wavelength, and the stability of these isomers also increases. Motivated by Clar's aromatic sextet 

theory, three types of polynomials (sextet polynomial, Clar polynomial, and Clar covering polynomial) were defined, and 

Randić 's conjugated circuit model was also established. In this survey we attempt to review some advances on Clar's 

aromatic sextet theory and Randić 's conjugated circuit model in the past two decades. New applications of these 

polynomials to fullerenes, and calculation methods of linear independent and minimal conjugated circuit polynomials of 

benzenoid hydrocarbons are also presented. 
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1. INTRODUCTION 

 The aromaticity reflects extra stability of certain types of 
conjugated systems due to the nature of molecular orbitals. 
The resonance energy, calculated from experimental 
measurements, denotes the energy gain or loss due to the 
interaction between Kekulé structures, and represents the 
extra stability of the conjugated system. There have been 
distinct approaches developed to estimate the resonance 
energy. To deal with the problem in semiempirical valence-
bond view, different VB based models (see [1] for details) 
were built successively and hierarchically, following Pauling 
and Wheland [2]. Among these models, Clar's aromatic 
sextet theory is mainly based on experimental observations, 
which describes the aromaticity of benzenoid hydrocarbons. 
In this survey we attempt to review some advances on Clar's 
aromatic sextet theory and Randić 's conjugated circuit model 
for polyhexes (i.e., benzenoid hydrocarbons (benzenoid 
systems)), and coronoid hydrocarbons (coronoid systems), as 
well as fullerenes. 

 We first discuss three polynomials on the aromaticity of 
polyhexes. Then we extend the discussions to investigate the 
stability of fullerenes. 

 The sources of Clar's aromatic sextet theory seem to be 
the paper of chemists Armit and Robinson [3] and the work 
of physical chemist Hückel [4-6]. The important role of 6-
membered conjugated cycles among 4 2k +  conjugated 
cycles may also have inspired Clar's aromatic sextet theory, 
sextet polynomial, Clar polynomial, and Clar cover 
polynomial. In Clar's aromatic sextet theory, delocalized  
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electrons in a 6-conjugated cycle are denoted by a circle, and 

as stated in Gutman [7] a Clar structure (Clar formula) 

consisting of circles satisfies the following three rules: 

(a) Circles are never drawn in adjacent hexagons, 

(b) The remainder of the polyhex obtained by the 

deletion of the vertices of the hexagons that possess 

circles must be empty or have a Kekulé structure, and 

(c) As many circles as possible are drawn subject to the 

constraints (a) and (b). 

 If we draw some circles with only the constraints (a) and 

(b), we obtain a generalized Clar structure (or sextet pattern). 

 Clar observed that for isomeric benzenoid hydrocarbons 

when the number of the circles of Clar structures (called Clar 

number) increases, the absorption bands shift to shorter 

wavelength, and the stability of the isomers also increases. In 

his book [8], Clar provided many examples to support his 

observation and built Clar's aromatic sextet theory. Recently, 

topgraphical features of the molecular electrostatic potential 

of a series of polycyclic aromatic benzenoid hydrocarbons 

have been analyzed at B3LYP/6-31+G(d,p) and MP2/6-

31+G(d,p) levels. The theoretical results fully support Clar's 

aromatic sextet theory [9]. 

 In the study of Clar's aromatic sextet theory, the first task 

is to determine the Clar number. 

 For small benzenoid hydrocarbons we can easily find a 

Clar structure by pen and paper. The Clar structures of some 

large benzenoid hydrocarbons are exemplified in Fig. (1). 

For these examples, the conditions (a) and (b) can be easily 

verified, while the condition (c) on the maximality of the 

number of circles was proved in [10]. For more examples 

and further discussions, the reader is referred to [11-16]. 
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Fig. (1). Clar formulas of some classes of benzenoid systems, 

possessing x  aromatic sextets. 

 Hansen and Zheng [17, 18] computed the Clar number of 

a benzenoid hydrocarbon by the integer linear programming 

and conjectured that the linear programming relaxation was 

sufficient for the general case. The conjecture has been 

proved by Abeledo and Atkinson in [19]. 

 A further problem is whether we can refine the idea of 

Clar number. A reasonable assumption is that all generalized 

Clar structures contribute to the resonance energy. From this 

point of view, Hosoya and Yamaguchi defined the sextet 

polynomial [20]. Another reasonable assumption is that the 

maximal generalized Clar structures (which are not a proper 

subset of another generalized Clar structure) contribute the 

most to the resonance energy. From this point of view, El-

Basil and Randi c  defined the Clar polynomial [21]. 

Inspired by Clar structure, we reasonably thought that, for 

the resonance energy of a benzenoid hydrocarbon, besides 

the aromatic 6-circuits all double bounds should also be 

considered. This motivated us to define the Clar cover of a 

benzenoid hydrocarbon and the counting polynomial, Clar 

covering polynomial [22]. 

 The conjugated circuit model, a resonance-theoretic 

model, was introduced by Randi c  [23-25] in 1976 for the 

study of aromaticity and conjugation in polycyclic 

conjugated systems. It considers contributions of not only 

6 -membered rings but also all (4 2)k + -membered 

conjugated circuits, as well as negative contributions of 4k -

membered conjugated circuits to the resonance energy. The 

model was motivated from an empirical point of view 

elaborating the Clar aromatic sextet theory [8]. The 

conjugated-circuit model has also a firm quantum 

mechanical basis [1, 26, 27]. It can be derived rigorously 

from the Pauling-Wheland resonance theory [28-31] via a 

Simpson-Herndon model Hamiltonian [32-34]. The 

conjugated circuit model can be applied to more general 

cases. For example, Manoharana et al. [35] investigated the 

stability of fullerenes predicted by the topological resonance 

energy (TRE) model and the conjugated circuit model, and 

Babi c  and Trinajsti c  [36] reported the resonance energies 

(REs) of several fullerenes with 4-membered rings and their 

isomers with only 5- and 6-membered rings, using the 

conjugated-circuit model and the TRE model. 

 Here we consider only the conjugated circuit model for 

benzenoid hydrocarbons. The linear independent and 

minimal conjugated circuit polynomials ( LMCC -

polynomials) are defined explicitly, and a recursive method 

and analytical expressions for calculation of LMCC -

polynomials are discussed. 

 Finally we mention some results on k -resonance ( k -

cycle resonance) in polyhexes, open end nanotubes, toroidal 

polyhexes, Klein-bottle polyhexes, and fullerenes as well. 

2. SEXTET POLYNOMIAL 

 Let G  denote a benzenoid system. A generalized Clar 

structure ( sextet pattern) of G  is a set of disjoint hexagons 

of G , in each hexagon of which a circle is drawn, such that 

the deletion of the vertices of such hexagons together with 

their incident edges results in a graph with a perfect 

matching or an empty graph. To count sextet patterns of a 

benzenoid hydrocarbon G , Hosoya and Yamaguchi [20] 

defined the sextet polynomial ( )GB x  as follows. 

( )

=0

( ) = ( , ) ,
C G

i

G

i

B x r G i x            (1) 

where ( , )r G i  is the number of sextet patterns of G  with i  

hexagons (or generalized Clar structures with i  cycles), and 

( )C G  is Clar number, the maximum size of sextet patterns. 

The concepts of sextet pattern and Clar number have been 

naturally extended to polycyclic conjugated hydrocarbons, 

such as coronoid systems, carbon nanotubes, and fullerenes, 

etc. 

 The sextet polynomial has some interesting mathematical 

properties. Hosoya and Yamaguchi [20], and Ohkami and 

Hosoya [37] found that there is a one-to-one correspondence 

between the sextet patterns and the Kekulé structures for a 

catacondensed benzenoid hydrocarbon G , i.e. 
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(1) = ( ),GB K G             (2) 

where ( )K G  denotes the number of Kekulé structures of G . 

They conjectured that for any benzenoid hydrocarbon 

(polyhex graph) which has at least one Kekulé pattern, there 

exists a one-to-one correspondence between Kekulé 

structures and sextet patterns. Two proofs of the conjecture 

were given by He and He [38], and by Ohkami [39]. But the 

proofs are not complete and have some errors. Zhang and 

Guo [40, 41] gave an explicit definition of super sextets of 

generalized polyhexes and a new proof of the Ohkami-

Hosoya conjecture. 

 Zhang and Chen [42] showed that each hexagon of a 

benzenoid system B  forms a sextet pattern, i.e., ( ,1)r B  is 

equal to the number of hexagons of B , if and only if B  is 

normal. The similar results hold for normal coronoid systems 

[43] and plane elementary bipartite graphs [44]. 

 The sextet polynomial can be formally differentiated with 

respect to x  as ( ) = ( )G G

d
B x B x

dx
, where the derivative can 

be expressed as the sum of sextet polynomials of some 

subgraphs of G . 

 Theorem 2.1 [45] Let G  be a benzenoid system. Then  

( ) = ( ),G G h

h

B x B x            (3) 

where the summation goes over all hexagons h  of G  and 

G h  denotes the subgraph obtained from G  by deleting 

hexagon h  with incident edges and vertices.  

 Randi c  [46] pointed out that the quotient 
(1)

(1)

G

G

B

B
 can be 

regarded as a measure of the total aromaticity of a benzenoid 

G . In the following subsections we introduce some 

mathematical properties and chemical applications of sextet 

polynomials in various chemical graphs. 

2.1. Benzenoid Chains and Cyclo-Polyphenacenes 

 How to compute the sextet polynomial for a benzenoid 

hydrocarbon? This is a problem of importance. It is well 

known that there are recurrence relations for computing 

almost all polynomials with applications in chemistry such 

as the characteristic polynomial, the independent polynomial 

and the matching polynomial of a graph. In [47], Gutman et 

al. gave a method of recurrence to compute the sextet 

polynomials for cata-condensed benzenoids. Gutman [48] 

found that for any benzenoid chain (unbranched cata-

condensed benzenoid hydrocarbon) there is a bijection 

between its generalized Clar structures and k -matchings of 

the corresponding Gutman (caterpillar) tree. 

 Recall that in graph theory, a caterpillar tree is a tree in 

which the removal of all its pendant vertices (vertices of 

degree 1) results in a path. In other words, let 1 2, ,v v  be a 

path. If we join each of in  vertices to a vertex iv  by an edge, 

= 1,2,i , then a caterpillar tree is obtained. 

 For a benzenoid chain B , its corresponding Gutman tree 

is defined by the following construction: For the kink 

hexagons and the end hexagons of B, represent each of them 

by an edge. Then join these edges successively to obtain a 

path. If B  contains in  (linear annulated) hexagons between 

the hexagons corresponding to the successive edges 1i iv v  

and 1i iv v
+

, then we add in  new vertices and join each of 

them to iv  by an edge (see Fig. 2 for an example). Gutman 

[48] and El-Basil [49] proved the following result. 

 

Fig. (2). A benzenoid chain and its corresponding Gutman tree. 

 Theorem 2.2 [48, 49] Let B  be a benzenoid chain and 

G  its corresponding Gutman tree. Then ( , ) = ( , )r B k m G k , 

where ( , )r B k  is the number of sextet patterns of B  with k  

hexagons and ( , )m G k  is the number of k -matchings of G .  

 Considering the contribution of Clar structure to the 

resonance energy, we introduce a quasi-order on benzenoid 

hydrocarbon isomers to compare their resonance energy. For 

two benzenoid isomers 1B  and 2B , if 1 2( , ) ( , )r B k r B k  for 

= 0,1,2,k , then we say 1B  is s -greater than 2B  and write 

1 2>B B . If both 1 2>B B  and 2 1>B B  hold, then 1B  and 2B  

are said to be s -equivalent. If neither 1 2>B B  nor 1 2<B B  

holds, then 1B  and 2B  are incomparable. Clearly, two s -

equivalent benzenoid chains may have the same sextet 

polynomial but need not be isomorphic. Based on the 

number of k -matchings of a graph, we can define a similar 

quasi-order ( m -greater) for graphs with the same number of 

vertices. If for two graphs 1G  and 2G , 

1 2( , ) ( , ), = 0,1,2,m G k m G k k , then we say 1G  is m -

greater than 2G  and write 1 2G G  [50]. By Theorem 2.2 we 

have: 

 Theorem 2.3 [51] Let 1B  and 2B  be two benzenoid 

chains with the same number of hexagons and 1G  and 2G  

are the Gutman trees of 1B  and 2B , respectively. Then 

1 2>B B  if and only if 1 2G G .  

 Using Theorems 2.2 and 2.3 we can determine the 

extreme benzenoid chains with respect to their Clar aromatic 
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sextets. In [51], it is showed that the minimal benzenoid 

chain is a linear chain, and the last four minimal benzenoid 

chains are also determined. On the other hand, the maximal 

benzenoid chains are *k -cycle resonant benzenoid chains 

(the benzenoid chains whose hexagons are all kinks except 

the first and last one) and the second ones are the benzenoid 

chains whose hexagons are all kinks except the first and last 

two. Note that [51] contains an error in describing the second 

maximal benzenoid chains. 

 Similar to [51] concerning the ordering for benzenoid 

chains, the authors also consider the ordering of cyclo-

polyphenacenes (including the special case of primitive 

coronoids). The cyclo-polyphenacenes can be obtained from 

a chain of hexagons by identifying one edge of an end 

hexagon with an edge of the other end hexagon so that each 

hexagon is adjacent to exactly two hexagons. We can 

compute the sextet polynomial of cyclo-polyphenacenes 

recurrently with the help of matching polynomial. For 

isomeric cyclo-polyphenacenes, we introduce a quasi-order 

to compare their resonance energy. For this aim, we need to 

define the generalized crown corresponding to a cyclo-

polyphenacene. Recall that a generalized crown is a graph in 

which the removal of all its end vertices (vertices of degree 

1) results in a cycle. In other words, let 1 2 1nv v v v  be a 

cycle. If we join each of im  new vertices by an edge to the 

vertices iv  , for = 1,2, ,i n , then a generalized crown is 

obtained. For a cyclo-polyphenacene B , we can define a 

corresponding generalized crown (as illustrated in Fig. 3) 

and prove the following theorem. 

 Theorem 2.4 [52] Let B  be a cyclo-polyphenacene and 

G  be its corresponding generalized crown. Then the number 

of sextet patterns of B  having precisely i  hexagons is equal 

to the number of i -matchings of G  for any non-negative 

integer i .  

 Theorem 2.4 was used to solve ``Hosoya's mystery" [53, 

54] concerning the coincidence between the characteristic 

polynomial of a cycle and the polynomial of Kekulé 

structure count of a prime coronoid. For details, the reader is 

referred to [55]. 

 With the help of matching polynomial, Theorem 2.4 can 

be also used to compute sextet polynomials of cyclo-

polyphenacenes. Some examples were given in [52]. Similar 

to the case of benzenoid chains, the ordering of cyclo-

polyphenacenes can also be set up. Then we have 

 Theorem 2.5 [51] Let 1B  and 2B  be two cyclo-

polyphenacenes with the same number of hexagons, with 1G  

and 2G  their corresponding generalized crowns, 

respectively. Then 1 2G G  ( )strictly  if and only if 1 2>B B  

( )strictly .  

 Theorem 2.4 reduces the ordering problem of cyclo-

polyphenacenes (with fixed number of Clar structures) to the 

ordering problem of the number of i -matchings of general 

crowns. Using Theorems 2.4 and 2.5, and some old results in 

[50], the authors of [51] determined the minimal, second 

minimal to seventh minimal cyclo-polyphenacenes with 

respect to the number of Clar's sextets. They also determined 

the maximal and second maximal family of cyclo-

polyphenacenes with respect to their number of Clar 

structures. For details, the reader is referred to [51]. 

2.2. Resonant Patterns and Kekulé Structures - Alternant 

Case 

 The one-to-one correspondence between the sextet 

patterns and Kekulé structures was first revealed for thin 

benzenoids by Hosoya and Yamaguchi as follows. 

 Theorem 2.6 [20] For a catacondensed benzenoid system 

H , (1) = ( )HB K H .  

 For the coronene G  (see Fig. 4), its sextet polynomial 
2 3( ) = 1 7 9 2 .GB x x x x+ + +  So (1) = 19 < ( ) = 20GB K G . In 

fact the coronene is the critical forbidden subgraph for the 

above relation (2). This can be expressed in the following 

theorem obtained by Zhang and Chen [56], which was 

reproved later in a novel approach [57]. A subgraph H  of a 

graph G  is called nice if ( )G V H  either has a perfect 

matching or is empty. 

 Theorem 2.7 [56] For a hexagonal system H  with 

perfect matchings, (1) ( )HB K H , and equality holds if and 

only if H contains no coronene as its nice subgraph.  

 By introducing super rings in sextet patterns of a 

benzenoid system, a general one-to-one correspondence 

between sextet patterns and Kekulé patterns can be 

established (see [40, 41]). For example, the exterior 

boundary of coronene as a super ring is added to the central 

hexagon to produce a new sextet pattern. 

 For the general alternant case -- plane bipartite graphs G  

with perfect matchings, Gutman [58] and John [59] 

 

Fig. (3). A cyclo-polyphenacene and its corresponding generalized crown. 
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independently defined resonant polynomials and cell 

polynomials to be count polynomials of resonant patterns. 

They extend sextet polynomials of benzenoid systems, by 

replacing hexagons of a sextet pattern with even inner faces. 

Let ( )r G  denote the number of resonant patterns of G . John 

et al. [60] obtained Theorem 2.8; and a refined result -- 

Theorem 2.9 was obtained in [61, 62]. 

 

Fig. (4). Coronene. 

 Theorem 2.8 [60] For a plane bipartite graph G , 

( ) ( )r G K G .  

 Theorem 2.9 [62, Theorem 3.2.1] Let G  be a 2-

connected plane bipartite graph with perfect matchings. Then 

( ) ( )r G K G , and equality holds if and only if there do not 

exist disjoint cycles R and C such that (a) R  is a facial 

boundary lying in the interior of C  and (b) C R  is a nice 

subgraph of G .  

2.3. Resonant Patterns and Kekulé Structures - Non-

Alternant Case 

 From the above subsection, we see that the 

correspondence between resonant patterns and Kekulé 

patterns relies strongly on the existence of the root perfect 

matching of a plane bipartite graph [63, 64]. This is not 

suitable for the non-alternant case (non-bipartite plane 

graphs). 

 By applying a novel approach, mathematical induction 

and the principle of inclusion and exclusion in 

combinatorics, Zhang and He [65] showed that for any plane 

graphs, the number of perfect matchings is not less than the 

number of resonant patterns. This generalizes the 

corresponding results in benzenoid systems and plane 

bipartite graphs. Applications to fullerenes (planar cubic 

graphs with only pentagonal and hexagonal faces) were also 

discussed. 

 For example, the resonant patterns of corannulene (Fig. 

5) are as follows:  

  
,{C1},{C 2}

, 

  
{C3},{C 4},{C5},{C1,C3},{C1,C 4},{C 2,C 4},{C 2,C5},{C3,C5} . 

Hence 

 
2( ) = 1 5 5corannuleneB x x x+ + . It is computed [66] that 

(corannulene) = 11K . That is, 

(corannulene) = (corannulene) = 11r K . 

 

Fig. (5). Corannulene. 

 For the well-known fullerene--icosahedron 60C  (Fig. 6 

(left)), El-Basil [67] first found that its Clar number equals 8. 

Since it has the Fries structure so that each hexagon is 

alternating, any set of disjoint hexagons always forms a 

sextet pattern. Based upon this, Shiu et al. [68] computed the 

sextet polynomial of 60C  as  

8 7 6 5 4 3 2

C
60

( ) = 5 320 1240 1912 1510 660 160 20 1.(8)B x x x x x x x x x+ + + + + + + +  

 Ye et al. [69] showed that every hexagon of a fullerene is 

resonant, determined all the other eight 3-resonant fullerenes 

(i.e. every set of at most three disjoint hexagons forms a 

sextet pattern) and proved that any independent hexagons of 

a 3-resonant fullerene graph form a sextet pattern. So the 

sextet polynomials of the other eight 3 -resonant fullerene 

graphs are computed by counting sets of disjoint hexagonal 

faces (see [69] for details).  

 For such 3-resonant fullerene graphs F , we can confirm 

that the (1) < ( )FB K F . In general, Zhang and He showed 

the following result. 

 Theorem 2.10 [65] For any plane graph G , 

( ) ( )r G K G .  

 For all fullerene graphs, Sereni and Stehlík [70] proved 

the following result, which was conjectured earlier by Zhang 

and He in [65]. 

 Theorem 2.11 [70] For every fullerene graph F , 

(1) < ( )FB K F . 

2.4. Stability Indicators 

 For benzenoid hydrocarbons, both the Clar number and 

Kekulé count can measure their stabilities. However, Austin 

et al. [71] constructed 20 distinct fullerene isomers of 60C  

whose Kekulé counts surpass the Kekulé count (12500) of 

icosahedral 60C . So, the maximality of Kekulé counts of 

fullerene isomers may not correspond to the highest stability. 

Zhang et al. [72] turned to investigating a significant role of 

the Clar numbers of fullerenes in their stabilities. Zhang and 

Ye [73] obtained the sharp upper bound for the Clar number 

of fullerenes as follows. 

 Theorem 2.12 [73] Let nF  be a fullerene with n  

vertices. Then 
12

( )
6

n

n
c F .  

 They also showed that there are infinite many fullerene 

graphs whose Clar number can achieve this upper bound, 
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including 60C  and 70C , and zigzag and armchair carbon 

nanotubes as well; Theorem 2.12 shows that none of 

fullerene graphs are ``all-benzenoids" [74, 75]. Combining 

theorem 2.12 and some construction of Clar formula of 

fullerenes, they found that the experimentally characterized 

60C , 70C , 76C , 84C : 22  2D (IV) and 84C : 23  2dD (II) attain 

the maximum Clar number among their fullerene isomers. 

 Ye and Zhang [76] have rigorously proved that exactly 

18 fullerenes with 60 atoms (including the icosahedral 60C ) 

achieve the maximum Clar number 8. A comparison shows 

that none of these 18 fullerenes belongs to the collection of 

the 20 fullerene isomers with Kekulé counts surpassing 

12500 in [71]. That is, the Clar numbers of these 20 fullerene 

isomers are all less than 8. Hence, a combination of Clar 

number and Kekulé count as a stability predictor 

distinguishes uniquely the icosahedral 60C  from its all 1812 

fullerene isomers. 

 Furthermore, W. Sun and F. Wang in Lanzhou University 

have computed the sextet polynomials of all fullerene 

isomers of 60C  and 70C . It is known that 60C  and 70C  have 

1812 and 8149 fullerene isomers, respectively [77]. From 

their computational results we can see that 60C (60:1812) is a 

unique fullerene isomer of 60C  with the maximum number 

of sextet patterns 5828, and the isomer 60:1809 has the 

second maximum number of sextet patterns 3970. So 

60C (60:1812) has a much larger sextet pattern count than the 

isomer 60:1809. Similarly, the experimentally characterized 

70:8149 is a unique fullerene isomer of 70C  with the 

maximum sextet pattern count 18714, and 70:7106 has the 

second maximum sextet pattern count 17463. Such partial 

computational results are listed in Table 1. 

 How to compute Clar numbers of fullerenes is an 

interesting problem in both mathematics and theoretical 

chemistry. Up to this date, an effective general way has not 

been found for this problem. It is worthwhile to seek 

appropriate combinations of Clar numbers with other 

invariants as stability predictors of fullerenes. 

3. CLAR COVERING POLYNOMIALS 

 The definition for a sextet pattern of a generalized 

benzenoid system B  was slightly modified in [22]. We add 

a Kekulé structure of H Q  to a sextet pattern Q  to get a 

vertex-cover of B , and we call such a vertex-cover a Clar 

cover of a (generalized) benzenoid system B . In other 

words, a spanning subgraph C  of B  is said to be a Clar 

cover of B  if each of its components is either a hexagon or 

an edge. Then the Clar covering polynomial of B  is defined 

as: 

( )

=0

( ) = ( , ) = ( , ) ,
C B

i

i

x B x z B i x           (4) 

where ( , )z B i  denotes the number of Clar covers of B  

having precisely i  hexagons (refer to [22, 78-81]). 

 This polynomial was used to conveniently compare 

topological indices of some types of benzenoid isomers [80]. 

It is also called ``Zhang-Zhang polynomial" in a series of 

papers due to Gutman et al. [82-88]. 

 

Fig. (6). Clar formulas of 60C  (60:1812) (left) and 70C  (70:8149) (right). 

Table 1. The First, Second and Third Maximum BF(1) Fullerene Isomers of C60 and C70 

Isomers F   Sextet polynomial BF(x)  BF(1) 

 60:1804   8 48 7 377 6 934 5 1061 4 588 3 157 2 20 1x x x x x x x x+ + + + + + + +    3187 

 60:1809   
8 7 6 5 4 3 298 594 1250 1232 616 158 20 1x x x x x x x x+ + + + + + + +    3970 

 60:1812  
8 7 6 5 4 3 25 320 1240 1912 1510 660 160 20 1x x x x x x x x+ + + + + + + +    5828 

 70:7716  3 9 303 8 1871 7 4478 6 5435 5 3613 4 1307 3 253 2 25 1x x x x x x x x x+ + + + + + + + +    17289  

 70:7106   
9 8 7 6 5 4 3 220 343 1902 4500 5474 3634 1311 253 25 1x x x x x x x x x+ + + + + + + + +   17463 

 70:8149   
9 8 7 6 5 4 3 225 375 2065 4715 5958 3940 1355 255 25 1x x x x x x x x x+ + + + + + + + +    18714 
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3.1. Basic Properties 

 We first introduce some basic properties of Clar covering 

polynomial of a generalized benzenoid system B . 

 Theorem 3.1 [22] Let B  be a benzenoid system. Then 

we have the following properties for the Clar covering 

polynomial of B :  

1. ( ,0) = ( )B K B ,  

2. the degree of the polynomial ( , )B x  is ( )C B , the 

Clar number of B ,  

3. the coefficient of the highest degree term, ( , ( ))z B C B  

equals the number of Clar formulas of B ,  

4. 1( ,1) = ( )z B h B , the first Herndon number.  

 The Clar covering polynomial closely relates to the sextet 

polynomial via a transformation of polynomials. 

 

Fig. (7). Modes of proper sextet and improper sextet. 

 Let B  be a benzenoid system with a perfect matching 

(Kekulé structure or 1-factor) M . A conjugated (or 

alternating) hexagon of B  is called a proper sextet if the 

extreme right vertical edge belongs to M ; an improper 

sextet otherwise, as illustrated in Fig. (7). Use Let ( , )a B i  

denote the number of perfect matchings of B  which 

contains precisely i  proper sextets for 0 ( )i C B . Then 

we have 

( )

=0
( , ) = ( )

C B

i
a B i K B , ( , ) > 0a B i  for all 0 ( )i C B , and 

( ,0) = 1a B . Further, these ( , )a B i  become the coefficients of 

a new polynomial expression for the Clar covering 

polynomial in variable ( 1)x + . 

 Theorem 3.2 [79] Let B  be a benzenoid system with a 

perfect matching. Then the Clar covering polynomial 

( , )B x  of B  can be expressed in the following form:  

( ) ( )

=0 =0

( , ) = ( , ) = ( , )( 1) .
C B C B

i i

i i

B x z B i x a B i x +  

 Via such a transformation, we can establish a relation 

with the sextet polynomial as follows. 

 Theorem 3.3 [79] Let B  be a benzenoid system with a 

perfect matching. For all 0 ( )i C B , ( , ) ( , )a B i r B i  and 

all the equalities hold if and only if B  has no coronene C  

(see Fig. 4) as its nice subgraph.  

 Corollary 3.4 [79] Let B  be a benzenoid system with a 

perfect matching. Then  

( )

=0
( , )

C B i

i
a B i x  is the sextet polynomial of B  if and only if 

B  has no coronene as its nice subgraph.  

 For other interesting properties, the reader is referred to 

[79]. 

 In general, the polynomial 
( )

=0
( , )

C B i

i
a B i x  can be viewed 

as the revised sextet polynomial of B  which counts sextet 

patterns with super rings. 

3.2. Computation Approach 

 Compared with the sextet polynomial, the Clar covering 

polynomial of a benzenoid system has one advantage in 

computation: it has general recurrence relations. This enables 

one to compute some significant topological indices of 

benzenoid systems as mentioned in Theorem 3.1 by some 

recurrence procedures. 

 Theorem 3.5 [22] Let B  be a generalized benzenoid 

system with the components 1 2, ,..., kB B B . Then  

=1

( , ) = ( , ).
k

i

i

B x B x  

 Theorem 3.6 [22] Let B  be a generalized benzenoid 

system. Let 1s  and 2s  be two hexagons of B  having a 

common edge =e xy  (see Fig. 8 (left)). Then  

2

=1

( ) = ( ) ( ) ( ),i

i

B w B s B xy B x y+ +  

where iB s  denotes the subgraph obtained from B  by 

deleting all vertices of is  together with incident edges.  

 Theorem 3.7 [22] Let B  be a generalized benzenoid 

system. Let xy  be an edge of a hexagon s  of B  which lies 

on the periphery of B  (see Fig. 8 (middle)). Then  

( ) = ( ) ( ) ( ).B w B s B x y B xy+ +  

 

 

Fig. (8). Modes of hexagons 1s  and 2s  in a benzenoid system for some reduced procedures. 
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 Theorem 3.8 [22] Let 1X  and 2X  be two Kekuléan 

benzenoid systems which contain hexagons 1s  and 2s , 

respectively, as indicated in Fig. 8 (right) (or one of them be 

2K ). Let 1 2:X X  be a benzenoid system obtained by gluing 

1X  and 2X  only along an edge xy  of 1s  and 2s . Then the 

Clar covering polynomial of 1 2:X X  is  

1 2 1 2 1 2 1 2( : ) = ( ) ( ) ( ) ( ) ( ) ( )X X X X X X X X+  

where =i iX X x y  for =i  1 or 2.  

 Corollary 3.4 and Theorem 3.8 can be used to derive a 

recurrence relation for sextet polynomial of cata-condensed 

benzenoid systems as follows. 

 Corollary 3.9 [62, Corollary 5.2.11] Let 2X  be a 

catacondensed benzenoid system. Then  

:
2 2 2
( ) = ( ) ( ),L X X X

m
B x mxB x B x+  

where mL  denotes the linear benzenoid chain of m  

hexagons.  

 Clar covering polynomials have been computed for of 

some types of benzenoid and coronoid systems, such as 

benzenoid chains [22], parallelogram [62], multiple linear 

hexagonal chains [88], cyclo-polyphenacenes [89], and so on 

[90, 91]. 

3.3. Applications to Resonance Energy 

 Each of the quantities mentioned in points (1)-(4) of 

Theorem 3.1 was shown to relate to some kinds of the 

resonance energy. It is reasonable to expect that the Clar 

covering polynomial will also be somehow connected with 

the resonance energy. 

 Zhang et al. [78] established an approximation model of 

DRE with Clar covering polynomial of benzenoid 

hydrocarbons:  

( )

=0

= ( , ) .
C B

i

i

RE z B i +            (5) 

 For condensed aromatic hydrocarbons with Clar number 

4 , the parameters  and  and weights (1 4)i i  in 

the above Eq. (5), we determined 1 = 1 , 

2 3= 0.18, = 0.14  and 4 = 27.33 , = 1.940  and 

= 0.0113 . The correlation coefficient is 0.9971 and the 

mean error is 0.014. 

 Gutman et al. [82] found good linear correlations 

between TRE and ln ( )x  for fixed values of x  lying in the 

interval [0, 2] as, 

ln ( ) ,RE a x b+            (6) 

where a  and b  are constants. The special case of the above 

approximation (6) for = 0x  is the usual approximation of 

resonance energy via Kekulé count:  

0= ln .RE a K  

 In fact, the correlation coefficient R attains a maximum, 

and the average relative error attains a minimum, for some 

x  that considerably differs from zero. The unexpected 

finding is that the optimal value of x  is always remarkably 

close to unity. There is no statistically significant difference 

between the accuracy of the approximation for optimal x  

and for = 1x . This leads to the conclusion that (1)  is a 

quantity of some importance in the Clar theory of benzenoid 

molecules. 

 Further studies of Gutman et al. [83, 86] revealed certain 

hitherto concealed properties of resonance energies of 

benzenoid molecules, and their dependence on Kekulé- and 

Clar-structure-based parameters. 

3.4. An Extension to Fullerenes 

 Similarly to the sextet polynomial, the Clar covering 

polynomial can be naturally extended to fullerene graphs. 

We also checked its role in the stability of fullerenes. 

 W. Sun and F. Wang also computed the Clar covering 

polynomials of all fullerene isomers of 60C  and 70C . Their 

computation results show that 60C (60:1812) achieves the 

maximum (1) = 250967 , and the isomer 60:1809 has the 

second maximum (1) = 158829 . These are consistent with 

their sextet pattern counts. For 70C , fullerene isomers 

70:8149, 70:7716 and 70:7106 have the first, second and 

third maximum (1) , which are 1305863, 1289527 and 

Table 2. The First, Second and Third Maximum (1) Fullerene Isomers of C60 and C70 

 Isomers  Clar covering polynomial (x)   (1) 

 60:288   
7 6 5 4 3 22 82 1082 7168 24956 46144 42862 15745x x x x x x x+ + + + + + +    138041 

 60:1809   
8 7 6 5 4 3 2106 1308 6996 20972 38968 46156 33092 11230x x x x x x x x+ + + + + + + +    158829 

 60:1812  
8 7 6 5 4 3 25 360 3620 16352 42000 66900 67650 41580 12500x x x x x x x x+ + + + + + + +    250967 

 70:7106  9 8 7 6 5 4 3 220 523 5474 30727 104690 230671 337496 324001 188633 51068x x x x x x x x x+ + + + + + + + +   1273303 

 70:7716  
9 8 7 6 5 4 3 23 335 4569 28288 101191 229711 342961 333691 195714 53064x x x x x x x x x+ + + + + + + + +    1289527  

 70:8149   
9 8 7 6 5 4 3 225 600 5965 31970 106065 233215 345490 335385 194980 52168x x x x x x x x x+ + + + + + + + +    1305863 
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1273303, respectively (see Table 2). We can see that the 

fullerene isomers 60:1812 and 70:8149 retain the maximum 

values in both sextet pattern count and Clar cover count 

among their fullerene isomers. However, the isomers 

70:7716 and 70:7106 have the near (1) 's, and are just 

exchanged, compared in the ranking in terms of sextet 

pattern counts. 

4. CLAR POLYNOMIAL 

 There are various extensions of Clar structures. Herndon 

and Hosoya [92] alleviated rule (c) in the Introduction to 

define an (extended) Clar structure for calculating resonance 

energies with more accuracy: Clar structure may contain less 

than C  cycles, but no benzenoid ring should have proper or 

improper sextets. El-Basil and Randi c  et al. [21, 93-95] 

described such an extension of Clar structures and gave 

various construction approaches. For some large benzenoid 

systems, however, there are different explanations. 

 Shiu et al. [68] clarified such an extended Clar structure 

by replacing (c) with (d): the set of circles is maximal, i.e. no 

new cycle can be drawn using (a) and (b).  

 By using Clar covers, a more precise graph-theoretical 

definition of Clar structures was presented. Let G  be a plane 

or spherical graph with a perfect matching. A Clar cover C  

of G  is called a Clar structure if the set of hexagons is 

maximal (in the sense of set-inclusion) in all Clar covers of 

G , and C  is called a proper Clar structure if the number of 

hexagons reaches the maximum in all Clar covers of G . 

 The count polynomial of Clar structures, referred to as 

the Clar polynomial, was defined by El-Basil and Randi c  

[93, 94, 95] for a benzenoid system G : 

( )

=0

( , ) = ( , ) ,
C G

i

i

G x G i x  

where ( , )G i  denotes the number of Clar structures of G  

with i  circles. 

 Randi c  et al. [95] gave an approach to compute the Clar 

polynomial of large benzenoids, and obtained the following 

results:  

 Theorem 4.1 [95] Let B  be a Kekuléan benzenoid 

system. Then  

( , ) = ( , ),
h

d
B x B h x

dx
 

where the summation goes over all hexagons h  of B .  

 Theorem 4.2 [95] Let B  be a Kekuléan benzenoid. Then  

( , ) = ( , )
h

B x B h x dx  

with the integrating constant = 0c .  

 Shiu et al. [68] computed the Clar polynomial of the 

icosahedral 60C  as follows. 

8 7 6

60(C , ) = 5 280 10 .x x x x+ +  

which corrects the error in [67]. 

 We now discuss an index ( )cc B  related to Clar 

polynomial of a benzenoid system B . Let ( )cc B  denote the 

number of Clar covers without alternating hexagons. Then  

( ,1) ( ).B cc B  

 The sextet rotation, transforming all proper sextets of a 

Kekulé structure of a benzenoid system B  into improper 

sextets, results in a directed tree on the set of Kekulé 

structures of B  with one root, denoted by ( )R B . Let ( )nl B  

denote the number of non-leaves in ( )R B . 

 Theorem 4.3 [57] Let B  be a benzenoid system with a 

perfect matching. Then ( )cc B  = ( )nl B .  

 Theorem 4.4 [57] If a benzenoid system B  has a perfect 

matching and contains no coronene as its nice subgraph, then 

( ,1) = ( )B cc B .  

 If all Clar covers without alternating hexagons in a 

benzenoid system are identical to their Clar structures, i.e. 

( ,1) = ( )B cc B , we can obtain the Clar polynomial by 

enumerating Clar covers without alternating hexagons. In 

fact, the converse of Theorem 4.4 does not hold. For 

example, (coronene,1) = (coronene)cc . So we can easily 

obtain the Clar polynomial of coronene as 
3 2(coronene, ) = 2 3 2x x x x+ + , which, of course, agrees 

with the earlier result of Ref. [94]. In fact many benzenoid 

systems B  that contain coronene as its nice subgraph with 

( ,1) = ( )B cc B , have been constructed. For more details, the 

reader is reffered to [57]. 

5. LINEARLY INDEPENDENT AND MINIMAL 

CONJUGATED CIRCUIT POLYNOMIALS OF 

BENZENOID HYDROCARBONS 

5.1. Introduction 

 The conjugated circuit model is a resonance-theoretic 

model, which was introduced by Randi c  in 1976 for the 

study of aromaticity and conjugation in polycyclic 

conjugated systems. Enumeration of conjugated circuits led 

to expressions for the resonance energy of polycyclic 

conjugated hydrocarbons [96]. In recent years, various 

investigations on the conjugated-circuit model have been 

made [96-104], such as quantum-mechanical and 

computational aspects of the conjugated-circuit model, the 

selection of the optimum parameters of the conjugated-

circuit model, and comparison between the conjugated-

circuit model and several other models for computing the 

resonance energies of benzenoid hydrocarbons. 

 In [105], Guo and Randi c  gave a strict definition of 

linearly independent and minimal conjugated circuits and 

LM -conjugated circuit polynomials as follows. 

 Definition 5.1 [105]. A set S  of linearly independent 

and minimal conjugated circuits of a Kekulé structure iK  of 

a benzenoid hydrocarbon B  consists of a maximum number 

of linearly independent circuits of B  in which every circuit 
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is a conjugated circuit of iK , and has the minimum length. 

Denote a circuit of size 4 2n +  in S  by nR , and  

the summation expression of S  by 

=1,2,
( ) = = ( )i j n i nR S n

j

R K R r K R , where ( )n ir K  is the 

number of the circuits of size 4 2n +  in S . The summation 

expression of all sets of LM -conjugated circuits of all 

Kekulé structures of B  is denoted by 

= ,2,
( ) = = ( ) =i n nK n l

i

R B R R K r R , where = ( )n n iK
i

r r K . 

The summation expression ( )R B  of LM -conjugated 

circuits of B  is called LM C-expressions or the LM -

conjugated circuit polynomial (simply the LMCC-

polynomial) of B, which is a polynomial of degree one with 

multi-variants and may also be denoted by a sequence of 

numbers 2 3( , , , , , )l nr r r r , called the LMCC -code of B .  

 The LM -conjugated circuit polynomials of benzenoid 

hydrocarbons play a central role in the conjugated-circuit 

model, because the resonance energy ( )RE B  of a benzenoid 

hydrocarbon B  is simply equal to ( ) / ( )R B K B . Here 

( )K B  is the number of Kekulé structures of B . The LM -

conjugated circuit polynomials had been also applied to 

calculate generalized bond orders of polycyclic conjugated 

hydrocarbons [106]. Thus the calculation of the LM -

conjugated circuit polynomials of benzenoid hydrocarbons 

becomes a fundamental problem on the conjugated-circuit 

model. 

 However, for a general case, the enumeration of LM -

conjugated circuits of benzenoid hydrocarbons requires to 

construct all Kekulé structures and then to find a set of LM -

conjugated circuits for every Kekulé structure. When the size 

of a molecule increases, the number of Kekulé structures 

increases fast, and hence enumerating LM -conjugated 

circuits by this method becomes tedious. 

 Guo and Randi c  [105] investigated the properties and 

the construction of minimal conjugated circuits of benzenoid 

hydrocarbons, and gave the necessary and sufficient 

condition for a set of conjugated circuits of a benzenoid 

hydrocarbon to be linearly independent and minimal. 

Furthermore, they established some recursive relations for 

calculating the LM -conjugated circuit polynomials of 

several classes of benzenoid hydrocarbons, so that the 

LMCC -polynomials of the several classes of benzenoid 

hydrocarbons can be directly obtained from the LMCC -

polynomials and the Kekulé structure counts of their 

subgraphs. Guo and Randi c  [107] extended the recursive 

formulae for calculating LMCC -polynomials for both 

catacondensed benzenoid hydrocarbons and some families of 

structurally related pericondensed benzenoid hydrocarbons. 

There are still some classes of benzenoid hydrocarbons 

whose LMCC -polynomials cannot be obtained by the above 

recursive method. For general cases, Guo, Randi c , and 

Klein [108] further gave an analytical expression for the 

count of LM -conjugated circuits of B  which is based on 

the counts of Kekulé structures of selected subgraphs of B . 

By using the method, the LMCC -polynomials of any 

benzenoid hydrocarbon can be obtained. 

 A benzenoid hydrocarbon ( BH ) is a 2-connected plane 

graph whose every interior face is bounded by a regular 

hexagon. A connected subgraph of a BH  is said to be a 

BH -fragment ( BHF ). A 2-connected BHF  is said to be a 

generalized BH  ( GBH ). Let B  be a BH  or GBH . A 

bond of B  is said to be a fixed bond if it appears always as a 

double bond in every Kekulé structure), or always as a single 

bond. If B  contains no fixed bond, then B  is said to be 

normal; otherwise B  is said to be essentially disconnected. 

A normal component iB  of B  is a maximal subgraph of B  

with no fixed bond (possibly, =iB B , that is, B  is normal). 

All normal components of B  are denoted by 
*B . The 

boundary of an interior face of a BH  or BH -fragment B  is 

called a ring of B .  

  Definition 5.2 [105]. Let s  be a ring (i.e. a hexagon) of 

a benzenoid hydrocarbon B , and iK  a Kekulé structure of 

B . A conjugated circuit C  of iK  (simply, a iK -conjugated 

circuit C ) is said to be a minimal conjugated circuit of the 

ring s  if the interior of C  contains the interior of s  and C  

has the minimum length. We also say that a iK -conjugated 

circuit C  of B  is minimal if there is a ring s  in B  such 

that C  is a minimal conjugated circuit of s  (see Fig. 9). 

 

Fig. (9). Construction of minimal conjugated circuits of a ring s  of 

a benzenoid hydrocarbon B . 

 Theorem 5.1 [105]. Let iK  be a Kekulé structure of a 

benzenoid hydrocarbon B , and let C  be a minimal 

conjugated circuit of a ring s  of B . Then [ ]B C  is one of 
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the BHs shown in Fig. (9), and the iK  double bonds in 

[ ]B C  are uniquely determined. 

 Theorem 5.2 [105]. Let iK  be a Kekulé structure of a 

benzenoid hydrocarbon B . A set 2 3= { , , , , }l tS C C C C  of 

iK -conjugated circuits of B  is a set of LM -conjugated 

circuits of iK  if and only if for any ring js  in all normal 

components 
*B  of B  there is exactly one circuit C  in S  

such that jC  is a minimal iK -conjugated circuit of js . 

5.2. Recursive Method for Computing LM -Conjugated 

Circuit Polynomials of Benzenoid Hydrocarbons 

 Theorem 5.2 establishes the theoretical basis of the 

partition of the LMC -expression of B  into the LMC -

expressions of rings of B . The LMC -expression of a ring s  

in B , denoted by ( )sR B , is determined by taking the 

summation expression of the minimal conjugated circuits of 

s , one for every Kekulé structure of B , and 

( ) = ( )
B

ss
R B R B . ( )sR B  may also be denoted by a 

sequence of numbers (ring code) 2( ( ), ( ), , ( ), )l nr s r s r s , 

where ( )nr s  is the coefficient of the term nR  in ( )sR B . 

Theorem 5.2 also enables us to establish some recursive 

relations for enumeration of LM -conjugated circuits of B .  

 Definition 5.3 [105]. For an edge =e uv  of a benzenoid 

hydrocarbon B , let eB  ( )eB  denote the labeled graph of B  

for which the edge e  is labeled as double (single) bond, and 

Let 
*

eB  
*( )eB  denote the normal components of B u v  

( )B e  [
*

eB  and 
*

eB  may be thought as the normal 

components of eB  ( eB ), since e  is in fact a fixed double 

(single) bond in eB  ( eB )]. The subgraph of eB  ( )eB  

induced by the hexagons in eB  ( )eB  which are not in 
*

eB  

*( )eB  is denoted by eB  ( ')eB . The contribution of all rings 

in 
*

eB  
*( )eB  to ( )eR B  ( ( ))eR B  is denoted by 

* ( )eR B  

(
* ( )eR B ), and the contribution of all rings in 'eB  ( 'eB ) to 

( )eR B  ( ( )eR B ) is denoted by ( )eR B  ( ( )eR B ). 

 Clearly, ( )eR B  and ( )eR B  are just the LMC -

expressions of all the Kekulé structures of B  containing and 

not containing the edge e , respectively. Thus 

* *( ) = ( ) ( ) ( ) ( )e e e eR B R B R B R B R B+ + +  

 The above expressions give some partitions of LM -

conjugated circuits of B , so that we can obtain ( )R B  from 

its all parts. However, we need to further reduce them to 

LMC -expressions of subgraphs of B . 

 Theorem 5.3 [105]. Let 1 2, , , tB B B  be t  mutually 

disjoint BH s, or BH -fragments, and 
1 2= tB B B B . 

Then 

1 2 =1

( )
( ) = ( ) = ( )

( )

t

t ii
i

K B
R B R B B B R B

K B
.  

 Theorem 5.4 [105]. Let 1 2, , , tB B B  be the normal 

components of an essentially disconnected BH  or a BH -

fragment B. Then 

*

=1

( )
( ) = ( ) = ( )

( )

t

ii
i

K B
R B R B R B

K B
. 

 Theorem 5.5 [105]. Let B  be a BH  which contains no 

crown (see Fig. 10 (1)) as its subgraph. Then for any edge 

=e uv  of B , each of LM -conjugated circuits of 
*

eB  (
*

eB ) 

is also a minimal in eB  ( )eB .  

 Theorem 5.6 [105]. Let B  be a normal BH , which 

contains no crown as its subgraph. Then, for any edge e  of B , 

*( ) = ( ) ( )e e eR B R B R B+ , 
*( ) = ( ) ( )e e eR B R B R B+ , 

* *( ) = ( ) ( ) ( ) ( )e e e eR B R B R B R B R B+ + + . 

 Theorem 5.7 [105]. Let e  be an edge on the boundary of 

a benzenoid hydrocarbon B , and let ( )h eS B  ( ( ')h eS B ) be 

 

Fig. (10). (1) A crown B . (2) A recursive edge e  in a BH  B  with a local struction. (3) Recursive edges 1 2 1, , , , pe e e e  in a BH  B  

with a local struction. 
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the set of rings in eB  ( 'eB ). Let ( )s eC B  ( ( )s eC B ) denote 

the set of minimal conjugated circuits of a ring s  in eB  

(
eB ). Then for ( )h es S B , 

(| | 2)/4( )
( ) = ( )s e CC C B

s e

R B K B C R , for 

( 'h es S B , 
(| | 2)/4( )

( ) = ( )s e CC C B
s e

R B K B C R , where | |C  

denotes the length of C , ( )K B C  is the number of Kekulé 

structures of B C .  

 Definition 5.4 [105]. Let e  be an edge on the boundary 

of a benzenoid hydrocarbon B . If B  and e  satisfy one of 

the following conditions: (1) B  contains no crown (see Fig. 

10 (1)) as its subgraph; (2) B  contains a local structure as 

shown in Fig. 10 (2), and e  is the marked edge; (3) B  

contains a local structure as shown in Fig. 10 (3), and e  is 

the marked edge; then e  is said to be a recursive edge of B . 

 Theorem 5.8 [105]. Let B  be a BH  which contains a 

recursive edge e  on the boundary of B . Then 

  

R(B) = R*(B
e
) + R*(B

e
) + R (B

e
) + R (B

e
)

1.8cm = R(B
e

* ) + R(B
e

* ) +
s S

h
( B

e
) C C

s
( B

e
)
K(B C)R

(|C| 2)/4

2.3cm +
s S

h
( B

e
') C C

s
( B

e
)
K(B C)R

(|C| 2)/4
.  

 Definition 5.5 [105]. Let C  be a minimal conjugated 

circuit of a ring s  of a benzenoid hydrocarbon B , and let 

s  be a hexagon of B  for which C s  and the interior 

of s  is contained in the exterior of C . If =C C s  (the 

symmetry difference of edge sets of C  and s ) is also a 

minimal conjugated circuit of s , then we say C  is obtained 

from C  by a extension and s  is a extendible hexagon of 

C . For a ring s  in eB  ( eB ), a minimal conjugated circuit 

C  of s  in eB  ( eB ) is said to be minimum if C  has the 

smallest length and [ ]B C  contains a smallest number of 

hexagons. 

 Theorem 5.9 [105]. Let e  be a recursive edge of a 

benzenoid hydrocarbon B , and let s  be a ring in eB  ( 'eB ). 

Let C  be a minimal conjugated circuit of s  in eB  ( eB ) 

which is not minimum. Then C  can be obtained from 

another minimal conjugated circuit of s  in eB  ( eB ) by an 

extension.  

 Procedure 5.1 [105]. Let e  be a recursive edge of a 

benzenoid hydrocarbon B , and s  a ring in eB  ( eB ). Let 

*C  be a unique minimum conjugated circuit of s  in eB  

( eB ). 

(1) Set 
*

0 = { }S C , 0=iS S . 

(2) For every minimal conjugated circuit iC  in iS  , find 

all extendible hexagons of iC , extend iC  to new 

minimal conjugated circuits, and set them to 1iS
+

. 

(3) If 1 =iS
+

, then go to (4). Otherwise set 1i i+ , 

go to (2). 

(4) Set 
=1

( ) =
i

s e jj
C B S  (

=1
( ) =

i

s e jj
C B S ). 

 

Fig. (11). An example for application of procedure 1. 
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 An example of application of Procedure 5.1 is shown in 

Fig. 11. 

5.3. LM -Conjugated Circuit Polynomials in 

Catacondensed Benzenoid Hydrocarbons 

 In a general case, a catacondensed benzenoid 

hydrocarbon (cata- BH ) B  has the construction shown in 

Fig. (12), where 1 2 3 15, , , ,B B B B  are subgraphs of B , each 

of which is a cata- BH . Particularly, if 2 3= = 0n n , B  

becomes a straight cata- BH .  

 Theorem 5.10 [107]. Let = ( )aB B n  denote the straight 

cata- BH  with n  hexagons (see Fig. (13a)). Then 

=1
( ) = 2 ( 1 )

n

ii
R B n i R+ .  

 Theorem 5.11 [107]. Let B  be a cata- BH  shown in 

Fig. (12). Then 

  

R(B) = R(B
1
) + (n

1
1)[K(B

3
)R(B
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3
)]+ 2K(B

2
)K(B

3
)

i=1

n 1

(n i)R
i  

  

+[
j=4

7
K(B

j
)][

i=2

n
1

j=0

n
2

1

k=0

n
3

1

R
i+ j+k

+

i=2

n
1 R

i
+ [

j=6

11
K(B

j
)]

i=2

n
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n
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1

R
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2
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, 

 where, if 2 3= 0 ( = 0)n n , then ( ) = 1jK B  for 

= 2,4,5 ( = 3,6,7)j j , ( ) = 0jK B  for   
j = 8,9,10,11 

  
( j = 12,13,14,15) , and 

1 1 1 1
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Fig. (12). The construction of a catacondensed benzenoid 
hydrocarbon. 

 Corollary 5.1 [107]. Let 1 2= ( , , , )u tB B m m m  denote 

an unbranched cata- BH  as shown in Fig. (14). Then 

  

R(B) = m
1
R(B

2
) + R(B

3
) +

i=1

m
1

1

[2K(B
2
)(m

1
i) + K(B

3
)]R

i
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3
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m
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2 R
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2
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i=m
2
+2

m
2
+m

3 R
i
]+ K(B

5
)R

m
2
+m

3
+1

,  

where, if 2 3= 0 ( = 0)m m , then ( ) = 1jK B  for 

= 2,3 ( = 3,4)j j  and ( ) = 0jK B  for 4 ( 5)j j . 

 By Theorem 5.10 and Corollary 5.1, we can easily obtain 

the following calculation formulae for enumerating the 

LM -conjugated circuits of the cata- BH s in Fig. (13). 

 Corollary 5.2 [107]. Let ( )bB n , 2n , be the cata- BH  

shown in Fig. (13b). Then 

1 2 1=3
( ( )) = (6 2) 4( 1) (4 3 4 )

n

b i ni
R B n n R n R n i R R

+
+ + + + . 

 Corollary 5.3 [107]. Let ( )cB n , 1n , be the cata- BH  

shown in Fig. (13c). Then 

1 2 1 2=3
( ( )) = 4(4 1) 8 4 (2 3 2 ) 6 2

n

c c i n ni
R B n n R nR n i R R R

+ +
+ + + + + + .  

 Corollary 5.4 [107]. Let ( )dB n , 2n , be the cata- BH  

shown in Fig. (13d). Then 

  

R(B
d
(n)) = 2(8n 3)R

1
+ 2(4n 5)R

2
+

i=3

n

(8n + 5 8i)R
i
+ 3R

n+1
+ R

n+2
. 

 Corollary 5.5 [107]. Let ( )eB n , 1n , be the cata- BH  

shown in Fig. (13e). Then 

  

R(B
e
(n)) = 96nR

1
+ 8R

2
+ 8

i=2

n

(4n + 5 4i)R
i
+ 26R

n+1
+12R

n+2
+ 2R

n+3
. 

 Corollary 5.6 [107]. Let ( )fB n , 3n , be the cata- BH  

shown in Fig. (13f). Then 

1

1 1 2 2 3 3=0
( ( )) = (2 2 )

n

f i n i n i n ii
R B n F F R F R F R+ + ,  

where 1 2=i i iF F F+  is Fibonacci¡ s number, 0 1= = 1F F  

and = 0iF  for 1i .  

 Concerning more general cases, we give the following 

examples.  

 Corollary 5.7 [107]. Let 1 2( , )uB m m  be an unbranched 

cata- BH  (see Fig. 14). Then 

  

R(B
u
(m

1
, m

2
)) =

i=1

m
1[2(m

2
+1)(m

1
i) +1]R

i
+ 2
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m
2[m

1
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2
+1 i) +1]R

i
4cm +
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2
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m
1
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2 R
i
+

i=2

m
1

j=0

m
2

1

R
i+ j

R
1
+ 2R

m
2
+1

. 

 Corollary 5.8 [107]. Let 1 2 3( , , )uB m m m  be an 

unbranched cata- BH  (see Fig. 14). Then 
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Fig. (13). Some families of benzenoid hydrocarbons. 

 

 

Fig. (14). An unbranched catacondensed benzenoid hydrocarbon B. 
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Fig. (15). A catacondensed benzenoid hydrocarbon 1 2 3( , , )YB n n n  

consisting of three straight catacondensed benzenoid hydrocarbons. 

 Corollary 5.9 [107]. Let 1 2 3( , , )YB n n n  denote the cata-

BH  shown in Fig. (15). Then 

1 2 3( ( , , ))YR B n n n  

   

=
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n
1 [2(n
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5.4 LM -Conjugated Circuit Polynomials in Some 

Families of Structurally Related Pericondensed 

Benzenoid Hydrocarbons 

 To enumerate LM -conjugated circuits in some families 

of structurally related pericondensed benzenoid 

hydrocarbons, we need to use Theorem 5.8 and procedure 

5.1, and often need to deal with several recursive relations of 

several families of structurally related subgraphs for a family 

of structurally related peri- BH s. We will give some results 

but omit the operation processes. 

 We first give the recursive formulae for enumeration of 

LM -conjugated circuits of the peri-BHs in Fig. (13).  

 Corollary 5.10 [107]. Let ( )gB n  be the BH  shown in 

Fig. (13g). Then 

  

R(B
g
(n)) = 2

i=1

n

(5n + 8 5i)R
i
+ (10n + 6)R

1
+ 4(n +1)

R
2
+ (n + 2)R

3
 

1 2 36 4 2n n nR R R
+ + +

+ + + . 

 Corollary 5.11 [107]. Let ( )hB n  be the BH  shown in 

Fig. (13h). Then 

  

R(B
h
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( ( 1)) = 1hK B , and ( ( )) = 0hK B i  for ] 2i . 

 Corollary 5.12 [107]. Let ( )iB n  be the BH  shown in 

Fig. (13i). Then, for = 2n p , 
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where 

1 1( (0)) = 8 , ( ( 1)) = 2i iR B R R B R , 

( /2) 1

= 1
( ( )) = ( ( 1)) ( (2 1))

n

i i ij
K B n K B n K B j+ +  for = 2n p , 

( 1)/2

= 1
( ( )) = ( ( 1)) ( (2 ))

n

i i ij
K B n K B n K B j+  for = 2 1n p + , 

( (0)) = 4, ( ( 1)) = 2, ( ( 2)) = 1i i iK B K B K B  and ( ( )) = 0iK B j  

for 3j .  
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 Corollary 5.13 [107]. Let ( )jB n  be the BH  shown in 

Fig. (13j). Then 

3

=1
( ( )) = ( ( 1)) 2 ( ( 2)) ( ( ))

n

j j j ji
R B n R B n R B n R B i+ +  

3

1= 1
2[ ( 1 ) ( ( )) 2 ( ( 2))]
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3
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5
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5

4= 1
[ ( 1 ) ( ( )) 4 ( ( 4))]

n

j ji
n i K B i K B n R+ + ,  

where 

( ( )) = 0jR B n  for 0n , 

1

= 1
( ( )) = ( ( 2)) ( ( ))

n

j j ji
K B n K B n K B i+ , 

( ( )) = 1jK B n  for = 0, 1n , and ( ( )) = 0jK B n  for 2n .  

 Finally, for the two families of peri- BH s shown in Fig. 

(16), we give the recursive formulae for enumeration of their 

LM -conjugated circuit polynomials.  

 Corollary 5.14 [107]. Let ( )kB n  be the BH  shown in 

Fig. (16(1)). Then 

2

=1
( ( )) = 5 ( ( 1)) 4 ( ( ))

n
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2

1=0
2[4 ( ) ( ( )) 5 ( ( 1)) ]

n

k ki
n i K B i K B n n R+ + +  

2

2=0
2[ (8 7 8 ) ( ( )) 2 ( ( 1)) 2 ]

n

k ki
n i K B i K B n n R+ + +  

2

3=0
[4 ( 2 ) ( ( )) ( ( 1)) 2]

n

k ki
n i K B i K B n n R+ + + + +  

3

4=0
[2 (2 3 2 ) ( ( )) 3 ( ( 2)) 1]

n

k ki
n i K B i K B n n R+ + + ,  

where 

2
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( (0)) = 0, ( ( )) = 5 ( ( 1)) 4 ( ( )) 1

n
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R B K B n K B n K B i+ + , 

( (0)) = 1kK B  and ( ( )) = 0kK B i  for 1i .  

 Corollary 5.15 [107]. Let [ , ]lB m n  be the BH  shown in 

Fig. (16(2)). Then 

( [ , ]) = ( [ 1, ]) ( [ , 1])l l lR B m n R B m n R B m n+  

1=1 =1
2 ( [ , ]) ( [ 1, 1])

m n

l l i ji j
K B m i n j K B i j R

+
+ ,  

where 

( [ , ]) = ( [ 1, ]) ( [ , 1])l l lK B m n K B m n B m n+ , 

( [ ,0]) = ( [0, ])l lK B m K B n . 

5.5. Analytical Expressions for the Count of LM -

Conjugated Circuits of Benzenoid Hydrocarbons 

 Although the LMCC -polynomials of several classes of 

benzenoid hydrocarbons can be directly obtained from the 

LMCC -polynomials and the Kekulé structure counts of 

some subgraphs by the above recursive method [105, 108], 

there are still some classes of benzenoid hydrocarbons whose 

LMC expressions cannot be obtained by the recursive 

method, e.g., the benzenoid hydrocarbons shown in Fig. 

(17). So we need to investigate a new method to calculate 

such LMC expressions. 

 In ref. [108], Guo, Randi c , and Klein investigated 

further properties of LM -conjugated circuits and different 

contributions of LM -conjugated circuits having different 

shapes to ( )R B  and gave a new method for calculating the 

LMCC -polynomials of polycyclic benzenoid hydrocarbons, 

which is based on the counts of Kekulé structures of selected 

subgraphs of benzenoid hydrocarbons. By using the method, 

the LMCC -polynomials of any benzenoid hydrocarbon can 

be obtained. 

 Theorem 5.2 establishes the theoretical basis of the 

partition of the LMCC -polynomial of B into the LMCC -

polynomials of rings of B . The LMCC -polynomial of a 

ring s  of a benzenoid hydrocarbon B , denoted by ( )sR B , 

is the summation of all the minimal conjugated circuits of s , 

one for each Kekulé structure of B . Note that ( )sR B  is just 

the contribution of s  to ( )R B , and ( ) = ( )
B

ss
R B R B  

( ( ) = 0sR B  for 
*s B ). And, ( )sR B  may also be denoted 

by a sequence of numbers (ring code) 

1 2( ( ), ( ), , ( ), )nr s r s r s , where ( )nr s  is the coefficient of 

the term nR  in ( )sR B . 

 Hence, the count of LM -conjugated circuits of a 

benzenoid hydrocarbon B  is reduced to calculations of 

( )sR B  for every ring s  of B . To calculate ( )sR B , we need 

 

Fig. (16). Two families of pericondensed benzenoid hydrocarbons. 
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to investigate further properties of minimal conjugated 

circuits of benzenoid hydrocarbons. 

 For a Kekulé structure iK , of a benzenoid hydrocarbon 

B , Theorem 5.1 gives all possible configurations of a 

minimal iK -conjugated circuit C  of a ring s  of B  (see Fig. 

9). We call a configuration of C  a minimal configuration 

( M -configuration) with respect to (w.r.t.) the ring s . 

Conversely, for a circuit in B  which has an M -

configuration w.r.t. a ring s , we have the following: 

  Lemma 5.1 [108]. Let C  be a conjugated circuit with 

an M -configuration w.r.t. a ring s  in a benzenoid 

hydrocarbon B . Then, for any Kekulé structure iK  in 

B C , there is exactly one Kekulé structure iK  in B  for 

which i iK K , and C  is a minimal iK -conjugated circuit 

of s  in B . 

 By Lemma 5.1, we can give a new definition of a 

minimal conjugated circuit of a ring of B , which is 

independent of a Kekulé structure iK  of B .  

 Definition 5.6 [108]. A conjugated circuit C  of a 

benzenoid hydrocarbon B  is said to be minimal if C  has an 

M -configuration w.r.t. a ring s  in B . C  is also said to be 

a minimal conjugated circuit of s  in B .  

 Corollary 5.16 [108]. Let C  be a circuit with an M -

configuration w.r.t. a ring s  in a benzenoid hydrocarbon B . 

Then C  corresponds to exactly ( )K B C  ( = ( [ ])K B B C ) 

Kekulé structures for each of which C  is a minimal 

conjugated circuit of s  in B .  

 Note that Corollary 5.16 cannot be used to calculate 

( )sR B . In general cases, the coefficient ( )nr s  of the term 

nR  in ( )sR B  is not equal to 
4 2

4 2

( )nC
n

K B C
+

+

, here 

4 2nC
+

 is a minimal conjugated circuit of s  with size 4 2n + , 

because for a Kekulé structure iK  and a ring s  of B , a 

minimal iK -conjugated circuit C  of s  may be not unique 

(see Fig. 18), but calculating ( )sR B  requires one to take 

exactly one minimal conjugated circuit of s  for each Kekulé 

structure. Therefore, we need to investigate the properties of 

non-unique minimal conjugated circuits of a ring in B .  

 

Fig. (18). 1C  and 2C  are two minimal iK -conjugated circuits of a 

ring s . 

  Lemma 5.2 [108]. Let iK  be a Kekulé structure of a 

benzenoid hydrocarbon B , and let 1C  and 2C  be two 

minimal iK -conjugated circuits of a ring s  in B . Then, 

(i) 1[ ]B C  and 2[ ]B C  contain a unique ring s  in 

common; 

(ii) any edge in 1C s  ( 2C s ) is not on 2C  ( 1C ), and 

any edge in 1( )s E C s  ( 2( )s E C s ) is on 2C  

( 1C ); 

(iii) each component in 1 2C C  is an edge (which is a 

iK -double bond); and 

(iv) there are at most two minimal iK -conjugated circuits 

of s  in B . 

 

Fig. (17). Two families of pericondensed benzenoid hydrocarbons. 
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 We call two minimal iK -conjugated circuits of a ring s  

in B  as a pair of minimal iK -conjugated circuits of s . By 

Lemma 5.2, we can classify pairs of minimal conjugated 

circuits of a ring s in B. 

 Theorem 5.12 [108]. Let 1C  and 2C  be a pair of 

minimal iK -conjugated circuits of a ring s  in a benzenoid 

hydrocarbon B  for a Kekulé structure iK  of B . Then 

1 2C C  belongs to one of the four types of pairs of minimal 

conjugated circuits as shown in Fig. (19). 

 Theorem 5.12 gives all possible configurations of a pair 

of minimal iK -conjugated circuits 1C  and 2C  of a ring s  in 

B . We call these configurations PM -configurations w.r.t. 

the ring s, and 1C  and 2C  the mutually associated minimal 

conjugated circuits of s . Conversely, for a pair of mutually 

conjugated circuits 1C  and 2C  (i.e., 1 2B C C  has Kekulé 

structures) with a PM -configuration w.r.t. a ring s , 1C  and 

2C  may have different sizes and are called mutually 

associated conjugated circuits of S . 

 Lemma 5.3 [108]. Let 1C  and 2C  be a pair of mutually 

associated conjugated circuits with the same size and with a 

PM -configuration w.r.t. a ring s  in a benzenoid 

hydrocarbon B . Then, for any Kekulé structure iK  in 

1 2B C C , there is exactly one Kekulé structure iK  in B  

for which i iK K  and both 1C  and 2C  are minimal iK -

conjugated circuits of s  in B . 

 By Lemma 5.3, we can also give a new definition of a 

pair of minimal conjugated circuits of a ring in B , which is 

independent of a Kekulé structure iK  of B .  

 Definition 5.7 [108]. Two mutually conjugated circuits 

1C  and 2C  in a benzenoid hydrocarbon B  are said to be a 

pair of minimal conjugated circuits of a ring s  in B , if 

1 2C C  has a PM -configuration w.r.t. the ring s , and 1C  

and 2C  have the same size. We also say that 1C  and 2C  are 

mutually associated minimal conjugated circuits w.r.t. s . 

 Recall the construction of a minimal iK -conjugated 

circuit C  of a ring s  in B  shown in Fig. (9). Let [ ]B C  be 

the subgraph of [ ]B C  induced by the hexagons labeled by 

0,1,2, , , ,a b c , and C , the boundary of [ ]B C . Clearly, 

C  also has an M -configuration w.r.t. the ring s , and 

| |=| |= 4( 1) 2 = 4 2C C a b c n+ + + + +  ( nC R ). We call 

[ ]B C  the underlying configuration of [ ]B C  and say that 

C  is the underlying circuit of C  and that C  has an 

underlying M -configuration w.r.t. s . For a minimal iK -

conjugated circuit C  of a ring s  in B , there is a unique 

circuit 2 1C C  with an underlying M -configuration w.r.t. 

 

Fig. (19). Four types of pairs of minimal conjugated circuits. 
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s  for which 2[ ]B C  contains as many hexagons as possible 

so that all interior edges of 2[ ]B C  are iK -single bonds. The 

circuit 2C  is called the associated circuit of 1C  according to 

iK . Particularly, if all edges of s  are not on the boundary of 

B , 2C  is called the nondegenerated associated circuit of 1C  

(see Fig. 20). The edges ,a be e , and ce  indicated in Fig. (20) 

are called the extreme edges of 2C ; the sets of the interior 

edges of 2[ ]B C  parallel to ,a be e , and ce  are, respectively, 

denoted by ,A BE E , and CE ; and 

= { }, = { }A A a B B bE E e E E e , and = { }C C cE E e . Note 

that if any one of ,a be e , or ce  is not on the boundary ( )b B  

of B , it must be a iK -double bond. In the other case, it may 

be a iK -single or iK -double bond. The associated circuit 

2C  of 1C  is different from an associated minimal iK -

conjugated circuit of 1C , since 2C  may be not iK -

conjugated and 2| |C  may be not equal to 1| |C . 

  Theorem 5.13 [108]. Let iK  be a Kekulé structure of a 

benzenoid hydrocarbon B ; 1C , a minimal iK -conjugated 

circuit of a ring s  in B ; and 2C , the associated circuit of 1C  

according to iK . Then, if (1) an edge on s  lies on the 

boundary ( )b B  of B , or (2) one of the extreme edges of 2C  

lies on ( )b B  and is a iK -single bond, or (3) 2C  has greater 

size than 1C , 1C  is a unique minimal iK -conjugated circuit 

of s  in B . 

 For a circuit C  with an M -configuration w.r.t. a ring s  

in B  and the underlying circuit C  of C , there is a circuit 
*C  with an M -configuration w.r.t. s  for which the 

underlying circuit of *C  is just C , the interior of C  is 

contained in the interior of *C , and 
*[ ]B C  contains as many 

hexagons as possible. In the case in Fig. (21(1)), *C  has the 

maximum M -configuration, called full M -configuration. 

In the case of Fig. (21(2)), *C  is said to have a truncated 

M -configuration. We call *C  the characteristic circuit of 

C  and C . For a minimal iK -conjugated circuit 1C  of a 

ring s  and the associated circuit 2C  of 1C  according to iK , 

a characteristic circuit 
*

2C  of 2C  such that 
*

1 2C C  has a 

PM -configuration w.r.t. s  is also called the associated 

characteristic circuit of 1C . If a characteristic circuit *C  of 

C  has a truncated M -configuration, for the edges 

1 2, , , tf f f  on *C  which lie on the boundary ( )b B  of B  

and whose end vertices have degree three in 
*[ ]B C , let iF  

denote the set of the edges in 
*[ ]B C  which contain if  and 

are intersected by a same line segment iL  (see Fig. 21(2)). 

We call iF , = 1,2, ,i t , the characteristic edge sets of 

*[ ]B C . 

 Theorem 5.14 [108]. Let 1C  be a minimal iK -

conjugated circuit of a ring s  of a benzenoid hydrocarbon 

B  for a Kekulé structure iK  of B ; 2C , the nondegenerated 

associated circuit of 1C  according to iK  with 2| | | |lC C ; 

and 
*

2C , the associated characteristic circuit of 1C . Then, 1C  

is a unique minimal iK -conjugated circuit of s  if and only if 

either an extreme edge of 2C  lies on the boundary of B  and 

is a iK -single bond or 
*

2C  has a truncated M -configuration 

and there is a characteristic edge set jF  of 
*

2[ ]B C  such that 

each edge in jF  is a iK -double bond. 

 By Theorems 5.3 and 5.4, we need only to consider the 

benzenoid hydrocarbons with no fixed bond. To calculate 

( )sR B , it is enough to give a method to determine the 

coefficient ( )nr s  of the term nR  in ( )sR B  for 1n . 

 From a Kekulé structure iK  and a minimal iK -

conjugated circuit C  of a ring s  in B , we have introduced 

the concepts of the associated circuit and the associated 

characteristic circuit of C , according to iK . Now, we need 

 

Fig. (20). The associated circuit 2C  of a minimal iK -conjugated circuit 1C  of a ring s  in B  according to iK . 
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to generalize the concepts so that they are independent of a 

Kekulé structure of B . 

 Definition 5.8 [108]. For a pair of minimal conjugated 

circuits 1C  and 2C  of a ring s  in a benzenoid hydrocarbon 

B  and their underlying circuits 1C  and 2C , 1 2C C  is 

said to have an underlying PM -configuration w.r.t. s . For a 

minimal conjugated circuit 1C  of s  and its underlying 

circuit 1C , a circuit 2C  is said to an nondegenerated 

associated circuit of 1C  and 1C , if 1 2C C  has a PM -

configuration w.r.t. s , 1 2C C  has an underlying PM -

configuration w.r.t. s , and any edge of s  is not on the 

boundary of B . A characteristic circuit 
*

2C  of 2C  is said to 

be an associated characteristic circuit of 1C  and 1C  if 

*

1 2C C  has a PM -configuration w.r.t. s . 

 For a minimal conjugated circuit 1C  of a ring s  in B , let 

1 2 2( ) = { |A C C C  is a nondegenerated associated circuit of 

1}C , 

1 1 2 2 1( ) = { | ( )A C C C A C , and 2 1| |<| |}C C , 

2 1 2 2 1( ) = { | ( )A C C C A C , and 2 1| |=| |}C C , 

* * *

1 2 2( ) = { |A C C C  is an associated characteristic circuit of 

1}C , 

* * * * *

1 1 2 2 1 2 1( ) = { | ( ), | |<| |A C C C A C C C , and 
*

2C  has a 

truncated M -configuration } , 

* * * * *

2 1 2 2 1 2 1( ) = { | ( ), | |=| |A C C C A C C C , and 
*

2C  has a 

truncated M -configuration } .  

 For calculation of ( )sR B , the pairs of circuits with 

underlying PM -configurations play a key role. Fig. (22) 

shows four types of pairs of circuits with underlying PM -

configurations w.r.t. a ring s . 

 For a pair of circuits 1C  and 2C  in B  with an underlying 

PM -configuration, we denote by 
*

1C  (respectively, 
*

2C ) the 

characteristic circuit of 1C  (respectively, 2C ) which belongs 

to 
*

2(A C ) [respectively, 
*

1( )A C ], where the circuit 1C  

(respectively, 2C ) is said to be of type i  ( {1,2,3,4}i ), if 

the pair of circuits 1 2C C  is of type i . A minimal 

conjugated circuit C  of a ring s  is said to be of type i , if 

the underlying circuit of C  is isomorphic to one of circuits 

1C  and 2C  of type i . For convenience, we introduce the 

following notations: 

( ) ( ) = { |i

nC s C C  is a circuit in a pair of circuits 1C  and 2C , 

with an underlying P -configuration w.r.t. a ring s  in B  

which are of type i , and | |= 4 2}C n + . 

( ) ( )i

nr s : the number of all the circuits denoted by nR  in 

( )sR B  which are of type , = 1,2,3,4i i . 

1 2( [ , ])K B C C : the number of the Kekulé structures of B  for 

which all edges in 1 2C C  and all extreme edges 

( , , , )a pe e  of 1C , and 2C  are double bonds, and all 

interior edges of 1[ ]B C  and 2[ ]B C  are single bonds. 

*

1 2( [ , ])K B C C : the number of the Kekulé structures of B  for 

which all extreme edges of 1C  and 2C , and all edges in 

1 2C C  and a characteristic edge set of 
*

2[ ]B C  are double 

bonds, and all interior edges of 1[ ]B C  and 2[ ]B C  are single 

bonds. 

21( [ , , ])iK B C E E : the number of the Kekulé structures of B  

for which all extreme edges of iC , and the edges in 

 

Fig. (21). (1) A characteristic circuit 
*C  of C  with a full M -configuration. (2) A characteristic circuit 

*C  of C  with a truncated M -

configuration, where 1 2, , , tf f f  lie on the boundary of B  and their end vertices have degree three in 
*[ ]B C . 
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1 2( ) lE C C E  are double bonds, and all interior edges of 

[ ]iB C  and the edges in 2E  are single bonds. 

21( [ , , ])iK B C E E : the number of the Kekulé structures of B  

for which all extreme edges of C , and the edges in 

1 2( ) lE C C E  and a characteristic edge set of 
*

iC  are 

double bonds, and all interior edges of [ ]iB C  and the edges 

in 2E  are single bonds. 

21 2 1( [ , , , ])K B C C E E : the number of the Kekulé structures of 

B  for which the edges in 1 2( ) lE C C E  and all extreme 

edges of 1C  and 2C  are double bonds, and the edges in 2E  

and all interior edges of 1[ ]B C  and 2[ ]B C  are single bonds. 

( [ , ])iK B C : the number of the Kekulé structures of B  for 

which ( ) =iA C , and 
*

i iC C  is an alternating path (or 

circuit) in double and single bonds such that the extreme 

edges of iC  are double bonds. 

*

AE : the edge set AE  for a circuit 2 1( )C A C  satisfying that, 

if 1 2C C  is of type 1 (respectively, types 2, 3, 4), 

*| |=| |= 1A AE E n , or 
*| |< 1AE n  but ae  is on ( )b B  

[respectively, 
*| |=| |= 2A AE E n , or 

*| |< 2AE n , but ae  is 

on ( )b B ]. 

*

ABE : the edge set BE  for a circuit 2 1( )C A C
 satisfying 

that, if .. is of type 1 (respectively, types 2, 3, 4), 

  
| E

A
| n 2  and 

  
| E

AB

* |=| E
B

|= n 1 | E
A

| , or 

  
| E

A
| + | E

AB

* |< n 1 but be  is on ( )b B  (respectively, 

  
| E

A
| n 3  and 

  
| E

A
| + | E

AB

* |= n 2 , or 
  
| E

A
| + | E

AB
|< n 2  

but be  is on 
  
b(B) ). 

  
E

ABC

*
: the edge set 

 
E

C
 for a circuit 

  
C

2
A(C

1
)  satisfying 

that 
  
| E

A
| + | E

B
| n 2  and 

  
| E

A
| + | E

B
| + | E

ABC

* |= n 1 , 

or 
  
| E

A
| + | E

B
| + | E

ABC
|< n 1  but ce , is on 

  
b(B) , where 

  
C

1
C

2
 is of types 2, 3, 4. 

 Similarly, we can define 
  
K(B[C

2
,C

1

"]), E
P

* , E
PQ

* , and 
  
E

PQR

* . 

Note that 
   
B[C

1
,C

2
], B[C

1
,C

2

*], B[C
i
, E

1
, E2 ], B[C

i

* , E
1
, E2 ], , 

denote the graphs obtained from  B  by labeling some edges 

as double or single bonds. 

 Lemma 5.4 [108]. Let 
  
C

1
 and 

  
C

2
 be a pair of circuits 

with an underlying  PM -configuration w.r.t. a ring s  in a 

benzenoid hydrocarbon  B , and 
  
C

2

*
 the associated 

characteristic circuit of 
  
C

1
. Then, 

 

Fig. (22). Four types of pairs of circuits with underlying PM -configurations w.r.t. a ring s  in B , where 
* *

2 1( )C A C , 
* *

1 2( )C A C . 
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K(B[C
1
,C

2

*]) =
1 i t

K(B[C
1
,C

2
, F

i
])

1 i< j t

K(B[C
1
,C

2
, F

i
F

j
])  

   

+
1 i< j<k t

K(B[C
1
,C

2
, F

i
F

j
F

k
]) + ( 1)t 1

K(B[C
1
,C

2
,

i=1

t F
i
]) , 

  

K(B[C
2

* , E
1
, E2 ]) =

1 i t
K(B[C

2
, F

i
E

1
, E2 ])

1 i< j t
K(B[C

2
, F

i
F

j
E

1
, E2 ])  

   
+ + ( 1)t 1 K(B[C

2
, E

1
(

i=1

t F
i
), E2 ]) ,  

where 1 2, , , tF F F  are all characteristic edge sets of 
*

2C . 

 Now we can give a method for calculating 
( ) ( )i

nr s . 

Consequently, 
4 ( )

=1
( ) = ( )i

n ni
r s r s . 

 Theorem 5.15 [108]. Let B  be a benzenoid hydrocarbon 

with no fixed bond, and s , a ring of B . Then, 

  

(i) r
n

(1) (s) =
C

1
C

n
(1)

(s), A(C
1

)
{K(B[C

1
, E

A

* ]) K(B[C
1

*, E
A

* ])

+
1 a n 2

[K(B[C
1
,e

a
, E

A
E

AB

* ]) K(B[C
1

*,e
a
, E

A
E

AB

* ])]

+
C

2
* A

1
* (C

1
)
K(B[C

1
,C

2

*]) +
C

2
A

2
(C

1
)
K(B[C

1
,C

2
])}

+
C

2
C

n
(1)

(s), A(C
2

)
{K(B[C

2
, E

P

* ]) K(B[C
2

*, E
P

* ])

+
1 p n 2

[K(B[C
2
,e

p
, E

P
E

PQ

* ]) K(B[B[C
2

*,e
p
, E

P
E

PQ

* ])]

+
C

1
* A

1
* (C

2
)
K(B[C

2
,C

1

*])}

+
C

1
C

n
(1)

(s), A(C
1

)=
[K(B[C

1
, ]) K(B[C

1

*, ])]

+
C

2
C

n
(1)

(s), A(C
2

)=
[K(B[C

2
, A]) K(B[C

2

*, ])],
 

where 
  
C

1
( C

n

(1) (s))  and 
  
C

2
( C

n

(1) (s))  are taken for three 

possible positions of 
  
C

1
C

2
 in B. 

  

(ii) r
n

(2) (s) =
C

1
C

n
(2)

(s), A(C
1

)
{K(B[C

1
, E

A

* ]) +
1 a n 3

K(B[C
1
,e

a
, E

A
E

AB

* ])

+
2 a+b n 2, a,b 1

K(B[C
1
,{e

a
,e

b
}, E

A
E

B
E

ABC

* ])

+
C

2
A

2
(C

1
)
K(B[C

1
,C

2
]) +

C
2
* A

1
* (C

1
)
K(B[C

1
,C

2

*])}

+
C

2
C

n
(2)

(s), A(C
2

)
K(B[C

2
, E

P

* ]) +
C

1
C

n
(2)

(s), A(C
1

)=
[K(B[C

1
, ]),

K(B[C
1

*, ])]+
C

2
C

n
(2)

(s), A(C
2

)=
[K(B[C

2
, ]) K(B[C

2

*, ])],
 

where 1C  and 2C  are taken for six possible positions of 

1 2C C  in B. 

  

(iii) r
n

(3) (s) =
C

1
C

n
(3)

(s), A(C
1

)
{K(B[C

1
, E

A

* ]) +
1 a n 3

K(B[C
1
,e

a
, E

A
E

AB

* ])

+
2 a+b n 2, a,b 1

K(B[C
1
,{e

a
,e

b
}, E

A
E

B
E

ABC

* ])

+
C

2
A

2
(C

1
)
K(B[C

1
,C

2
]) +

C
2
* A

1
* (C

1
)
K(B[C

1
,C

2

*])}

+
C

2
C

n
(3)

(s), A(C
2

)
{K(B[C

2
, E

P

* ]) +
1 p n 2

[K(B[C
2
,e

p
, E

P
E

PQ

* ])

K(B[C
2

*,e
p
, E

P
E

PQ

* ])}+
C

1
C

n
(3)

(s), A(C
1

)=
[K(B[C

1
, ])

K(B[C
1

*, ])]+
C

2
C

n
(3)

(s), A(C
2

)=
[K(B[C

2
, ]) D(B[C

2

*, ])],
 

where 1C  and 2C  are taken for six possible positions of 

1 2C C  in B. 

  

(iv) r
n

(4) (s) =
C

1
C

n
(4)

(s), A(C
1

)
{K(B[C

1
, E

A

* ]) +
1 a n 3

K(B[C
1
,e

a
, E

A
E

AB

* ])

+
2 a+b n 2, a,b 1

K(B[C
1
,{e

a
,e

b
}, E

A
E

B
E

ABC

* ])

+
C

2
A

2
(C

1
)
K(B[C

1
,C

2
])}+

C
2

C
n
(4)

(s), A(C
2

)
{K(B[C

2
, E

P

* ])

+
1 p n 3

[K(B[C
2
,e

p
, E

P
E

PQ

* ])

+
2 p+q n 2, p,q 1

K(B[C
2
,{e

p
,e

q
}, E

P
E

Q
E

PQR

* ])

+
C

1
C

n
(4)

(s), A(C
1

)=
[K(B[C

1
, ]) K(B[C

1

*, ])]

+
C

2
C

n
(4)

(s), A(C
2

)=
[K(B[C

2
, ]) K(B[C

2

*, ])],
 

where 1C  and 2C  are taken for one possible position of 

1 2C C  in B. 

 Note that the contribution of 
  
R(B)  to the resonance 

energy of  B  is mostly due to the conjugated circuits denoted 

by 
  
R

1
, R

2
, R

3
. The expressions for 

  
r
1
(s), r

2
(s)  and 3( )r s  can 

be obtained from Theorems  5.12  and  5.15 .  

 Corollary 5.17 [108]. Let  B  be a benzenoid 

hydrocarbon with no fixed bond and s  a ring in  B . Then 

(i) 
  
r
1
(s) = 2K(B s) , 

(ii) 
  
r

2
(s) =

s
i

s =
K(B s s

i
) , where is  is a hexagon 

adjacent to s , 

(iii) 
  

r
3

(1) (s) =
C

1
C

3
(1)

(s), A(C
1

) =
[K(B C

1

* ) + K(B C
2

* e
p
) +

K(B C
2

* V (e
p
) e

q
)]

 

 
  

+
C

1
C

3
(1)

(s), A(C
1

)= ,C
1

= C
1
*K(B C

1

* ) +

C
2

C
3
(1)

(s), A(C
2

)= , C
2

= C
2
*K(B C

2

* ),  

where 
  
C

1
 and 

  
C

2
 are taken for three possible positions of 

  
C

1
C

2
 in B , 

0.8cm 
  
r

3

(2) (s) =
C

1
C

3
(2)

(s)
K(B C

1
) , 

0.8cm 
  
r

3

(3) (s) =
C

1
C

3
(3)

(s)
K(B C

1
) , 

0.8cm 
  
r

3

(4) (s) = 0 . 

6 k -RESONANCE IN CHEMICAL GRAPHS AND k -

CYCLE RESONANT GRAPHS 

 Let G  be a benzenoid system, open-ended carbon 

nanotube (tubule), toroidal or Klein-bottle polyhex. We say 

G  is k -resonant if, for 1 t k , any t  disjoint hexagons 

of G  are mutually resonant, that is, there is a Kekulé 

structure (or perfect matching)  K  of  G  such that each of 

the k  hexagons is a K -alternating hexagon. A connected 

graph  G  is said to be k -cycle resonant if, for 1 t k , 
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any t  disjoint cycles in  G  are mutually resonant. The 

concept of k -resonant graphs is closely related to Clar's 

aromatic sextet theory, and the concept of k -cycle resonant 

graphs is a natural generalization of k -resonant graphs. 

 Some necessary and sufficient conditions for a benzenoid 

system or a tubule or a toroidal polyhex (resp. a graph) to be 

k -resonant (resp. k -cycle resonant) have been established. 

A survey on investigations of k-resonant benzenoid systems, 

k -resonant tubules, k -resonant toroidal polyhexes, and k -

cycle resonant graphs was given in [109]. For recent works 

on k -resonance, the reader is referred to [69], and [110-

115]. 
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ABBREVIATIONS 

VB = Valence-bond 

RE = Resonance energy 

TRE = Topological resonance energy 

DRE = Dewar resonance energy 

LM-conjugated = Linear independent and minimal  

circuit   conjugated circuit 

LM-conjugated = Linear independent and minimal  

circuit   conjugated circuit polynomial 

polynomial (LMC-expression) 

LMCC- = LM-conjugated circuit polynomial 

polynomial 

BH = Benzenoid hydrocarbon 

BHF = Benzenoid hydrocarbon-fragment 

GBH = Generalized benzenoid hydrocarbon 

cata-BH = Catacondensed benzenoid hydrocarbon 

peri-BH = Pericondensed benzenoid hydrocarbon 

M- = Minimal configuration 

configuration 

PM- = Configurations of a pair of minimal  

configuration   conjugated circuits  
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Durdević , J.; Gutman, I. A difference between the -electron 

properties of catafusenes and perifusenes. Polyc. Arom. Comp., 
2006, 26, 197-206. 

[86] Gutman, I.; Gojak, S.; Furtula, B.; Radenković , S.; Vodopivec, A. 
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[106] Randić , M.; Guo, X. Generalized bond orders, Int. J. Quant. 

Chem., 1994, 49, 215-237. 
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