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Abstract: It is well established that modulational instability enhances the probability of occurrence for rogue waves if the 

wave field is long crested, narrow banded and sufficiently steep. As a result, a substantial deviation from commonly used 

second order theory-based distributions can be expected. However the spreading of the wave energy over a number of 

directional components can notably reduce the effect of modulational instability. In order to achieve a better 

understanding on the influence of wave directionality and its implication for design work, numerical simulations based on 

the truncated potential Euler equations were used. Results show the existence of a transition region between strongly and 

weakly non-Gaussian statistics as short crestedness increases.  

Keywords: Deep water waves, extreme waves, modulational instability, wave statistics. 

1. INTRODUCTION 

Extraordinary (abnormal) waves with a large amplitude 
and/or a very steep profile, often known as rogue or freak 
waves, are blamed to have caused a number of accidents to 
marine structures [1,2] The notion of rogue or freak waves is 
generally applied for single waves that are extremely 
unlikely according to the Rayleigh distribution of wave 
heights [3,4]. Generally, an extreme wave is considered as 
rogue if its crest-to-trough height exceeds the significant 
wave height by a factor of 2-2.2 and/or its crest exceeds the 
significant wave height by a factor of 1.2-1.3 [5,6]; there is 
no large consensus on the value of these factors, though. 
Whereas the existence of these extreme waves themselves 
has generally not been questioned, neither circumstances 
under which these waves occur nor their physical nature are 
well understood. Although the knowledge of rogue waves 
has considerably advanced in the last decade [1], several 
important questions especially regarding their probability of 
occurrence in realistic oceanic conditions still remain 
unanswered. In this respect, the present study discusses the 
statistical properties of the surface elevation and in particular 
the probability of occurrence of extreme waves, including 
rogue waves, in directional wave fields. 

It is nowadays established that extreme and rogue waves 
can arise as a result of several mechanisms such as the wave-
-current interaction [7-10], linear Fourier superposition and 
nonlinear wave--wave interaction (see [1] for a review). In 
the open ocean, in the absence of strong currents, the 
statistical properties of water waves can be conveniently 
described by modelling the surface elevation with a second 
order expansion in the wave steepness  of the water wave  
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equations, i.e. second order wave theory [11]. Based on this 
approach a number of probability distributions have been 
proposed by many authors to describe the statistical 
properties of the surface elevation [12-15]. 

Despite the fact that the second order theory agrees with 
field measurements reasonably well [14,16], deviations from 
second order based statistical distributions are still 
documented [17,18]. In this respect, the second order 
approximation only includes effects related to bound waves 
while nonlinear dynamics of free waves are neglected. At the 
third order in wave steepness, however, wave trains tend to 
be unstable due to small perturbations which cause a local 
exponential growth in the wave amplitude within a time 
frame of a few tens of wave periods [4]. The mechanism 
involved is basically a generalization of the Benjamin--Feir 
instability [19] or modulational instability [20] and can be 
explained by the nonlinear Schrödinger equation [20], which 
is derived from the Euler equations describing a potential 
flow of free--surface fluid under the hypothesis that waves 
are weakly nonlinear (i.e. = ka << 1 , where k  is the 
wavenumber and a  is the wave amplitude), and the 
bandwidth is narrow ( k / k << 1 , where k  is a 
modulation wave vector). 

Because numerical models based on the nonlinear 
Schrödinger equation are not computationally intensive, they 
have been used extensively to investigate the statistical 
properties of deep water waves [21-24]. Results have shown 
that the instability of wave packets and the consequent 
growth of large amplitude waves can modify substantially 
the form of the probability density function of the surface 
elevation. However, strong deviations from Gaussian and 
second order statistics have only been observed for narrow 
spectral conditions where most of the wave energy is 
confined within a narrow range of frequencies and directions 
[21,23]. For more realistic directional wave fields, the effect 
of nonlinear dynamics is gradually suppressed at the increase 
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of the directional spreading. If the directional spreading is 
sufficiently broad, in particular, the statistical properties of 
the surface elevation matches second order predictions and 
hence only weakly deviates from Gaussian statistics [22-24]. 

Due to the narrow banded constraint, we cannot rely a 
priori on numerical predictions based on nonlinear 
Schrödinger equation for the statistical properties of 
directional wave fields. To eliminate this issue, the evolution 
of the surface elevation can be simulated with the Zakharov 
equation, which describes the evolution of weakly nonlinear 
waves of any bandwidth [25,26]. The surface elevation may 
also be simulated directly from the potential Euler equations. 
In this respect, a number of methods is available in the 
literature [27-30]. Unfortunately, the computational burden 
for the fully nonlinear Euler equations is rather intense and 
discourages any attempts to investigate the statistical 
properties of directional wave fields, which require the 
simulations of many random realizations of the sea surface. 
However, if a truncation of the potential Euler equations is 
considered, simulations of the random sea surface can be 
conveniently performed by using the Higher Order Spectral 
Method (HOSM), which was derived independently by 
Dommermuth and Yue [31] and West et al. [32]. This 
method has been used successfully by many authors [16,33-
38] to investigate the random sea surface. 

Because a proper understanding of the implications of 
wave directionality on wave statistics is important for design 
work [14,39], here we make use of the HOSM to carry out a 
comprehensive study on the probability of occurrence of 
extreme waves in directional sea states. In particular, 
attention is given to relatively broad directional conditions, 
which are more likely to occur in oceanic wave fields. We 
mention that for the present study we considered a truncation 
at the third order so that effects related to the modulational 
instability have been included. 

The paper is organized as follows. In the next section, the 
numerical model and its initial conditions are briefly 
introduced. In section 3 and 4, the statistical properties of the 
surface elevation are presented as a function of the 
directional spreading. Emphasis is given to the shape of the 
tail of the probability density function of the surface 
elevation and wave amplitudes (wave troughs, crests, and 
heights) and its deviation from the Gaussian surface 
elevation. As the wave field propagates, the waves spectrum 
undergoes a number of changes due to the nonlinear wave 
interaction. A brief description of spectral changes and their 
effects on wave statistics is presented in section 5. In the last 
section, results are discussed in perspective to the current 
design and operational criteria of marine structures. 

2. NUMERICAL EXPERIMENTS 

2.1. The Model 

To model the dynamics of the free surface elevation, we 
assume an irrotational, inviscid and incompressible fluid 
flow. In this case there exists a velocity potential (x, y, z, t)  
which satisfies the Laplace's equation everywhere in the 
fluid. We restrict ourselves to the case of domains with 
constant water depth. At the bottom ( z =  for this study) 
the boundary condition is such that the vertical velocity is 
zero ( z | = 0 ). At the free surface ( z = (x, y, t) ), the 

kinematic and dynamic boundary conditions are satisfied for 
the free surface elevation and the velocity potential at the 
free surface ( (x, y, t) = (x, y, (x, y, t), t) ). Using the free 
surface variables these boundary conditions are as follows 
[20]: 

t + x x + y y W 1+ x
2
+ y

2( ) = 0,  (1) 

t + g +
1

2 x
2
+ y

2( )
1

2
W 2 1+ x

2
+ y

2( ) = 0,  (2) 

where the subscripts denote partial derivatives, and 
W (x, y, t) = z |  represents the vertical velocity evaluated at 
the free surface. 

The time evolution of the surface elevation can be 
calculated directly from equations (1) and (2) using a higher 
order spectral method. For the present study, we use the 
method proposed by West et al. [32] as it is more consistent 
than the one proposed by Dommermuth and Yue [31] (see 
[40] for a review). 

HOSM is a pseudo--spectral method, which uses a series 
expansion in the wave steepness  of the velocity potential 
of the form:  

(x, y, z, t) =
m=1

M
(m ) (x, y, z, t),  (3) 

where each 
(m )

 is a quantity of order O( m ) . In the above 

expansion M  is the order of approximation in nonlinearity. 

A Taylor expansion around z = 0 . is then performed for 

each 
(m )

 term and combined with the above expansion for 

the potential. After collecting all terms at each order in wave 

steepness we obtain a system of the form [32]:  

(1) (x, y, z = 0, t) = (x, y, t);

(m ) (x, y, z = 0, t) =
k=1

m 1 k

k!

k

zk
(m k ) (x, y, z = 0, t)

( for m = 2, 3, ...,M ).

 (4) 

Following [32], the vertical velocity at the free surface 
W (x, y, t)  is similarly expanded in series of terms of O( m ) :  

W (x, y, t) =
m=1

M

W (m ) (x, y, t),  (5) 

where the terms W (m )
 are computed from the 

(m )
 terms:  

W (m ) (x, y, t) =
k=0

m 1 k

k!

k+1

zk+1
(m k ) (x, y, z = 0, t).  (6) 

For the case of a rectangular domain in space with 
dimensions Lx  and Ly  in x  and y , assuming periodicity in 
both directions for the wave field, we can use the following 
expression based on a double Fourier series for each 

(m )
 

term:  

 

(m ) (x, y, z, t) =
k ,l

ck ,l
(m )cos t kk ,l x( ),  (7) 
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with wavenumbers 
 
kk ,l =| kk ,l |  and 

 
kk ,l = (kx , ky ) = (2 k / Lx , 2 l / Ly ) ; 

 
= g | kk ,l |  is the 

angular frequency and ck ,l
(m )

 is the frequency-dependent 

amplitude of the potential. 

Here, we considered a third-order expansion (i.e. M = 3 ) 
so that three and four waves interaction is included [41]. 
After evaluating the vertical velocity at the free surface at 
order M , the free surface velocity potential (x, y, t)  and 
the surface elevation (x, y, t)  can be integrated in time from 
equations (1) and (2). The time integration is then performed 
by means of a fourth-order Runge--Kutta method with a 
constant time step. All aliasing errors generated in the 
nonlinear terms are removed [32]. 

2.2. Initial Conditions and Numerical Simulations 

The numerical experiment consists in simulating the 
temporal evolution of many random realizations of an initial 
wave field. In order to prepare the initial conditions, it is 
necessary to generate a directional, frequency spectrum 
E( , ) = S( ) D( , ) , where S( )  is the angular 
frequency spectrum and D( , )  is the directional function, 
and then to transform it into the associated wavenumber 
spectrum 

 
E(| kk ,l |) . As it is frequently used for many 

practical application, the JONSWAP spectrum was used to 
express S( ) , while a frequency-independent cosN ( )  
function was then applied to model the wave directional 
spreading. The spectrum in wavenumber coordinates can be 
written as follows:  

 

E(| kk ,l |) = | kk ,l |
3

1

2 | kk ,l |
exp

3

2

kp
| kk ,l |

2

exp |kk ,l | kp( )
2
/ 2 2kp

2( )
cosN ( ),

 (8) 

where kp = 2 / Lp  is the peak wavenumber and 

= arctan(ky / kx ) ; the parameter  is equal to 0.07 if 

< p  and 0.09 if < p . For the present study, for 

convenience, we described the wave field with a dominant 

wavelength p =156  m , which corresponds to a peak 

period Tp =10  s . In a first instance, we selected Phillips 

parameter = 0.014  and peak enhancement factor = 3 . 

This configuration corresponds to a significant wave height 

Hs = 6.36  m  and hence to a wave steepness kpa = 0.13 , 

where a  is half the significant wave height. We then 

considered a second condition characterized by a steeper and 

more narrow banded (in the frequency domain) spectrum 

with = 0.016  and = 6 , corresponding to Hs = 8  m  

and kpa = 0.16 . Note that the selected values of steepness 

are not unusual as similar values were observed during ship 

accidents reported as being due to bad weather conditions 

[2]. 

We mention that for uni-directional propagation the 

Benjamin--Feir Index ( BFI ), a measure of the relative 

importance of nonlinearity and dispersion [4,21], provides 

some indications on the effect of modulational instability on 

wave statistics. An estimate of this index can be calculated 

as the ratio of the wave steepness kpa  to the spectral 

bandwidth k / kp , where k  is a measure of the width of 

the spectrum estimated as the half--width at the half--

maximum (see [42] for details). For the above spectral 

configurations BFI = 0.7  and 1.1 respectively. Note that the 

non-resonant interaction between free modes gives rise to a 

much larger deviation from the Gaussian statistics than 
bound waves if BFI =O(1)  [4]. 

In order to consider different degrees of the directional 

spreading, different values of the spreading coefficient N  

were used, ranging from fairly long crested (large N ) to 

fairly short crested (small N) waves. The following values 

were selected: N = 840 , 500, 200, 90, 48, 24 and 12. 

From the wavenumber spectrum, 
 
E(| kk ,l |) , an initial 

two--dimensional surface (x, y, t = 0)  was computed using 

the inverse Fourier transform with the random amplitude and 

phase approximation. The random phases were assumed to 

be uniformly distributed over the interval [0, 2 ], while the 

random amplitudes were Rayleigh distributed (the initial 

wave field is therefore Gaussian). The velocity potential 

(x, y, t = 0)  was obtained from the input surface using 

linear theory (see equation (7)). The wave field was 

contained in a square domain of 1404 m  with spatial mesh 

of 256  256 nodes. With this resolution, the spatial domain 

contained about 9 dominant waves; each wave was thus 

discretized with about 28 grid points. 

Theoretical and numerical studies [4,23] have shown that 

deviations from Gaussian statistics due to third-order 

nonlinearity occur on a short timescale, typically on the 

order of 30 peak periods. In the present study, the total 

duration of the simulation was set equal to 60 Tp . A small 

time step, t = Tp / 200 = 0.05  s , was used to minimize the 

energy leakage; we mention that the selected time step was 

much smaller than the period of the shortest waves 

considered in this study. The accuracy of the computation 

was checked by monitoring the variation of the total energy 

[41]. Despite the fact that the energy content showed a 

decreasing trend throughout the temporal evolution, its 

variation was negligible as the relative error in total energy 

did not exceed 0.4% over the simulation time [37]. 

The model output consisted in the surface elevation, 

(x, y, t) , which was archived every six peak periods. 

Because it is not yet clear how to derive wave amplitudes 

from a two-dimensional surface, we also collected time 

series from five different grid points far enough to ensure 

that the collected time series are independent realizations, 

i.e., the cross--correlation of the time series collected at two 

arbitrary grid points can be regarded as negligible. Time 

series were then used for a zero-crossing analysis of wave 

heights, crests and troughs. Records of the time series started 

after about 20 peak periods so that the effect of modulational 
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instability is captured. For each of the simulated conditions, 

we performed 150 repetitions with the same input spectrum 

and different random amplitudes and random phases in order 

to have enough samples to achieve statistically significant 

results. The stability of the statistical moments is discussed 

in [37]. 

Note that the wave spectrum changes as the wave field 
evolves in time due to nonlinear wave-wave interactions. 
This implies that the spectral peaks is slightly shifted 
towards lower wavenumbers (spectral downshift) and the 
directional distribution becomes slightly broader than in the 
initial condition especially at high wave numbers. A brief 
description of the spectral changes is presented in section 5. 

3. STATISTICAL PROPERTIES OF THE SURFACE 
ELEVATION 

When the initial linear wave field begins to evolve, 
bound waves are immediately generated [41]. Thus, the 
effect of second order interaction becomes already visible 
after a few peak periods (see, for example, [38]). This 
generates a weak departure from the Gaussian statistics as 
wave crests become higher and troughs become shallower 
than linear theory would predict [12]. In this respect, Fig. (1) 
shows that the surface elevation fits a second order based 
distribution (i.e. Tayfun distribution [12]) reasonably well 
already after 6 peak periods. As the wave field keeps 
propagating, however, the instability of free wave packets 
(i.e. modulational instability) forces some individual waves 
to grow and reach extremely large amplitudes at the expense 
of the surrounding waves. Provided waves are long crested, 
narrow banded in the frequency domain and sufficiently 
steep, this instability can generate extreme waves far more 
often than in Gaussian and second order based statistics, 
which leads to a consequent strong deviation of the tails of 
the probability density function of the surface elevation [42] 
(see Fig. 1). A general measure of the probability of 
occurrence of extreme values can be conveniently provided 
by the fourth order moment of the probability density 
function, i.e. the kurtosis. Note, however, that the latter does 

not provide specific information on the probability of 
occurrence of wave exceeding a certain threshold such as 
rogue waves. We mention that the kurtosis assumes a value 
of 3 for Gaussian random processes, while it can reach 
values close to 3.15 in second order wave fields with 
steepness similar to the ones used for this study. 

In Fig. (2), the temporal evolution of the kurtosis is 
presented for selected sea states. Considering the large 
number of random repetitions, the estimate of the kurtosis is 
rather accurate. The 95% confidence intervals calculated 
with bootstrap methods indicates a variability of about 
±0.03 . When the waves are long crested, e.g. N = 840 , the 
kurtosis rapidly grows as a result of modulational instability 
(cf. [42]). Its maximum value, which is reached after a time 
of about 30 peak periods, is 3.5 for an initial spectrum with 
kpa = 0.13  (or BFI = 0.7 ) and 3.7 for a spectrum with 
kpa = 0.16  (or BFI =1.1 ). It is also interesting to see that 
this large kurtosis is the result of both extremely high crests 
and deep trough. In particular, whereas positive elevations 
(upper tail of the probability density function) become 
significantly higher than second order predictions, negative 
elevations (lower tail) are observed to be deeper than in 
Gaussian sea states. 

When the wave energy spreads over a wider range of 
directions, however, the effect of modulational instability is 
gradually suppressed (modulational instability can still be 
present though). As a result, the temporal variation of the 
kurtosis becomes less prominent; this is already notable for 
N = 200 , which still remains a rather long crested wave 
field. A summary of the dependence of the kurtosis on the 
spreading coefficient is presented in Fig. (3). It is evident 
that the effect of modulational instability on the kurtosis 
becomes negligible for spreading coefficient N < 50 . For 
sufficiently broad directional spectra, in fact, the kurtosis 
does not overcome substantially second order predictions. As 
shown in Fig. (1), in this respect, the probability density 
function of simulated sea states with relatively broad 
directional spreading matches second order based 
distribution reasonably well even though the negative 

 

Fig. (1). Probability density function of the surface elevation. 

−5 0 5
10

−6

10
−4

10
−2

10
0

η / σ

P
( 

H
 )

 

 

−5 0 5
10

−6

10
−4

10
−2

10
0

η / σ

−5 0 5
10

−6

10
−4

10
−2

10
0

P
( 

H
 )

−5 0 5
10

−6

10
−4

10
−2

10
0

−5 0 5
10

−6

10
−4

10
−2

10
0

−5 0 5
10

−6

10
−4

10
−2

10
0

η / σ

N = 840
N = 24
Tayfun distr.
Normal distr.

k
p
a=0.13

t = 6T
p

k
p
a=0.13

t = 36T
p

k
p
a=0.13

t = 60T
p

k
p
a=0.16

t = 6T
p

k
p
a=0.16

t = 36T
p

k
p
a=0.16

t = 60T
p



28    The Open Ocean Engineering Journal, 2011, Volume 4 Toffoli and Bitner-Gregersen 

 

elevations appears to be slightly deeper. This result is 
consistent with recent laboratory experiments on random 
waves in a directional wave tank [43]. It is important to note 
that the broadest directional wave field considered in this 
study (i.e. N =12 ) still represents a narrow directional 
spectrum if compared with commonly observed directional 
wave spectra of wind generated waves. Nonetheless, narrow 
spectra ( N 12 ) are not uncommon, especially during 
tropical storms [44]. 

It is reasonable to expect that an increase of the steepness 

would increase the kurtosis also in directional wave field as 

observed for long crested waves. However, a few tests 

performed with even higher steepness (see an example in 

Fig. (4) for a steepness kpa = 0.21 , = 6 , and N = 24 ), 

even though unrealistic, show that the kurtosis does not 

overcome the second order prediction if the initial spectrum 

is sufficiently broad in the directional domain. 

It is important to remark that we performed the present 

simulations with a frequency-independent directional 

function. However, the lateral shape of the directional 

spectrum can be described by a number of different 

spreading functions (see, for example, [45] for a review). 

Nonetheless, because unstable modes are mainly distributed 

around the spectral peak [46], the form of the directional 

spreading function is not expected to have a significant 

effect on the results, provided the initial spreading is kept 

constant at the spectral peak. To support this conjecture, we 

have repeated the simulations of directional wave fields with 

initial steepness kpa = 0.16  with a cos2s( ) ( )  function, 

where the spreading coefficient s( )  is a function of the 

angular frequency  (see [47] and references therein). This 

function has the same directional spreading at the spectral 

peak (provided N = 2s( p ) ), but becomes broader at higher 

frequency. In Fig. (5), we show the maximum kurtosis as a 

function of the directional spreading coefficient at the 

spectral peak (i.e. N  and 2s( p )). Results confirm that the 

percentage of extreme waves does not depend upon the 

shape of the directional function. Substantial variations of 

the kurtosis are only observed as a consequence of different 

directional spreading at the spectral peak (see also [48]). 

4. CREST, TROUGH AND HEIGHT DISTRIBUTION 

It is now instructive to show the statistical distributions 
of wave crests, troughs and heights as they are often used for 
practical applications. Because it is not clear how to extract 
individual waves from a two-dimensional surface, here we 

 

Fig. (2). Temporal evolution of the kurtosis. 

 

Fig. (3). Kurtosis as a function of the directional spreading 

coefficient. 

 

Fig. (4). Temporal evolution of the kurtosis for a sea state with 

steepness kpa = 0.21  and N = 24 . 
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calculated the individual amplitudes (i.e. crests, troughs and 
heights) from the recorded time series. A zero down-crossing 
analysis was used to this end. A similar approach was 
applied in [37]. Note that the estimate of the probability 
distribution of wave amplitudes are rather accurate also at 
low probability levels. For example, the 95% confidence 
intervals estimated with bootstrap methods indicate a 

variability of the dimensionless amplitude of ±0.05  at 
probability levels as low as 0.0001. 

In Figs. (6) and (7), the wave crest distribution is shown; 
the Rayleigh distribution for linear waves and the Tayfun 
distribution [12] for second order waves are presented as 
reference. When the energy spectrum is concentrated on a 
narrow range of directions, modulational instability is 
responsible for notable increase of the kurtosis (Fig. 2). As a 
result, extreme crests occur far more often than in linear and 
second order theory. The wave crest distribution 
substantially deviates from both theoretical distributions 
already at probability level of 0.01. When the energy spreads 
over a larger number of directions, however, extreme wave 
crests are no more frequent than in second order theory. For 
a sea states with steepness kpa = 0.16  (or BFI =1.1 ), 
nevertheless, the wave crests weakly deviate from the 
Tayfun distribution at probability levels as low as 0.005. 
Note that our simulations are qualitatively consistent with 
laboratory experiments in [43]. It should also be mentioned 
that the use of the Generalized Pareto Distribution (GPD) 
has recently been proposed to describe extreme crests in 
short term statistics [49]. An attempt to fit the GPD to our 
simulated wave crests has not been satisfactory though. The 
best fit has significantly underpredicted (beyond the 95% 
confidence intervals) long crested wave fields and 
overpredicted short crested waves. 

 

Fig. (5). Maximum kurtosis as a function of the directional 

spreading coefficient N  computed with two different directional 

distributions; initial kpa = 0.16 . 

 

Fig. (6). Wave crest distribution for a sea state with kpa = 0.13  

(or BFI = 0.7 ). 

 

Fig. (7). Wave crest distribution for a sea state with kpa = 0.16  

(or BFI =1.1 ). 

 

Fig. (8). Wave trough distribution for a sea state with kpa = 0.13  

(or BFI = 0.7 ). 

 

Fig. (9). Wave trough distribution for a sea state with kpa = 0.16  

(or BFI =1.1 ). 
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Substantial deviations from theoretical distributions were 
also observed for wave troughs. In Figs. (8) and (9), the 
wave trough distribution is presented together with the 
Rayleigh and second order distribution (details for the latter 
can be found in [50]). As observed for wave crests, strong 
deviations occur in long crested wave fields. In this respect, 
the troughs are slightly deeper than linear wave theory would 
predict. When the energy spreads over a number of 
directions, however, wave troughs become less deep. The 
concurrent distribution migrates towards a second order 
based distribution at the decreasing of the directional 
spreading coefficient (i.e. spectrum becomes wider). 
Nonetheless, the simulated trough distribution still weakly 
departs from second order predictions for probability levels 
lower than 0.01. It is interesting to mention that this 
deviation is observed for both initial sea states. 

In Figs. (10) and (11), the wave height distribution is 
presented. Both trough-to-crest and crest-to-trough heights 
were used to produce an estimate of the probability 
distribution. Because second order theory does not have any 
significant effect on the waves height, it is reasonable to 
suppose that the wave height distribution would fit the 
Rayleigh distribution, provided the wave spectrum is narrow 
banded in the frequency domain. However, when waves are 

long crested, the modulational instability produces higher 
waves than in linear theory. Thus, the Rayleigh distribution 
notably underpredicts the simulated wave height. In these 
circumstances, a proper description of the wave height 
distribution can be conveniently provided by a modified 
Edgeworth-Rayleigh distribution (see [51,52] for details). As 
the effect of modulational instability is suppressed by the 
increased of directional spreading, nonetheless, the 
amplitude of the wave height is reduced. Note that, because 
the input spectra does not really satisfy the narrow banded 
hypothesis, under which the Rayleigh distribution is 
applicable, the Rayleigh distribution results in an 
overprediction of the simulated wave height; this finding is 
consistent with results in [53]. 

5. THE EVOLUTION OF THE DIRECTIONAL WAVE 
SPECTRUM 

The nonlinear interaction between wave components is 
responsible for an energy transfer across frequencies and 
directions. In Fig. (12), the directional wave spectrum at 
different times is presented for a wave field with initial 
kpa = 0.16  and N = 24 . The spectrum was calculated from 
the output surface elevation using a Fast Fourier Transform; 
an ensemble average over the 150 random repetitions was 
considered (no smoothing was applied). 

As the wave field evolves a large fraction of the spectral 
energy is moved towards lower wavenumbers (or wave 
frequencies), generating the downshift of the spectral peak. 
Because the energy remains constant throughout the 
simulations and the peak period increases due to the 
downshift, the wave field becomes less steep. Furthermore, a 
fraction of the energy is also transferred across directions. In 
particular, the energy is redirected along two main directions 
forming and angle of  ±35.5  with the mean direction of 
propagation (see [47] and references therein for details). The 
directional redistribution produces a significant broadening 
of the wave spectrum, which is more accentuated at high 
wavenumbers. Thus, although the initial directional 
spreading function is frequency-independent, the wave field 
develops a frequency-dependent directional spreading. 

The reduction of wave steepness and the broadening of 

the wave spectrum result in an attenuation of the non-

Gaussian properties. Therefore, strong deviation from 

Normality may eventually vanish also for steep and long 

crested wave fields if the waves can evolve for a long period. 

In order to verify this conjecture, we traced the evolution of 

a long ( N = 200 ) and a short ( N = 24 ) crested wave field 

for a period of 150Tp . The temporal evolution of the kurtosis 

is presented in Fig. (13). For long crested wave fields, non-

Gaussian properties are evident soon after the wave field 

starts propagating. In this respect, the kurtosis shows a first 

overshooting with a maximum at 18Tp  (cf. Fig. 2), after 

which it decreases. Owing to the recurrent nature of 

modulational instability, the kurtosis also shows subsequent 

peaks. However, as the wave spectrum gradually changes 

due to the nonlinear wave interaction, the wave field is not 

longer able to sustain strong non-Gaussian properties in the 

long period. Therefore, subsequent peaks reach substantially 

lower maxima than in the first overshooting. 

 

Fig. (10). Wave height distribution for a sea state with kpa = 0.13  

(or BFI = 0.7 ). 

 

Fig. (11). Wave height distribution for a sea state with kpa = 0.16  

(or BFI =1.1 ). 
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For short crested conditions, the kurtosis only weakly 
deviates from the Gaussian values as a result of bound wave 
contribution (i.e. second order interaction). Modulational 
instability does not have any significant effect of wave 
statistics, even for a long evolution time. It is important to 
mention that the nonlinear dynamics of free waves is still 
present in short crested wave fields (see spectral changes in 
Fig. 12). However, this mechanism does not contribute to 
wave statistics significantly. 

6. DISCUSSION AND CONCLUSIONS 

Although enhancing safety at sea through specification of 
uncertainties related to environmental data and models is 
today one of the main concerns of the offshore and shipping 
industry, extreme waves still remain an issue. An extended 
knowledge about extreme and rogue waves, and in 
particularly their probability of occurrence and marine 
structures behaviour in them, is mandatory for evaluation of 
possible revision of classification societies' rules [54]. 

Further, a consistent risk-based approach combining new 
information about extreme and rogue waves in a design 
perspective needs to be proposed [55]. Although the 
Norwegian offshore standards (NORSOK Standard [56]) 
take into account extreme wave conditions by requiring that 
a 10000-year wave does not endanger the structure integrity 
(Accidental Limit State, ALS), there is no consensus within 
the offshore industry on wave models for the prediction of 
extreme and rogue waves and design scenarios to be 
included in a possible ALS control procedure. 

Statistical characteristics of the sea surface like skewness 
and kurtosis as well as the wave crest, trough and height 
distribution will need to be a part of the risk-based approach. 
Further, understanding of implications of wave directionality 
on statistical properties of the surface elevation is essential 
for design work, e.g. for specification of an air gap for 
offshore installations. Today the second-order theory-based 
wave statistics like, for example, the Forristall distributions 
for wave crest [14], is commonly used in design practice 
(see, e.g., [57]). However, second order models do not 
include effects related to the nonlinear dynamics of free 
waves, i.e. modulational instability, which is responsible for 
the formation of large amplitude waves. Here we used the 
potential Euler equations to investigate comprehensively the 
effect of modulational instability in directional wave fields. 
Our results clearly show that when the wave energy spreads 
on a wider range of directions the effect of modulational 
instability is gradually suppressed and the second order wave 
theory is adequate to describe the statistical behaviour of 
ocean waves. This result is consistent with tank experiments 
[43]. Furthermore, field data also suggest that extreme events 
in broad-banded waves are no more frequent than commonly 
applied statistical models would predict (e.g. [58]). 

Nonetheless, we cannot exclude that the wave spectrum 
can sometimes become more narrow banded both in the 
frequency and directional domain (see the discussion in 
[59]). This would represent a potentially dangerous situation 
as the occurrence of extreme waves is more likely under 

 

Fig. (12). Evolution of the directional wave spectrum (initial kpa = 0.16  and N = 24 ). 

 

Fig. (13). Long term evolution of wave fields with initial 

kpa = 0.16 . 
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these circumstances. In this respect, an investigation of 
directional wave spectra measured during tropical storms 
[44] indicates that the spectral peak may become as narrow 
as our case with N = 50 . Moreover, owing to their narrow 
banded nature, swells might develop instability and hence 
deviate from second order predictions provided they retain 
sufficient energy. The occurrence of energetic swells is not 
unlikely along for example the west coast of Africa. 
Furthermore, under the influence of rising wind speed, a 
coexisting swell may also grew exponentially at the expense 
of the wind sea, potentially leading to an energetic narrow 
banded sea state [60]. Thus, the need for detailed 
investigations of meteorological and oceanographic 
conditions in which extreme and rogue waves may occur is 
vital as already pointed out by several authors at the Rogue 
Waves 2008 Workshop in Brest. There is also a need for 
more field data to study extreme waves in the ocean. 
Attentions should be given to the development of the 
directional distribution of the wave spectrum during storm 
conditions. Possibly this should be done considering very 
short time frame in order to investigate whether local 
narrowing of the directional spectrum are a realistic and 
robust feature of the ocean. 

It should be mentioned that the present study is limited to 
deep water and to one generation mechanism for rogue 
waves, i.e. the modulational instability. The shown solution 
is not fully nonlinear. An external forcing like wind, wave 
breaking and current are not included in the numerical 
solution applied. Further, the existing knowledge about wave 
directional spreading models may have some deficiencies. 
These are the limitations which call for further 
investigations. 
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