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Abstract: A technique for computing the thermal profile in a multilayer moving medium is described. This technique is 
particularly suitable for studying the near field optical/thermal interplay in hybrid optical/magnetic recording because the 
boundaries of the computation space are effectively removed from the optical source. It is shown that a three layer me-
dium can be designed with a thermal time constant which is suitable for high recording data rates and that minimizes the 
thermal bloom from motion of the medium with respect to the optical spot. However, the thermal spot is much larger than 
the optical spot which leads to a reduced storage density. 

INTRODUCTION 

 Numerical techniques for efficiently computing the tem-
perature rise [1-3] in a multilayer thin film stack [4-6] due to 
a focused laser beam have been developed for a variety of 
applications such as recordable optical data storage. The 
focused optical spot size for current optical storage products 
ranges from ~0.88 μm for CD’s at a wavelength of 780 nm 

to 0.24 μm for Blu-Ray disks at a wavelength of 405 nm. 
When the optical spot is much larger than or comparable to 
the thickness of the thin film stack, the heat sink/reflector 
layer in the disk ensures that the dominant direction for heat 
flow is perpendicular to the thin films. As a result, the ther-
mal boundary conditions in the lateral direction are not diffi-
cult to handle with simple approximations, such as a quad-
ratic temperature dependence at the boundary [4]. 

 Future optical data storage products may require near 
field optics to achieve larger storage densities. Magnetic hard 
discs may also incorporate a hybrid optical/magnetic tech-
nology called “heat assisted magnetic recording” (HAMR) 
using near field optics to transfer the optical energy into the 
recording medium in a highly localized spot smaller than the 
total thickness of the film stack [7,8]. In such a case, the lat-
eral heat flow can become as important as the perpendicular 
heat flow and thermal boundary conditions must be carefully 
applied. 

 The advantages of the alternate direction implicit (ADI) 
technique for thermal modeling of optical data storage media 
have been described by Mansuripur et al. [4,5] They devel-
oped the ADI equations for a cylindrical coordinate system 
and a circularly symmetric optical spot in both the stationary 
and moving frame of reference. The ADI equations were 
subsequently applied by Peng et al. [6] to a stationary 3D 
Cartesian coordinate system to investigate the amorphization 
and crystallization dynamics of optical phase change media.  
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Itagi [9] extended the ADI equations to include variable layer 
thicknesses, thereby enabling a substantial decrease in com-
putation time for film stacks with thick layers. He also de-
rived the ADI equations for the moving frame in a cylindri-
cal coordinate system [10]. In this paper we present the ADI 
equations for a Cartesian coordinate system in the moving 
frame of reference and a method for accurately handling the 
lateral thermal boundary conditions in a multilayer film 
stack, and then apply these results to a HAMR recording 
medium. 

BASIC THEORY 

 The Fourier heat conduction equation is 

C r, t( )
t
T r, t( ) = k r, t( ) T r, t( ) + g r, t( )          (1) 

where C is the heat capacity, k  is the thermal conductivity 
tensor, g is the input power, t is the time, and T is the tem-
perature. Eq. (1) can be implemented numerically by subdi-
viding the region of interest into many smaller cells to ap-
proximate the spatial gradients, and stepping the time in dis-
crete increments. In the explicit method, the temperature at a 
specific point in the cell space at time t = n+1 is completely 
determined by the temperatures within the cell space for the 
previous time step, t = n. 

C
T n+1 T n( )

t
= k T n( ) + g .          (2) 

 There is only one unknown variable, Tn+1(i,j,k), at each 
point in the cell space and time step. However, there is a 
constraint on the size of the time step to ensure numerical 
stability of the calculation. It is generally necessary to 
choose very small time steps, and as a result, the simple ex-
plicit technique is not suitable for many problems of practi-
cal interest. 

 The simplest implicit method for solving the heat con-
duction equation rewrites Eq. (1) as 

C
T n+1 T n( )

t
= k T n+1( ) + g .          (3) 
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 In this case the change in temperature between time step 
n+1 and time step n is expressed in terms of the temperatures 
at time step n+1. There are seven unknown variables in this 
equation, the temperatures at t = n+1 at point (i,j,k) and its 
six neighbors, making the solution of the set of equations in 
cell space much more complex and time consuming, al-
though this technique has the advantage of unconditional 
stability. 

 The Crank-Nicolson (CN) technique is an average of the 
implicit and explicit techniques. The CN equation is 

 
C

T n+1 T n( )
t

= k
T n+1

+ T n( )
2

+ g .         (4) 

 This technique is also unconditionally stable and the ac-
curacy is second order in t, which is greater than either that 
of the simple implicit or simple explicit techniques. How-
ever, there are still seven unknown quantities in this equation 
at each point and time step making it computationally inten-
sive to solve directly. 

 

Fig. (1). Cell space in the horizontal plane with extended bounda-
ries. The central red region is the standard computational space with 
uniform cell sizes. This region is ringed by multiple additional re-
gions with varying cell sizes so that the final cell space is orders of 
magnitude larger than the central region. 

 Douglas and Gunn [7] developed an ADI algorithm for 
the CN equation that maintains its unconditional stability and 
numerical accuracy but greatly reduces the computation 
time. In their technique Eq. (5) at each time step is subdi-
vided into two or more equations with fewer unknowns that 
can be solved sequentially to determine the change in tem-
perature. The general approach for the stationary coordinate 
system is discussed in Ref. [3]. In this paper we develop the 
ADI equations for the moving frame of reference in the 3D 
Cartesian coordinate system. 

 A problem with the numerical solution to the heat flow 
equation is handling the boundaries of the finite computation 
space appropriately. Ideally the boundaries of the computa-
tion space are placed far enough from the region of interest 
that the boundaries have no effect on the thermal calculation 
within the time interval of interest. In some cases, however, 
this approach requires unreasonably large computation 
spaces. In particular, we have found that for modeling heat 

flow in HAMR media due to optical energy delivered to the 
medium in a tightly confined spot in the near field, the ef-
fects of boundaries in a finite computation space must be 
carefully handled. In the next section we develop a method 
of extending the boundaries by variable cell sizes to com-
pletely remove boundary effects. 

EXTENDED BOUNDARIES 

 For convenience, the vertical direction will be defined to 
be perpendicular to the plane of the films. To implement 
extended boundaries the ADI equations are first modified to 
handle a variable cell size in the lateral direction. In the re-
gion of interest in the center of the computation space where 
the optical power is delivered to the films, the cells are dis-
cretized laterally with a fine grid. Outside of this center re-
gion are rings of cells with successively larger lateral dimen-
sions as shown in Fig. (1). Four sets of rings that are each 
five cells thick have been chosen for the results described in 
section 4, and in each ring the lateral dimension(s) are cho-
sen to be ten times greater than that of the ring immediately 
inside it. For example, if the central cell space region is 500 
by 500 cells with (20 nm)2 cell areas corresponding to a 10  
10 μm cell space, the extended cell space has 540  540 cells 
covering a 2  2 mm area. Thus the cell space boundaries are 
too far from the central heat source to effect the calculation 
for any time interval that is practical to compute. 

 The equations for the numerical calculation are obtained 
using the approach of Itagi [10]. Following the notation in 
that reference, a specific point in the cell space is considered 
with coordinates (i,j,k) as shown in Fig. (2). The points are 
located at the corners of the cells and the temperatures are 
defined at each point. The thermal conductivities are defined 
on the cell edges between points while the heat capacities are 
defined for each cell volume. Some cells in the computation 
space are surrounded by other cells of the same material and 
cell dimensions. The thermal conductivity, heat capacity, and 
cell dimensions associated with the points on the corners of 
these cells are then clearly defined. On the other hand, some 
points occur at the boundary between layers of different ma-
terials, and some points occur at the boundary between cells 
of different dimensions as shown in Fig. (2). To compute the 
temperature at these points with the ADI equations some 
additional definitions are helpful. 

 

Fig. (2). Illustration of parameter definitions at boundaries of non-
uniform cells within a thin film layer. 
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x+ x j+1 x j             (5) 

y+ yj+1 yj             (6) 

z+ z j+1 z j             (7) 

x x j x j 1             (8) 

y yj y j 1             (9) 

z z j z j 1           (10) 

x 0.5 x+ + x( )          (11) 

y 0.5 y+ + y( )          (12) 

and 

z 0.5 z+ + z( ) .         (13) 

 The heat capacity assigned to point (i,j,k) is an average of 
the heat capacity for the material in the layer above the point, 
C+, and the layer below the point, C-, 

Ck
z+ C+ + z C

z+ + z
.          (14) 

 Because the lateral dimensions for the cells in the upper 
layer are the same as the cells in the lower layer on either 
side of the point, this is equivalent to a volumetric average of 
the heat capacity. 

 The thermal conductivity above and below the point is 
that for the layer material above and below the point, respec-
tively. However, the lateral thermal conductivity at the inter-
face between layers of different materials is a weighted aver-
age of thermal conductivities for the materials above and 
below the point, 

Kxy

z+ Kxy+ + z Kxy

z+ + z
.         (15) 

 For a 3D Cartesian coordinate system at each time step 
there are three tridiagonal matrix ADI update equations for 
each point in the cell space. These equations must explicitly 
include the x± and y± factors required to take into account 
the change in lateral cell size at the borders between rings in 
the extended boundaries. The appropriate equations are: 

Substep 1: 

Ti, j,k+1
n+1 3 2 z z+

Kz+

C

t
+

Kz+

2 z z+

+
Kz

2 z z
Ti, j,k

n+1 3

+
z+ Kz

z Kz+

Ti, j,k 1
n+1 3

=
2 z z+ C

t Kz+

Ti, j,k
n 2 z z+

Kz+

gi, j,k
n

2 z z+ Kx

x x+ Kz+

Ti+1, j,k
n Ti, j,k

n( )

  

 

2 z z+ Kx

x x Kz+

Ti 1, j,k
n Ti, j,k

n( )

2 z z+ Ky

y y+ Kz+

Ti, j+1,k
n Ti, j,k

n( )

2 z z+ Ky

y y Kz+

Ti, j 1,k
n Ti, j,k

n( )

Ti, j,k+1
n Ti, j,k

n( )
z+ Kz

z Kz+

Ti, j,k 1
n Ti, j,k

n( )

(16) 

Substep 2: 

Ti+1, j,k
n+2 3 2 x x+

Kx

C

t
+

Kx

2 x x+

+
Kx

2 x x
Ti, j,k

n+2 3

+
x+

x
Ti 1, j,k

n+2 3

=
2 x x+ C

t Kx

Ti, j,k
n+1 3

+ Ti+1, j,k
n Ti, j,k

n( )

+
x+

x
Ti 1, j,k

n Ti, j,k
n( )

      (17) 

Substep 3: 

Ti, j+1,k
n+1 2 y y+

Ky

C

t
+

Ky

2 y y+

+
Ky

2 y y
Ti, j,k

n+1

+
y+

y
Ti, j 1,k

n+1

=
2 y y+ C

t Ky

Ti, j,k
n+2 3

+ Ti, j+1,k
n Ti, j,k

n( )

+
y+

y
Ti, j 1,k

n Ti, j,k
n( )

      (18) 

 At the boundaries the equations have to be modified. One 
simple boundary condition is that of the perfect heat sink, T 
= 0. This is easily implemented by replacing Eq. (17) for i = 
0 and imax and Eq. (18) for j = 0 and jmax by 

T0,max
n+1

= 0 .           (19) 

 The perfect insulator boundary condition is also easily 
implemented by the equations 

T0,max
n+1 T1,max 1

n+1
= 0 .         (20) 

MOVING FRAME OF REFERENCE 

 In a reference frame that is moving at velocity v with 
respect to the heat source, the Fourier heat conduction equa-
tion is 
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C r, t( )
t

v T r, t( ) = K r, t( ) T r, t( )

+ g r, t( )

.      (21) 

 For motion of the film stack in the lateral plane relative 
to the incident optical spot, this equation reduces to 

 

C r, t( )
t

vx x
vy y

T r, t( )

= K r, t( ) T r, t( ) + g r, t( )

.       (22) 

 The corresponding ADI CN equation is 

 

C r, t( )
T n+1 r, t( ) T n r, t( )

t
=

K r, t( ) + C r, t( ) vx x
+ C r, t( ) vy y

T n+1 r, t( ) + T n r, t( )
2

+ g r, t( )

.      (23) 

 We propose the following three ADI equations for the 
Douglas-Gunn solution in the moving frame: 

Substep 1: 

T
n+

1

3 T n
=

Kz t

C

2

z2

T
n+

1

3 + T n

2
+

Kx t

C

2

x2 T n

+
Ky t

C

2

y2 T n
+ t vx x

T n
+ t vy y

T n

+
g t

C

      (24) 

Substep 2: 

T
n+

2

3 T n
=

Kz t

C

2

z2

T
n+

1

3 + T n

2

+
Kx t

C

2

x2

T
n+

2

3 + T n

2
+

Ky t

C

2

y2 T n

+ t vx x

T
n+

2

3 + T n

2
+ t vy y

T n
+

g t

C

       (25) 

Substep 3: 

T n+1 T n
=

Kz t

C

2

z2

T
n+

1

3 + T n

2

+
Kx t

C

2

x2

T
n+

2

3 + T n

2

+
Ky t

C

2

y2

T n+1
+ T n

2

+ t vx x

T
n+

2

3 + T n

2

+ t vy y

T n+1
+ T n

2
+

g t

C

        (26) 

 These equations can be simplified by subtracting Eq. (25) 
from Eq. (26), and Eq. (24) from Eq. (25). Combining these 
two new equations with Eq. (24) leads after some algebraic 
manipulation to the CN Eq. (23) to first order in t. 

 The numerical implementation of the three tridiagonal 
ADI update equations is obtained from Eqs. (24) – (26) by 
substituting the numerical expansions for the Laplacian and 
gradient, 

2T

x2

Ti+1 2Ti + Ti 1

x2
         (27) 

and 

T

x

Ti+1 Ti 1

2 x
.          (28) 

Substep 1: 

Ti, j,k+1

n+
1

3 2 1+
z2 C

Kz t
T

n+
1

3 + Ti, j,k 1

n+
1

3

=
2 z2 C

Kz t
T n Ti, j,k+1

n 2Ti, j,k
n

+ Ti, j,k 1
n( )

2Kx z2

Kz x2 Ti+1, j,k
n 2Ti, j,k

n
+ Ti 1, j,k

n( )

2Ky z2

Kz y2 Ti, j+1,k
n 2Ti, j,k

n
+ Ti, j 1,k

n( )

z2 C vx

Kz x
Ti+1, j,k

n Ti 1, j,k
n( )

z2 C vy

Kz y
Ti, j+1,k

n Ti, j 1,k
n( )

2 z2

Kz

g

       (29) 

Substep 2: 

1+
C vx x

Kx

Ti+1, j,k

n+
2

3 2 1+
C x2

Kx t
Ti, j,k

n+
2

3

+ 1
C vx x

Kx

Ti 1, j,k

n+
2

3

= 1+
C vx x

Kx

Ti+1, j,k
n 2Ti, j,k

n

+ 1
C vx x

Kx

Ti 1, j,k
n 2C x2

Kx t
Ti, j,k

n+
1

3

       (30) 

Substep 3: 

1+
C vy y

Ky

Ti, j+1,k
n+1 2 1+

C y2

Ky t
Ti, j,k

n+1

+ 1
C vy y

Ky

Ti, j 1,k
n+1

= 1+
C vy y

Ky

Ti, j+1,k
n 2Ti, j,k

n

+ 1
C vy y

Ky

Ti, j 1,k
n 2C y2

Ky t
Ti, j,k

n+
2

3

      (31) 

 The unconditional stability of these equations is proven 
in Appendix 1. A simple example for an isotropic medium is 
considered in Appendix 2 for comparison to analytical re-
sults. In the next section the ADI algorithm with extended 
boundaries is applied to heat assisted magnetic recording. 
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EXAMPLES 

 HAMR has been proposed for data storage densities of 1 
Tb/in2 or greater [7,8]. At these storage densities the optical 
spot size must be ~50 nm or smaller and the spacing between 
the recording head and the recording medium must be as 
small as possible, typically  5 nm, for adequate resolution 
of the bits in the readback signal. Both of these conditions 
are consistent with using near field optics to deliver the opti-
cal energy from the recording head to the recording medium. 
Unlike optical recording media for which a multilayer thin 
film stack is used to control both optical and thermal proper-
ties of the media, the film stack of a HAMR medium is de-
signed primarily for its magnetic and thermal properties. The 
recording layer must be placed at the top of the film stack to 
minimize the head-to-media spacing. An aggressive heat 
sink must be laminated to the recording layer to ensure that 
thermal time constants on the order of 1 ns or less to achieve 
GHz data rates. A thermal spacer may be placed between the 
recording layer and the heat sink to further control this time 
constant. For the first example, we consider a three layer 
film stack consisting of 20 nm of a metallic recording mate-
rial laminated to a 20 nm thermally insulating layer and a 
semi-infinite metallic heat sink as shown in Fig. (3). An op-
tical source generates a circular optical spot with a Gaussian 
intensity profile which is absorbed in the top 5 nm layer of 
the recording medium, i.e., 

 

Fig. (3). Multilayer layer film stack for heat assisted magnetic re-
cording. 

I(x, y, z) = 2.0 1018( )exp
x2

+ y2

r2

W

m3

for z < 0

       (33) 

where r = 50 nm. The heat flow out of the top surface of the 
recording layer is assumed to be negligible. The thermal pa-
rameters are given in Table 1. The central region of fine dis-
cretization in each layer is 49  49 cells for the extended 
boundary calculation. This region of fine discretization is 
solved for both a 49  49 cell space and a 499  499 cell 
space with non-extended boundaries. Each cell has a lateral 
area of (10 nm)2. The calculation is carried out in the station-
ary frame of reference with time steps of 100 ps for 1000 
steps. Each of these cases is computed for two different 

boundary conditions, the typical T = 0 boundary condition 
and the perfect insulator boundary condition, dT/dn = 0. The 
six computed temperature profiles in the top layer of the me-
tallic recording medium are plotted in Fig. (4). 

Table 1. Thermal ADI Parameters for the Multilayer Me-

dium in Fig. (3) 

 

Layer Material 
# z  

Cells 

z Cell  

Thickness 

K 

W/(K m) 

 C 

10
6
 J/(m

3
 K) 

1 recording 4 5 nm 100 3 

2 dielectric 2 10 1 3 

3 heat sink 5 100 400 3 

4 substrate 5 1000 400 3 

5 substrate 5 10000 400 3 

 

 

Fig. (4). Thermal profiles computed with and without the extended 
boundaries for different boundary conditions. The curves (A) - (D) 
are for non-extended boundaries, while (E) and (F) are for extended 
boundaries. (A), (B), (E) and (F) are for the smaller cell space, 
while (C) and (D) are for the larger cell space. (A), (C), and (E) are 
for T = 0 boundaries, while (B), (D), and (F) are for perfectly insu-
lating boundaries. 

 The two calculations for the extended boundaries are 
essentially identical with each other and to the two calcula-
tions for non-extended boundaries using the larger cell 
space. In this case it is apparent that the boundaries are not 
influencing the calculations. On the other hand, the calcula-
tion for non-extended boundaries with T = 0 boundary con-
ditions, curve (A), gives substantially lower temperatures, 
demonstrating that the boundaries are affecting the result by 
increasing the rate of heat flow to the outer surfaces. Like-
wise, the calculation with non-extended boundaries and 
dT/dn = 0 boundary conditions, curve (B), is also signifi-
cantly affected by the boundaries trapping heat in the system 
and causing larger temperatures than in the other calcula-
tions. Indeed, if the calculation is carried out to longer times, 
the temperature profile of this curve will continue to in-
crease. For this example, accurate results are obtained for 
calculations (C) – (F), but the results with the extended 



72    The Open Optics Journal, 2008, Volume 2 Challener and Itagi 

boundaries and smaller cell space are computed in about 
2.4% of the time of those without the extended boundaries 
but much larger cell space. 

 Next we consider an example for a moving film stack. 
For current hard disc drives, the rotating disc corresponds to 
tangential media speeds of 10 to 50 m/s. The optical spot 
size is Gaussian with a 1/e radius of 25 nm. The thin film 
stack is the same as the first example, and the total power 
absorbed by the medium is 1 mW. We choose a cell space of 
99  99  21 cells and each cell has a lateral area of (5 nm)2. 
The calculation is carried out with time steps of 100 ps for 
1000 steps, which is much longer than necessary to reach the 
steady state response. The temperature profile in the center 
of the track at the top of the recording medium is computed 
in the down track direction for three different medium 
speeds in Fig. (5), and a contour plot of the thermal spot in 
the recording layer is shown in Fig. (6) for a speed of 50 m/s. 
The thermal bloom from the moving medium is relatively 
small, unlike the tear drop shape often found in optical stor-
age media [5]. This indicates that the thermal time constant 
of the medium is fast compared to the motion of the medium 
with respect to the optical spot size. However, the thermal 
spot is relatively large compared to the incident optical spot 
and this limits the storage density of this medium. 

 

Fig. (5). Temperature profile along the track direction for HAMR 
medium at three different rotation speeds. 

 

Fig. (6). Contour plot of the thermal spot in the recording layer for 
a rotation speed of 50 m/s. 

CONCLUSIONS 

 A technique has been described for efficiently computing 
the thermal profile from an optical spot absorbed in a mov-
ing multilayer thin film stack in the near field. By making 
use of the moving frame of reference, the computation can 
be performed relatively quickly while still maintaining accu-
rate boundary conditions. It is shown that a simple three 
layer medium can be designed for heat assisted magnetic 
recording with a relatively fast thermal time constant that is 
suitable for high data rates, but the thermal bloom from the 
optical spot is larger than desired for high storage densities. 
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APPENDIX 1 

 Stability of the Douglas-Gunn approach to the ADI equa-
tions has been discussed in Ref. [3]. We follow their ap-
proach and also simplify the notation with the following 
definitions. 

au
1

2
t vu sin ku         (A1) 

and 

bu
C u( )2

Ku t
1 cos ku( )         (A2) 

where u = x, y, or z. 

 We begin by taking the discrete spatial Fourier transform 
of Eqs. (29) – (31). If the discrete spatial Fourier transform 
of the temperature at point (i,j,k) is defined for each 
wavevector 

kx
(m)

=
2 m

Nx

, m = 0, ...., Nx 1        (A3) 

where Nx is the number of cells along the x axis, as 

Ti, j,k( ) T̂i, j,k          (A4) 

then 

Ti+1, j,k( ) = cos kx + i sin kx( ) T̂i, j,k       (A5) 

and 

Ti 1, j,k( ) = cos kx i sin kx( ) T̂i, j,k .      (A6) 

 The Fourier transforms of Eqs. (29) – (31) are 

1+ bz( )T̂
n+

1

3 = 1 iax iay 2bx 2by bz( ) T̂ n      (A7) 
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1+ iax + bx( )T̂
n+

2

3 = T̂
n+

1

3 + iax + bx( ) T̂ n       (A8) 

and 

1+ iay + by( )T̂ n+1
= T̂

n+
2

3 + iay + by( ) T̂ n .      (A9) 

 Solving for T̂ n+1  in terms of T̂ n gives 

T̂ n+1
=

1 bx by bz axay + bxby

+bxbz + bybz + bxbybz axaybz

+i
axby + aybx + axbz + aybz

+axbybz + aybxbz

1+ iax + bx( ) 1+ iay + by( ) 1+ bz( )
T̂ n .   (A10) 

 To further simplify the equations we can restrict our analy-
sis without loss of generality to motion along the x axis, setting 
ay = 0. The stability criterion for the general update equation 

T̂ n+1
= r + is( ) T̂ n        (A11) 

is 

r + is < 1  or r2
+ s2

< 1 .    (A12) 

 Applying this criterion to Eq. (A10) gives 

4 bx + by + bz( ) 1+ bxby + bxbz + bybz + bxbybz( )
ax

2 1+ 2by + 2bz + 2bybz( )
< 1    (A13) 

which is true for all values of ax. Thus the moving frame 3D 
ADI equations are unconditionally stable. 

APPENDIX 2 

Consider an anisotropic medium with specific heat C, and 
thermal conductivities Kx, Ky, and Kz. Let 

x =
C

4Kx

         (B1) 

y =
C

4Ky

         (B2) 

z =
C

4Kz

.         (B3) 

 Consider a point source given by 

q x, y, z, t( ) = x( ) y( ) z( ) t( ) . The temperature distribu-

tion generated by this source is 

g x, y, z, t( ) =

t
3

2

exp x
2x2

+ y
2y2

+ z
2z2

t
     (B4) 

where 

=
8 x y z

4( )
3

2 C
.         (B5) 

 The temperature distribution G(x,y,z,t) for a Gaussian 
source Q(x,y,x) (t) where 

Q x, y, z( ) = Q0 exp
x2

+ y2
+ z2

r0
2        (B6) 

is 

G x, y, z, t( ) =
z=y=x=

Q x x, y y, z z( )g x, y, z, t( ) dxdydz
     (B7) 

=
Q0
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3

2

exp
x x( )2

r0
2 exp x

2 x2

t
dx

x=

exp
y y( )2

r0
2 exp y

2y2

t
dy
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exp
z z( )2

r0
2 exp z

2 z2

tz=
dz

     (B8) 

= Q0 t
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2
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1
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2 y2
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2
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2
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1

r0
2

exp z
2 z2

t + z
2r0

2

z
2

t
+

1

r0
2

.      (B9) 

 Now let the medium move rectilinearly with respect to 

the source with velocity x̂vx  and let the Gaussian source be 

given by Q(x,y,z) U(t) in the reference frame attached to the 
source where U(t) is the Heaviside unit step function. The 
temperature distribution at time t in the reference frame at-
tached to the source is given by 

T x, y, z, t( ) = G x vxt + vx , y, z, t( )
=0

t
d .   (B10) 

 Thus, 

T x, y, z, t( ) = Q0 t
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= Q0 s

3

2

exp x
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 We now compare this result to that obtained from the 
numerical ADI technique. Consider a Gaussian optical spot 
intensity profile with the functional dependence, 

I(x, y, z) = 1.0 1018( )exp
x2

+ y2
+ z2

r2

W

m3
.    (B13) 

for z < 0 and with r = 100 nm. The medium is moving at a 
speed of 10 m/s relative to the optical spot. There is no heat 
flow out of the top surface. For a reference frame which is 
stationary with respect to the medium the central computation 
space must be rather long to include the entire distance trav-
eled in the specified time interval. In a 1 μs interval the me-

dium travels 10 μm. This can be accommodated by a station-
ary cell space for which the central region of fine discretiza-
tion has 1000  250  57 cells and for which each cell has a 
lateral area of (20 nm)2. The total length of the cell space in 
the central region along the x axis is 20 μm and if the optical 

spot is initially centered on the medium 5 μm from one edge, 

after 1 μs the medium has moved so that the optical spot is 

centered 5 μm from the other edge. The lateral extended 
boundaries are a millimeter from the center of the optical spot. 
The boundary at the bottom surface is only 100 μm from the 
top surface, but this distance is found to be sufficient for accu-
rate results with calculation times of up to 1 μs or more. 

 There are four layers with different vertical dimensions in 
the ADI calculations. The first layer consists of 30 cells, each 
with a vertical thickness of 10 nm. The next layer has nine 
cells, each with a vertical thickness of 100 nm. The third layer 
also has nine cells, each with a thickness of 1000 nm. Finally 
the fourth layer has nine cells, each with a thickness of 10 μm. 
The total thickness of the film stack is thus about 100 μm. The 
thermal conductivity is equal to 1 W/(K m) and the specific 

heat is 1 106 J/(m3 K) for all cells. The time step is 1 ns and 
the calculations are carried out for 1000 time steps. 

 In the moving frame of reference the cell space can be 
made considerably smaller if one is only interested in the tem-
perature profile in the vicinity of the optical spot. For this ex-
ample the calculation in the moving frame of reference has a 
central cell space of 200  200  57 cells. The extended lateral 
boundaries are again a millimeter from the center of the opti-
cal spot. As can be seen in Fig. (7), there is excellent agree-

ment between the stationary and moving frame ADI results 
and the analytical result. The calculation for the moving frame 
was more than five times faster than that of the stationary 
frame, although of course the thermal profile is computed over 
a much smaller cell space. This result demonstrates the valid-
ity of both the extended boundaries and the ADI equations for 
the moving frame of reference. 

 

Fig. (7). Comparison of the temperature rise after 1 μs for a Gaus-
sian optical spot on a half space of isotropic media for the analytic 
and the extended boundary ADI calculations in both the moving 
and stationary frames. 
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