
 The Open Ocean Engineering Journal, 2011, 4, 3-14 3 

 

 1874-835X/11 2011 Bentham Open 

Open Access 

Bivariate Analysis of Extreme Wave and Storm Surge Events. Determin-
ing the Failure Area of Structures 

Panagiota Galiatsatou
*
 and Panagiotis Prinos

 

Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece  

Abstract: In the present paper a bivariate process of extreme waves and storm surges at a Dutch station on the North Sea 

is considered. A bivariate logistic model and a sequential estimation procedure are used to extract joint exceedance prob-

abilities of the two variables. The parameters of the margins of the bivariate distribution are defined by three different 

methods of estimation: a) the Maximum Likelihood Estimation (MLE) approach, b) a Bayesian procedure with flat prior 

distributions and c) the L-Moments (LM) estimation procedure. Comparison of the results of the three methods is per-

formed and general conclusions are extracted. An approach to estimate the failure area of a particular structure under ex-

treme sea conditions is presented, using the margins resulting from the three different estimation methods.      
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1. INTRODUCTION 

Offshore and coastal structures are exposed to extreme 
wave conditions and therefore an optimum design requires 
the estimation of factors affecting them and especially the 
estimation of extreme oceanographic data. For such systems, 
the notion of return period has to be extended to more than 
one dimension to represent multiple environmental variables. 
The aforementioned structures are often designed based on 
the estimation of their failure probabilities under extreme 
conditions of the wave climate. Long-term characteristics of 
the wave climate (such as the significant wave height or the 
wave period) and the storm surge can constitute the hydrau-
lic boundary conditions related to the design of offshore and 
coastal structures.  

Structures typically fail because of the occurrence of ex-
treme values of a single environmental process or a critical 
extreme combination of constituent variables. Failure of a 
coastal structure is mainly caused by loadings arisen from 
extreme waves and water levels. The risk of local flood 
events is related straightforward to nearshore wave and water 
level conditions. However, the fact that nearshore waves can 
be affected by hydraulic events, such as the breaking of 
waves caused by the depth, enforces an extreme value analy-
sis of offshore data. The results of the extrapolation process, 
deriving from the extreme value analysis of offshore waves 
and water levels, can then propagate shoreward using wave 
propagation and long-wave models.  

Extreme offshore wave heights are often strongly de-
pendent on high sea levels.  The observed water level is the 
sum of a deterministic astronomical tidal component and a 
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stochastic meteorologically induced component, the surge. 
Dependence between surges and waves is expected, since 
both are related to local weather conditions [1]. Especially at 
extreme levels strong dependence is likely, when meteoro-
logical systems which generate extreme surges also cause 
strong onshore winds from a direction having a long fetch. 
For a probabilistic design and optimization of the design 
process based on flood risk to be possible, loads imposed on 
coastal and offshore structures are described using a joint 
density distribution function.   

The basic methodology for creating such a multivariate 
function starts with choosing independent multivariate ob-
servations, according to data availability in each particular 
case and the purpose of such an analysis. If the study vari-
ables are primary variables causing the phenomenon of 
coastal flooding (such as wave height and surge), different 
possible combinations of concomitant observations have to 
be studied to find the most conservative among them. To 
define these possible bivariate observations, thresholds for 
both primary variables have to be defined. After defining the 
extreme bivariate observations, dependence between these 
two variables is calculated. Based on the dependence func-
tion of the variables, appropriate bivariate models are chosen 
to simulate their extreme values. Following the estimation of 
an appropriate bivariate model, extrapolation to more ex-
treme levels than those observed is conducted. To estimate 
the marginal parameters of the variables under study, the 
univariate estimation procedures can be utilized, such as the 
Maximum Likelihood Estimation, the Bayesian approach 
and the L-Moments procedure.   

To calculate the joint probabilities of wave height and 
water level or of wave height and surge, different techniques 
of the Multivariate Extreme Value Theory are utilized. The 
Multivariate Extreme Value Theory is more complicated 
than the equivalent univariate analysis and the appropriate 
methodology to estimate the multivariate models and the 
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extrapolation to levels more extreme than those observed, 
was developed during the last few years. Coles and Tawn [2, 
3], Joe et al. [4], Zachary et al. [5], DEFRA [6], Butler [7] 
and Li and Song [8] present different aspects of the Multi-
variate Extreme Value Theory with applications to oceano-
graphic and environmental datasets. Yeh and Ou [9] use the 
Multivariate Extreme Value Theory to estimate the joint ex-
ceedance probabilities of extreme significant wave height 
and water level, during hurricanes.  

The implementation of the Multivariate Extreme Value 
Theory is based on the calculation of the dependence be-
tween the variables under study. Primitive methods for esti-
mating the dependence of extreme values of different vari-
ables have been proposed by Buishand [10, 11], Dales and 
Reed [12] and Chilès and Delfiner [13]. Coles et al. [14] and 
Coles [15] use methods of Multivariate Extreme Value The-
ory to examine the existence of dependence between the 
bivariate extreme values of significant wave height and surge 
at a coastal site of southwestern England, while Ledford and 
Tawn [16] present a range of diagnostic tools based on tail 
characteristics of joint survivor functions for identifying a 
structure within extreme events and apply this technique to 
rainfall and exchange rate data. Svensson and Jones [17] 
implement the dependence measure , in investigating the 
dependence between the sea surge and river flow, using pre-
cipitation as a proxy for river flow. 

In the present work a simple methodology to estimate the 
failure area of adequately defined coastal structures is im-
plemented. This approach selects the “worst case” combina-
tion of wave height and surge in terms of the response of the 
structure under study (e.g. overtopping or force). Another 
important aspect of the study is that the joint return levels 
that represent the worst case combination of wave height and 
surge are calculated using three different methods of estima-
tion of the marginal distributions of both variables, namely 
the Maximum Likelihood Estimation (MLE) procedure, a 
Bayesian approach with flat priors and the L-Moments (LM) 
approach, and the results of these methods are compared. 
Galiatsatou and Prinos [18] study the bivariate process of 
extreme wave heights and storm surges, using different 
methods of selecting concurrent observations as well as dif-
ferent measures of extremal dependence of the two variables 
involved. Galiatsatou [19] uses the three abovementioned 
estimation procedures to calculate the parameters of the 
margins of a bivariate distribution of extreme wave heights 
and storm surges, considering the cases of full and asymp-
totic dependence.  Galiatsatou and Prinos [20], Galiatsatou et 
al. [21] and Sánchez - Arcilla et al. [22] consider the effects 
of different methods of estimation of the marginal distribu-
tions of rainfall, surge and wave height data, respectively, on 
the return levels of the studied process.     

The datasets used in the present paper are presented in 
Section 2, with special reference to the methodology used to 
“de-cluster” the available bivariate observations. In Section 
3, a methodology to perform bivariate analysis of extreme 
wave heights and surges is developed. Techniques of select-
ing bivariate observations, fitting marginal distribution func-
tions to wave heights and storm surges, estimating the de-
pendence of the bivariate data, and selecting and fitting an 
appropriate model from the family of Multivariate Extreme 

Value (MVE) distributions to the bivariate data are presented 
and analysed further. Three different methods of estimation, 
the Maximum Likelihood Estimation (MLE) procedure, a 
Bayesian approach with flat priors and the L-Moments (LM) 
approach are used to calculate the parameters of the marginal 
distributions of both variables. At the end of the Section, an 
approach to determine the failure area of a structure and to 
estimate the design parameters under extreme sea conditions 
is presented. The characteristics of the structure used are 
those proposed by Coles and Tawn [3]. In Section 4, the 
methodology analyzed in the previous Section is imple-
mented using wave height and storm surge data from a 
Dutch station on the North Sea. Joint exceedance probabili-
ties resulting from the three different estimation methods of 
the marginal distributions of wave heights and storm surges 
(MLE, Bayesian approach, L-Moments) are compared and 
discussed. The three different estimation methods are also 
compared with regard to bivariate return levels of wave 
height and storm surge corresponding to the worst case in 
terms of overtopping of the studied structure. Finally, Sec-
tion 5 summarizes the conclusions of the present work.   

2. DATA BASE  

The datasets used in the present work consist of a se-
quence of 23 years, over the period 1979-2001, from 9 loca-
tions along the Dutch coast (Fig. (1)). Two of the nine buoys 
lie far from the coast in the neighborhood of platforms, while 
of the other seven, four lie in the deep water some twenty 
kilometres off the coast, and the rest is in the neighborhood 
of the coast or the delta estuary. Three hourly data of wave 
height Hm0 and its standard deviation, average wave period 
Tm02, main wave direction Th0, average wave height and pe-
riod of the highest third part H1/3 and TH1/3 and the wave 
height of the low frequency waves HTE3 are available. In 
addition to the wave parameters, data on wind speed and 
direction, water level relative to NAP/MSL, set-up or surge 
(the difference between the observed and the astronomical 
water level) and a column indicating the origin of the meas-
ured variables are included in the files. At most locations, 
two wave survey instruments, namely a main sensor and a 
secondary sensor, were used. If both sensors have registered 
values for a parameter, then the mean value is given. If, 
however, data are only present from one sensor, then this is 
used in the file and if neither of the sensors have values, then 
estimated values are retained. Missing records are patched by 
hindcasting. Details of these data sets are given in 
www.golfklimaat.nl of the Dutch National institute RIKZ. In 
Fig. (1) the coordinates of the nine stations are presented in 
the Dutch RD coordinate system (Rijksdriehoeksmeting), 
while Table 1 contains the names and the geographical coor-
dinates of the stations, the duration of the measurements, as 
well as the water depth at the nine locations.   

The theory described in the following assumes independ-
ence of successive observations of wave heights and storm 

surges. In practice, there is considerable short term depend-

ence in metocean data. Extreme events are typically to be 

found in storms, which may last for many hours or even sev-

eral days. In the present paper, an attempt to “de-cluster” 

extreme wave height and storm surge events similar to the 

most commonly used approach of explicitly identifying clus-

ters of storm events (a cluster of storm events is a group of 
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neighbouring excesses of an appropriately defined threshold 

which begins when the variable under study gets above the 
threshold and ends when it goes below it) is used. This ap-

proach is in fact more easy to apply compared to the fully 

developed approach of selecting clusters and then choosing 

the most extreme observation from within each such cluster. 

The interval over which the data are collected is divided into 

blocks or periods of equal length. Smith [23] indicated that 

the results of the analysis were invariant to the values of the 

time interval , apart from the values outside a certain range, 
which can lead to results of really bad quality. In the litera-

ture, time intervals of 24h, 48h, 60h or 72h are preferred. 

Within each such period i, a multivariate observation Xi is 

associated, which is defined to be the most extreme of the 

original (three-hourly) multivariate observations made dur-

ing that period. Galiatsatou and Prinos [24] analyzing storm 

surge data from different stations of the Dutch coast sug-

gested that the level of spatial dependence at extreme levels 
is largely insensitive to the degree of temporal aggregation, 

for aggregation periods of one day, two days and a week and 

selected a time period of 24h to define independent observa-

tions. Taking into account that storm events in the North Sea 

last at least 24h [25], the interval i is identified with a period 

of one day.  

3.  METHODOLOGY 

3.1. Bivariate Analysis of Extreme wave Heights and 
Surges 

3.1.1. Selection of Bivariate Observations 

In the present study, as discussed above, a time interval 

of 24 hours is considered to deal with short range depend-

ence in a rather simple way and not to waste a large amount 

of observations. But in reality, maximum waves and surges 

do not necessarily occur at the same time and usually there 

exists a time lag between them. Thus, the selection of daily 

maximum values of wave heights and storm surges can lead 

to very conservative results. To overcome this difficulty, 

four different methods of selecting daily observations are 

applied. The three of them consider concurrent observations 

of wave height and surge, while the fourth one considers 

observations which don’t occur simultaneously. From the 

three methods using concurrent observations, the first uses 

the maximum wave height in the daily interval  with con-

comitant surge level, the second utilises the maximum surge 

level in the daily interval  with concomitant wave height, 

while the third uses the joint events of wave height and 

surge, which give the maximum structural response in the 

interval  of 24 hours. Return levels estimated using the latter 

methodology should be handled with care, since the response 

function considered is structure dependent and therefore it is 

not general. The fourth method of selecting observations 

considers maximum observations of significant wave height 

and surge in the time interval of 24 hours. Galiatsatou [19] 

studied the contour lines of the joint survivor function with 

return periods of 1, 10, 50 and 100 years for the four cases of 

selecting observations at station Eld (Eierlandse Gat), 20km 

off the Dutch coast and proved that the results of all cases 

with concomitant observations do not differ significantly 

from those of the case where daily maxima waves and surges 

are used. Thus, the bivariate analysis proceeded with bivari-

ate observations of 24-hourly maxima wave heights and 
surges.    

Table 1. Names, Coordinates and Depth of the Nine Dutch stations and Measurements’ Duration 

Full Name of the Station Name x (km) y (km) Latitude Longitude Duration  Depth (m) 

K13 platform 13 10.18 583.33 53º13'04" 3º13'13"  1979-2001 30 

Schiermonnikoog noord Son 206.52 623.48 53º35'44" 6º10'00" 1979 - 2001    19 

Eierlandse Gat Eld 106.51 587.99 53º16'37" 4º39'42" 1979 - 2001 26 

IJmuiden munitiestortplaats Ym6 64.78 507.67 52º33'00" 4º03'30" 1979 - 2001 21 

Noordwijk meetpost Mpn 80.44 476.68 52º16'26" 4º17'46" 1979 - 2001 18 

Euro platform Eur 9.96 447.6 51º59'55" 3º16'35" 1979 - 2001 32 

Lichteiland Goeree Leg 36.78 438.79 51º55'33" 3º40'11" 1979 - 2001 21 

Schouwenbank Swb 11.24 419.52 51º44'48" 3º18'24" 1979 - 2001 20 

Scheur west Scw -7.8 380.64 51º23'32" 3º02'57" 1979 - 2001 15 

Fig. (1). Field stations at the Dutch coast. 
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3.1.2. Fitting Marginal Distributions for Wave Height and 

Surge 

If X1, X2,…, Xn is a series of independent random obser-
vations of a random variable X with common distribution 
function F(x) and Y1,Y2,…, Yk (Yi=Xi-u) are the excesses over 
a high enough threshold u, in some asymptotic sense, the 
conditional distribution of excesses follows the Generalized 
Pareto Distribution (GPD): 

 

G(y) =1- (1+
(y - u)

)
- 1

………………………………….  (1) 

where  is the modified scale and  is the shape parameter of 

the GPD distribution. An appropriate threshold u is selected 

for both variables (wave heights and surges), which defines 

the level upon which an extreme event is defined. Two dif-

ferent methodologies are used for the selection of u : (a) the 

mean residual life plot of the excesses of different threshold 

values and (b) the plots of parameters  and  for a variety of 

possible threshold values. The mean residual life plot con-

sists of the points: {(u, 

 

1

nu
(x(i) - u)

i=1

nu
: u < xmax} where 

x(1),…,
 
x

( n
u

)
 consist of the nu observations that exceed u and 

xmax is the largest of the Xi [15]. An appropriate threshold 

value is the value of u above which the mean residual life 

plot is approximately linear and estimates of  and  are con-

stant with u. Due to sampling variability, estimates of these 

parameters will not be exactly constant, but they should be 

stable after allowance for their sampling errors. 

The choice of the threshold values, u, for both the vari-
ables of wave height and surge is also based, apart from the 
methodologies used in the univariate analysis and were pre-
viously mentioned, on methodologies used in the bivariate 
framework. The variables of wave height (X1) and surge (X2) 
are transformed to Fréchet margins, so that each have distri-
bution function F(z) = exp(-1/z) for z >0, to highlight de-
pendence of the two variables at extreme levels and then the 
radial and angular components, R and W, respectively, are 
defined as:   

R=(X1+X2)/n and W1=X1/(X1+X2)........................................ (2) 

where n is the number of bivariate pairs of observations. An 
extreme bivariate event is defined to be any value for which 
the radial component R is sufficiently large. To extract such 
events out of the bivariate sample of wave height and surge 
data, histograms of the angular component W1 are con-
structed for all bivariate pairs exceeding various choices of 
the radial component R (ro) . Then, rmin is taken as the small-
est value of ro above which there is apparent stability in the 
shape of the histograms [4]. After selecting rmin, the marginal 
thresholds of the variables involved are estimated using 
equation (3) : 

u j = j
1(nrmin ) , j=1, 2 …………………………………(3) 

where 
j (Xi,j ) = {logFj (Xi,j )}

1  for Xi,j u j . Marginal 

thresholds, estimated utilizing the methodology based on the 

bivariate framework (equation (3)), are usually close to the 

unvariate thresholds or higher than them. 

Thus, the assumption made about each marginal compo-

nent (wave heights and storm surges) is that for high enough 

threshold uj, the marginal distribution of Xj uj, for Xj > uj is 

the Generalised Pareto Distribution (GPD) 

Fj(x)=1 j{1+ j(x uj)/ j}+
-1/ j

, x uj, where j=1 Fj(uj). The 

scale and shape parameters, j and j, respectively, can be 

calculated using three different methods of estimation: a) the 

Maximum Likelihood Estimation procedure, b) the Bayesian 

approach and c) the L-Moments estimation procedure.  

3.1.2.1. The Maximum Likelihood Estimation Procedure 

The Maximum Likelihood Estimation (MLE) approach is 
a commonly used estimation procedure. Among others, 
Coles [15] used this approach to estimate the parameters of 
extreme value distributions fitted to sea level, rainfall as well 
as to financial data. The likelihood function gives the relative 
likelihood of the obtained observations, as a function of the 
parameters =( , ): L( ,x)= f(xi, ) and where L (or, for 
numerical convenience logL) is maximized with respect to 
the parameters  and .  

Maximization of L( ,x) with respect to the set of parame-
ters , is numerically straightforward and also has the con-
venience that various standard large sample theory results 
are available to enable the numerical calculation of standard 
errors and confidence intervals. If the available sample sizes 
are large, there seems little doubt that the Maximum Likeli-
hood estimator is a good choice [26]. 

3.1.2.2. The Bayesian Approach 

In the Bayesian setting, parameters ( , ) are treated as 
random variables and prior distributions on them are in-
tended to represent beliefs about their values, prior to the 
availability of the data. The specification of information in 
the form of a prior distribution is regarded alternately as the 
greatest strength and the main pitfall of Bayesian inference 
[15]. The absence of genuine prior information leads to the 
use of priors ( ) that have very high variance, or equiva-
lently, are nearly flat. A trivariate normal distribution is used 
here, that enables the specification of independent parame-
ters. Setting =log , a prior density function f( , )=f ( )

. 

f ( ) is chosen, where f (
.
), 

 
f (

.
) are normal density functions 

with mean zero and very high variances, corresponding to a 
specification of prior independence in the parameters  and 
. The posterior density of  is given by [27]:  

 

( x) =
( )L( ;x)

( )L( ;x)d
( )L( ;x)………….      (4) 

where L( ;x) is the likelihood function. Standard Markov 
chain Monte Carlo methods routinely allow the approxima-
tion of integrals such as the one in the denominator of equa-
tion (4). More details about the Bayesian methodology used 
here are given in Galiatsatou and Prinos [20], Galiatsatou et 
al. [21] and Sánchez-Arcilla et al. [22].  

3.1.2.3. The L-Moments Approach 

L-Moments are analogous to ordinary moments. They 
provide measures of location, dispersion, skewness, kurtosis 
and other aspects of the shape of probability distributions or 
data samples, but are computed from linear combinations of 
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the ordered data values [26]. They were introduced by Hosk-
ing [28], who assessed that L-moments weigh each element 
of a sample according to its relative importance.   

The main advantage of L-Moments is that, being a linear 
combination of data, they are less influenced by outliers and 
the bias of their small sample estimates remains fairly small. 
It is therefore anticipated that L-Moments can provide reli-
able estimates of tail-index with a relatively small sample of 
the POT data. Furthermore, the required computation is quite 
limited compared with other traditional techniques, such as 
the Maximum Likelihood Estimation approach [29].  

Using three sample L-Moments, the scale ( ) and shape 
( ) parameters of the GPD can be estimated as [29]:  

 

=
(3 3 -1)

( 3 +1)
………………………………………….     (5.1) 

 
= (1- )(2 - ) 2 ……………………………………     (5.2) 

where 3 is the normalized L-Moment 3= 3/ 2. The L-
Moments approach is a method requiring quite limited com-
putation compared with other traditional techniques, such as 
the Maximum Likelihood Estimation approach.  

3.1.3. Estimation of Dependence of the Bivariate Data 

Wave heights and storm surges are not independent vari-

ables, but they are certainly characterized by some form and 

some degree of dependence. The complete pair of measures 

of extremal dependence  and , introduced by Coles et al. 

[14], is informative for both asymptotically independent and 

dependent variables. After transformation of the pair of vari-

ables (X1, X2) to (U, V)= {FX1 (X1 ),FX2 (X2 )}  having Uniform 

marginal distributions, the one-dimensional function (u) is 

defined for a given threshold as: 

(u) = 2
logPr(U < u,V < u)

logPr(U < u)
 for 0 u 1………….….  (6) 

The measure  can then be defined as: 

= limu 1 (u)………………….…..…………………..(7) 

The one dimensional function (u)  is defined for 0 u 1: 

(u) =
2 logPr(U > u)

logPr(U > u,V > u)
1=……………………………..   (8) 

It follows that: 

= limu 1 (u)……………………………………………(9) 

When used for bivariate random samples with identical 

marginal distributions, both measures provide an estimate of 

the probability of one variable (e.g. wave heights) being ex-

treme, provided that the other one (e.g. surge levels) is ex-

treme. The sign of (u) determines whether the variables are 

positively or negatively associated at the quantile level u. In 

the special case =0 the variables are asymptotically inde-

pendent. For asymptotically dependent variables =1. The 

complete pair of ( , ) can give an impression of extremal 

dependence. The pair ( >0, =1) indicates asymptotic de-

pendence, while the value of  determines the strength of 

dependence and the pair ( =0, <1) signifies asymptotic 

independence, in which case the value of  determines the 

strength of dependence within the class [15]. Galiatsatou and 

Prinos [18] present plots of the pair ( , ) for wave heights 

and surges at station Eld (Eierlandse Gat), 20km off the 

Dutch coast, identifying an increased degree of correlation of 

the two processes as u 1 suggesting a tendency for the 

most extreme levels to be correlated. 

    Another measure used in the present paper to examine 

dependence of the two processes at extreme levels is the co-

efficient of tail dependence, . For estimating the coefficient 

of tail dependence, , the structure variable T=min(X, Y), 

where X and Y are the wave height and surge data trans-

formed to have the standard Fréchet distribution, is defined. 

The coefficient of tail dependence, , is estimated by using a 

point process approach, as the shape parameter of the uni-

variate T variable. The coefficient of tail dependence, , can 

be related to the dependence measure  using the for-

mula: = 2 1 . If =1 and L(z) c as z  (L(
.
) is a 

slowly varying function, i.e. 
 
lim
s
{L(st)/L(s)} = 1  for all fixed 

t>0), with 0<c 1, then ( =c, =1) and the variables are as-

ymptotically dependent of degree c [14]. 

3.1.4. Choosing an appropriate model from the family of 
MVE 

To determine an appropriate bivariate extreme value 

model (BVE), components X1 (wave height) and X2 (surge), 

having unit Fréchet margins, are transformed to radial and 

angular components, R=(X1+X2)/n and W1= X1/(X1+X2), 

where n is the number of bivariate pairs. The W1 versus logR 

plot, for points exceeding at least one of the marginal thresh-

olds defined can be used to determine whether there is mass 

near the boundaries of the one dimensional unit simplex S2 

({S2= (W1,W2): Wj =1
j=1

2

, Wj>0, j=1,2}). If most of the points 

lie in the interval 0.1<W1<0.9 and few points are near the 

boundaries of W1, parametric models with all mass in the 

interior of the one dimensional unit simplex S2 are quite ap-

propriate, namely the Dirichlet and symmetric versions of 

the two logistic models (logistic and negative logistic) [2]. 

A more detailed inspection of the structure of the de-
pendence function of the bivariate data requires the estima-
tion of the parameter of asymmetry  for all candidate bi-
variate models. If  is the asymmetry parameter of a bivari-
ate extreme value model, it is estimated using the formula 
[24]:  

= 4(A(W1 ) A(1 W1 ))/(3 2 2)
0

0.5

dW1
……………….. (10) 

This measure lies in the interval [ 1,1], with large abso-
lute values representing stronger asymmetry. A is the de-
pendence function of the data. For the logistic and negative 
logistic models A(W1)=A(1 W1) for all 0 W1 0.5, so the 
value of  will be zero. 
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An informal impression of the best fitting model can be 
given by comparing the estimations of the negative log-
likelihoods (NLLH), arising from the maximization of the 
censored likelihood. But testing between different families of 
dependence models cannot be based formally on likelihood 
values since the models are not nested [3].  

3.1.5. Fitting the Appropriate Bivariate Model 

Modeling approaches for multivariate extremes are 
analogous to block maximum, threshold and point process 
results, derived for univariate extremes. It should be noted 
that approaches based on threshold exceedances are poten-
tially more efficient than those based on component-wise 
maxima. The former avoid the wastefulness of data implied 
in a componentwise block maxima analysis. However, they 
cannot easily be applied to spatio-temporal data, because 
they cannot easily be adapted to deal with short-range de-
pendence [7]. 

The simplest Bivariate Extreme Value distribution is the 
bivariate logistic model. The bivariate logistic distribution 
function for wave heights and surges with dependence pa-
rameter r (0< r 1) is [30]: 

 
G(x1,x2 ) = exp[ - (z1

1/r
+ z2

1/r )r ]……………………….....(11) 

where z1 and z2 are the transformed GPD margins of the 
variables X1 (waves) and X2 (surges). Complete dependence 
is achieved in the limit as r approaches zero. Independence is 
obtained when r=1. One of the main properties of the model 
is the exchangeability of the variables involved. Marginal 
parameters of the two variables (wave heights and surges) 
are estimated using the three different estimation procedures 
analyzed: a) the Maximum Likelihood Estimation procedure, 
b) the Bayesian approach and c) the L-Moments estimation 
method. The dependence parameter, r, of the bivariate logis-
tic model (11) is estimated using a sequential estimation pro-

cedure, after defining the marginal parameters of the distri-
butions of wave heights and surges. 

3.2. Determination of the Failure Area of a Structure - 
Design Under Extreme Conditions 

If 1,…, d are random variables corresponding to con-
stituent processes affecting a particular structure with a vec-
tor of design parameters , structural failure can occur if  = 
( 1,…, d)   R

d
, for a failure region  = {x  R

d
: b(x; 

) >0}, for a boundary function b: R
d
 x V  R, where V is 

the design parameter space of  [3]. The main problem 
which arises is, for a given parameter vector , to determine 
the probability of failure p=Pr{X  }, or to define the value 
of  which is linked to the probability p. This latter problem 
has unique solutions only if V R. However, the determina-
tion of the form of the boundary function b is indeed very 
difficult and depends on a large variety of factors, like the 
design structure characteristics under study and the features 
of the processes affecting it.   

Joint exceedence probability refers to the chance of two 
or more partially related variables occurring simultaneously. 
Response probability refers to the occurrence of a particular 
response, like overtopping or failure, which depends on the 
joint occurrence of those variables. The main discrepancy 
between joint exceedence and response probabilities lies on 
the fact that a number of combinations of the variables in-
volved can be derived with a given joint exceedence return 
period, but only one of these will be the worst case in terms 
of response and it may not be the same for each response.  

In DEFRA [31] there is an example that shows the rela-
tionship between joint exceedence probabilities and response 
probabilities of a coastal structure (Fig. (2)). A number of 
combinations of waves and sea levels can be derived with a 
given joint return period (black curve). Only one of these 
will be the worst case in terms of response. Two different 
responses are considered in this particular example, overtop-

Fig. (2). The relationship between joint exceedance and response probabilities (DEFRA [31]). 
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ping (blue curve) and force (red curve). The worst case com-
bination for the structure under study is defined graphically 
as the intersection of the contour of joint exceedance prob-
ability corresponding to a particular probability of exceed-
ance and the contour of equal response to appropriately cho-
sen loadings. The green and yellow areas illustrate ranges of 
wave height and sea level with the given exceedance prob-
ability. The equal overtopping curve lies towards the bottom 
right of the diagram, where sea level is higher, while the 
equal force curve lies towards the top left of the diagram, 
where wave height is higher.  

In the present study, the structure utilised is a seawall. Its 

design characteristics are those presented by Coles and Tawn 

[3]. For this particular structure, overtopping is the critical 

cause of flooding of coastal areas behind it. The combination 

of large wave heights and high surges can contribute to high 

overtopping rates and thus create extended flooding to the 

protected areas. Wave heights in the area of the seawall and 

surges can contribute to the creation of a natural structure 

variable for the problem under study. Following Coles and 

Tawn [3], if 1
*
, 2

*
 are the inshore significant wave height 

and wave period, respectively, 3 is the surge,  is the height 

of the seawall, z is the mean tidal level and m is the mean sea 

level at the area, the expected overtopping discharge rate per 
unit length of the seawall Q( , z) is: 

Q( , z) = 1gX
*
1X

*
2 exp{ 2 ( X3 z m) / X*

2 (gX
*
1 )
1/2}  (12) 

where g is the acceleration of gravity and 1, 2 are dimen-

sionless constants depending on the form and characteristics 
of the seawall design, taking values 1=0.025 and 2=81.5, as 

the seawall is considered a rough sloping embankment with 

gradient 1:5.  

The breaking of waves and other phenomena occurring in 

shallow waters, cause the characteristics of the waves near-
shore to vary from those offshore. For this reason, the rela-

tionships proposed by Tucker et al. [32] are used to trans-

form to characteristics of the waves offshore, namely the 
wave height and the wave period: 

X*
1 = X1[1 exp{

(m+ z+ X3 )
2

2X1
2

}]1/2  and X*
2 = X2 ……… (13) 

If the design overtopping discharge per unit length is 
0.002 m

3
/sm [3], the corresponding boundary function b(x; 

) is defined as: 

b(x; ) =  Q( , z) - 0.002………………………………    (14) 

4. RESULTS  

In the following, the methodology presented in the previ-
ous Section, will be implemented to wave height and surge 
data of station Swb (Schouwenbank), located in the southern 
part of the Dutch coast (see Fig. (1)). The geographical coor-
dinates of station Swb are 51º44'48" (latitude) and 3º18'24" 
(longitude) and the water depth is approximately 20m. Sta-
tion Swb lies within the greater area of a coastal structure. 
The methodology was also implemented to other Dutch sta-
tions, but due to the fact that the main interest of the study is 
the presentation of a general methodological framework, the 
results are not included for the sake of brevity.  

Following Galiatsatou [19], four different methods of se-

lecting daily observations of wave heights and storm surges 

are applied. The three of them consider concurrent observa-

tions of wave height and surge, as described in Section 3, 

while the fourth one considers daily maximum values of the 

two variables, which do not occur simultaneously. Results of 

joint return levels and joint exceedance probabilities for all 

cases with concomitant observations do not differ signifi-

cantly from those of the case where daily maxima waves and 

surges are used. Thus, the bivariate analysis at station Swb 

will proceed with bivariate observations of 24-hourly 
maxima wave heights and surges.  

Univariate thresholds for wave heights and storm surges, 
using the mean residual life plot and the plots of parameters 
 and  for a variety of possible threshold values, are esti-

mated close to the 95% quantiles of both variables involved. 
The bivariate threshold ro is estimated using the methodology 
presented in Section 3. Fig. (3) shows histograms of values 

 

Fig. (3). Histograms of the angular component W1 for all exceedances of a radial threshold ro, for the bivariate pair of wave heights and 

surges. The histograms are created for values of ro: a)  ro = n
-1

 exp(1), b) ro = n
-1

 exp(2), c)  ro = n
-1

 exp(3), d) ro = n
-1

 exp(3.5), e) ro = n
-1

 

exp(3.6) and f) ro = n
-1

 exp(4). 
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of W with log(nro) for values of the bivariate threshold ro 
equal to exp(1)/n, exp(2)/n, exp(3)/n, exp(3.5)/n, exp(3.6)/n 
and exp(4)/n at station Swb. Values of ro which lay between 
the ones presented in Fig. (3), although estimated, are not 
presented in the paper. The value of ro chosen for the analy-
sis is fixed at ro = exp(3)/n. Such a threshold corresponds, by 
using equation (3) to marginal thresholds close to the 95% 
quantile of wave height and surge elevations at station Swb. 
It can be noticed that in this particular case, univariate and 
bivariate thresholds are estimated really close to each other.  

To estimate extremal dependence of wave heights and 

storm surges, the pair of measures  and  introduced by 

Coles et al. [14], is defined (see Section 3). Fig. (4) shows 

plots of the functions (u) and (u) for station Swb. Mean 

values as well as 95% confidence intervals for both functions 

are included.  

 

Fig. (4). Mean values and 95% confidence intervals of functions 

(u) and (u) for the bivariate observations of 24-hourly maximum 

wave height and surge variables. 

It can be concluded that for the greatest range of values 

of u, >0 (Fig. (4)). The (u) function takes negative values 

only for a small range at the beginning of the range of values 

of u, showing some slight evidence of negative dependence. 

However, this area is limited. From Fig. (4), considering the 

95% confidence interval, the value =1 is a possible limit. 

Consequently, there is some evidence that wave heights and 

surges are consistent with asymptotic dependence at extreme 

levels. 

To examine dependence of the two processes at extreme 

levels, the coefficient of tail dependence,  is also estimated 

(see Section 3). Considering a threshold of 75% for the  

T variable, the coefficient of tail dependence, , is equal to 
ˆ = 0.827  (standard error = 0.087). Considering a threshold 

of 95% of the T variable, the respective value of the coeffi-

cient of tail dependence is ˆ = 0.818  (standard error = 

0.088). Thus, if the 95% confidence intervals for the coeffi-

cient of tail dependence, , are defined ˆ 1 and therefore the 

bivariate data of wave height and storm surge can be consis-

tent with asymptotic dependence.  

Estimating both the pair of measures ( , ) and the coef-

ficient of tail dependence, , wave height and surge seem to 

be consistent with asymptotic dependence. Consequently, 

multivariate extreme value models from the family of MVE 

can be used to model the dependence function of the vari-

ables and to estimate their joint distribution function. To 

determine an appropriate bivariate extreme value model 

(BVE) for wave height and storm surge data, the W1 versus 

logR plot of bivariate points exceeding at least one threshold, 

the asymmetry parameter, , and the estimates of the likeli-

hood function for all candidate models are used as evidence. 

Fig. (5) shows a W1 versus logR plot of bivariate points ex-

ceeding at least one threshold for the pair of wave height and 

storm surge data at station Swb. It can be concluded that few 

points lay near the boundaries of W1, suggesting a need to 

use a bivariate model with all mass in the interior of the sim-

plex S2. Estimates of  do not show evidence of significant 

asymmetry in the dependence structure of the data. Consid-

ering the previous finding, together with the estimates of the 

likelihood function for all candidate models (Dirichlet, 

symmetric logistic and symmetric negative logistic model), 

the symmetric logistic model is suggested to be fitted to the 

bivariate data.   

 

Fig. (5). W1 versus logR plot for points exceeding at least one 

threshold. 

Fig. (6) shows contour lines of bivariate return levels for 
return periods of 1, 10, 50, 100 and 10000 years with Maxi-
mum Likelihood, Bayesian, and L-Moments estimators of 
the parameters of the extreme value models. 

Table 2 presents the maximum values of wave height and 
surge return levels at station Swb for return periods of 1, 10, 
50, 100 and 10000 years, with GPD margins for the two 
variables involved, estimated using the Maximum Likeli-
hood Estimation procedure, the Bayesian approach with flat 
prior distributions and the L-Moments methodology.   

From Fig. (6) and Table 2, the L-Moments approach 
seems to lead to higher return levels of wave height, while 
the Bayesian methodology with nearly flat priors to higher 
return levels of storm surge. It is obvious that the Maximum 
Likelihood Estimation procedure underestimates the return 
values of both variables, compared to the other two ap-
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proaches. When compared to the Bayesian approach, this 
underestimation reaches 2% and 11% for wave height and 
storm surge, respectively. The larger difference between the 
two methods for surge return levels can be attributed to large 
divergences in the fitting of marginal surge distributions, 
using the two methods of estimation. These divergences are 
subsequently reflected to the bivariate analysis. When the L-
Moments approach is used, wave return levels are estimated 
higher, compared to those of the Maximum Likelihood pro-
cedure, up to 2.8%, while differences for surge levels up to 
4.3%. The Bayesian estimation procedure seems to overes-
timate the joint exceedance probability of extreme events for 
high values of storm surge (up to 15.5% for storm surge val-
ues), compared to the L-Moments approach.  

The comparison of the results coming from the three dif-

ferent methods of estimation reveals the impact of marginal 

characteristics of the variables and of the different estimation 

methods on joint exceedance probabilities. The combination 

of the method of L-Moments (or the Bayesian method) for 

wave height and of the Bayesian estimation for storm surge 

can lead to the most conservative results in terms of bivariate 

return levels.  

Using the margins resulting from the three different esti-
mation methods, an approach to estimate the failure area of a 
particular structure under extreme sea conditions is pre-
sented. The characteristics of the structure used in the pre-

sent work are those proposed by Coles and Tawn [3] and 
introduced in Section 3. In Fig. (7), for station Swb of the 
Dutch coast and design height of the seawall p=10m, the 
boundary function of equation (14) is presented for design 
overtopping discharge per unit length Q( p, z)=0.002 m

3
/sm. 

Each contour corresponds to a different wave period in the 
range of T= 4, 6, 8, 10, 12, 14s from top to bottom.  

    For all different return periods, a large number of dif-
ferent combinations of wave height and surge with the same 
joint exceedance probability is estimated. Only one of these 
combinations is the critical combination in terms of the re-
sponse of the structure under study, namely in terms of over-
topping discharge. For the seawall examined in the present 
study, the worst case combination of wave height and surge, 
for a given value of design height of the seawall p, is esti-
mated as the intersection point of the contour line of equal 
joint exceedance probability of the previously mentioned 
variables and the contour line corresponding to equal dis-
charge rates Q( p, z). Fig. (8) shows the critical combination 
of wave height and surge for the three different methods of 
estimation of the marginal distributions of the two variables: 
a) the Maximum Likelihood Estimation approach, b) the 
Bayesian procedure and c) the L-Moments approach. The 
contours of equal joint exceedance probability are defined 
for station Swb and for a return period of 4000 years, in ac-
cordance with the typical standards of the southern part of 
the Dutch coast on the North Sea. 

(a) MLE and bayesian methods (b) MLE and LM  methods
 

 

Fig. (6). Bivariate return levels with three methods of estimating the marginal parameters of wave heights and surges (station Swb). 

Table 2. Maximum Values of Return Levels for Wave Height and Storm Surge, using three different Methods of estimating the Mar-

ginal Distributions of the two Variables (Station Swb) 

Maximum Likelihood Bayesian Estimation L-Moments  
Return Period 

Wave Height (m) Storm surge (m) Wave Height (m) Storm surge (m) Wave Height (m) Storm surge (m) 

1 year 4.58 1.32 4.59 1.49 4.59 1.31 

10 years 5.26 1.79 5.31 2.07 5.34 1.80 

50 years 5.59 2.12 5.65 2.44 5.70 2.12 

100 years 5.70 2.22 5.78 2.55 5.82 2.27 

10000 years 6.16 3.02 6.29 3.35 6.33 3.15 
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Fig. (7). Contours of design overtopping discharge Q( p, z)=0.002 

m
3
/sm for wave periods  = 4, 6, 8, 10, 12, 14 s. 

In Fig. (8), the intersection points of the contour lines are 

estimated for wave periods of T=8.7s for the Maximum 

Likelihood Estimation procedure, T=7.9s for the Bayesian 

estimation and T=8.4s for the L-Moments approach. The 

critical combinations of wave height (x) and surge (y), as 

estimated from Fig. (8), are for the Maximum Likelihood 

Estimation procedure x4000 years =5.76 m and y4000 years =2.88 m 

( =8.7s), for the Bayesian estimation approach x4000 years 

=5.90 m and y4000 years =3.19 m ( =7.9s) and for the L-

Moments approach x4000 years =5.92 m and y4000 years =2.97 m 

( =8.4s). The Bayesian and L-Moments wave height esti-

mates are almost identical, while regarding the surge, the 

Bayesian estimates are the highest. With regard to the 

Maximum Likelihood Estimation procedure, the values of 

wave height when marginal parameters from the Bayesian 

estimation approach are used, are estimated higher up to 

2.5%, while the respective values of surge up to 10.7%. The 

wave period, , in the latter case is lower up 9.2%. It can be 

noticed (Fig. (8)) that the equal overtopping curve lies to-

wards the top left of the diagram for all three different meth-

ods of estimation of the marginal parameters of the two vari-

ables.  

DISCUSSION AND CONCLUSIONS 

In the present work a bivariate process of extreme waves 
and storm surges at the Dutch station Schouwenbank (Swb) 
was considered. After the selection of an appropriate bivari-
ate sample to be analyzed using extreme value methodolo-
gies, the analysis proceeded with the estimation of joint ex-
ceedance probabilities using the simple bivariate logistic 
model and a sequential estimation procedure, where the pa-
rameters of the margins of the bivariate distribution were 
defined by: a) Maximumum Likelihood Estimation (MLE), 
b) Bayesian estimation with flat prior distributions and c) the 
L-Moments estimation procedure. Using the margins result-
ing from the three different methods of estimation, an ap-
proach to estimate the failure region of a particular structure 
under extreme sea conditions was presented. The main con-
clusions of the paper can be summarized as follow: 

a. The variables of wave height and storm surge are both 
related to local meteorological conditions. Thus, it is ex-
pected that dependence at their extreme levels can be high 
enough for the variables to be considered consistent with 
asymptotic dependence. This assumption leads to the use of 
a bivariate distribution from the family of MVE to model 
their dependence structure. In the present work, the symmet-
ric bivariate logistic model was proven to be adequate.  

 

Fig. (8). Estimation of the worst case combination of significant wave height and surge with return period of 4000 years for three different 

methods of estimation of their marginal distributions (station Swb). 



Bivariate Analysis of Extreme Wave and Storm Surge Events The Open Ocean Engineering Journal, 2011, Volume 4    13 

 

b. The method of estimation of the marginal characteris-
tics of wave height and storm surge has a large impact on 
joint exceedance probabilities of the two variables. The 
Maximum Likelihood Estimation (MLE) approach underes-
timates the probability of exceedance of extreme joint events 
of waves and surges compared to those of the Bayesian with 
flat prior distributions and of the L-Moments procedures. 
When the Bayesian estimation procedure is used for the 
marginal distribution of the storm surge, bivariate return 
levels are more conservative compared to the other two 
methods of estimation, while for wave height the Bayesian 
estimation and the L-Moments approach give really close 
results. It should be noted that in each case the method of 
estimation of the marginal parameters of the variables in-
volved, which leads to the most conservative results in terms 
of joint exceedance probabilities, depends critically upon the 
characteristics of the extreme sample under study. 

c. When overtopping of a coastal structure is considered 
as the main cause of flooding in a certain area, the worst case 
combination of wave height and storm surge, for a given 
design value of the height of the structure p, can be esti-
mated as the intersection point of the contour line of joint 
exceedance probabilities of the variables with the contour 
line which corresponds to equal overtopping discharge rate 
per unit length of the structure, Q( p, z).     

d. The equal overtopping curve of the structure under 
study lies towards the area of the diagram of the two vari-
ables, where surge level is higher for all three different 
methods of estimation of the marginal parameters of the 
wave height and the storm surge.  

e. Comparing the worst case combinations for the seawall 
under study, the Bayesian and L-Moments wave height esti-
mates are almost identical, while the Bayesian estimates give 
the highest surge. Wave height and surge, when marginal 
parameters from the Bayesian estimation approach are used, 
are estimated up to 2.5% and 10.7% higher than those of the 
Maximum Likelihood Estimation procedure.  
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NOTATION - GLOSSARY 

MVE = Multivariate Extreme Value distribu-
tions 

MLE = Maximum Likelihood Estimation pro-
cedure 

LM = L-Moments approach 

GPD = Generalized Pareto Distribution 

u = Appropriate threshold for variable X 

nu = Observations exceeding u  

xmax = Largest value among all Xi 

X1, X2 = Representations of wave height and 
surge variables 

R = (X1+ X2)/n Radial component 

W1 = X1/( X1+ X2) angular component 

F = Distribution function of data 

 = (μ, , )= Vector of parameters (location, 
scale, shape) of distribution fitted to 
data  

L( ,x) = Likelihood function of data with re-
spect to model parameters  

f(xi, ) = Density functions of data 

fμ(
.
), f (

.
), f (

.
) = Normal density functions with mean 

zero and variances μ, , , respec-
tively 

( x)  = Posterior density of parameters vector  

( ) = Prior density for vector of parameters  

L( ;x) = A likelihood for  based on an observed 
set of exceedances x 

POT = Peaks Over Threshold  

3 = The normalized L-Moment 3= 3/ 2 

U, V  = Transformed pair of variables having 
Uniform marginal distributions 

,  = Measures of extremal dependence in-
troduced by Coles et al. [14] 

T = Structure variable defined to estimate 
the coefficient of tail dependence,  

 = Coefficient of tail dependence 

s = Transformation of variables to unit Fré-
chet margins 

BVE = Bivariate Extreme Value distributions 

S2 = Unit simplex {(W1,W2): W j =1
j=1

2
, Wj>0, 

j=1,2} 

 = Asymmetry parameter 

 = Dependence function of the data 

NLLH = Negative log-likelihood 

G(x1, x2) = Bivariate distribution (the symmetric 
logistic model) of X1 and X2 

z1, z2 = transformed GPD margins of the vari-
ables X1 and X2 

r = Dependence parameter of bivariate lo-
gistic model 

 = {x  R
d
: b(x; ) >0} failure region of a 

coastal structure 

b = boundary function R
d
 x V  R, where V 

is the design parameter space of  

 = The height of the seawall 
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1
*
, 2

*
, 3 = The inshore significant wave height, 

wave period and surge, respectively 

m = The mean sea level at the area under 
study 

z = The mean tidal level 

Q( , z) = Expected overtopping discharge rate 
per unit length of the seawall  

1, 2 = Dimensionless constants depending on 
the form and characteristics of the sea-
wall design 

Q( p, z) = Design overtopping discharge per unit 
length of the seawall 

x, y = Realisations of variables X, Y 
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