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Abstract: An optical method recently proposed for non-invasive in vivo blood glucose concentration (BGL) 

measurement, named "pulse glucometry", was implemented with three multivariate regression methods, Principal 

Component Regression (PCR), Partial Least Squares Regression (PLS) and Support Vector Machines Regression 

(SVMsR), as well as with a classification method, Support Vector Machines Classification (SVMsC), for carrying out 

calibration. A very fast spectrophotometer provided instantaneously and simultaneously the total transmitted radiation 

spectrum (I ) and the cardiac-related pulsatile component ( I ) superimposed on I  in human fingertips over a wavelength 

range from 900 to 1700 nm with resolution of 8 nm in 100 Hz sampling. From a family of I s including information 

relating to various BGL values, differential optical densities ( OD s (=log(1+ I /I )) were calculated and normalized by 

the OD  values at 1100 nm. Finally, the 2nd derivatives of the normalized OD s served as regressors. Subsequently, 

calibration models from regressors and regressands (the corresponding measured BGL or classified BGL values) were 

constructed with PCR, PLS, SVMsR and SVMsC. Each regression model showed a relatively good result by evaluating a 

5-fold cross validation using total 100 data-sets: Clarke error grid analysis indicated a good correlation in each model 

compared with the measured BGL values, and the SVMsR calibration provided the best plot distributions. Good 

regression models were obtained by these three methods. This study suggests that "pulse glucometry" can produce 

clinically acceptable results when implemented with regression and classification type calibrations, and, through rapid 

BGL assessment, promises to offer a more practical, easier and more convenient way for diabetes screening and health 

care in normal subjects than is possible with existing methods. 

INTRODUCTION 

 Measurement of blood glucose concentration (BGL) has 
long been considered as an essential need for self-care in 
diabetes and for screening in pre-diabetes, as well as for 
health care in normal subjects. For diabetes management in 
particular, frequent measurements of BGL is inevitable [1], 
and thus many kinds of portable devices for self-monitoring 
of blood glucose (SMBG) have been commercialized 
worldwide. However, many of the current SMBG devices 
are based on the user puncturing their skin with a small 
needle or lancet and squeezing the surrounding tissue to 
withdraw a blood sample, and this is a severe limitation; 
frequent monitoring is necessary and the repeated procedure 
of skin puncturing becomes painful and troublesome and, 
furthermore, can cause an infection. 

 Although a non-puncturing type of BGL device, the 
GlucoWatch Biographer, which is based on reverse-
iontophoresis to draw glucose molecules via inner skin [2], 
has been approved by the FDA, its measurement procedure 
can still cause skin irritation after repeated applications [3].  
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Truly non-invasive BGL measurement has therefore been 
most desired and has been explored worldwide particularly 
using optical methods such as surface plasmon resonance 
[4], photo-acoustic technique [5], optical coherence 
tomography [6], diffuse reflectance spectrometry [7], and so 
on [8, 9]. However, despite considerable efforts in these 
developments for more than four decades reliable and 
clinically acceptable measurement methods have not yet 
emerged. The major obstacle to success with in vivo optical 
BGL measurement is the very small in vivo optical signature 
of glucose. Furthermore, certain optical characteristic 
features of biological tissues create significant interference, 
for example: other absorbing species; multiple scatter in 
skin, muscle, and bone; and the strong absorption bands of 
water [10-12]. Consequently, a method to observe only 
blood has long been sought. 

 We have recently focused attention on in vivo 
spectrophotometric measurement in living tissues, with 
analysis to obtain parameters related to blood including 
blood glucose, and have subsequently proposed a novel 
technique named "pulse glucometry". This is a non-invasive 
approach for BGL monitoring based on very high speed near 
infrared spectroscopy, having a sampling rate significantly 
faster than the cardiac cycle [13-15]. 

 In the main, methods of in vivo and in vitro optical 
spectroscopic analysis, including "pulse glucometry", have 
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been implemented with standard chemometric procedures. 
These have utilized multivariate calibration models 
constructed either by simple multiple linear regression 
(MLR) or multiple regression based schemes, such as partial 
least squares regression (PLS) and principal component 
regression (PCR) [16]. MLR, PLS and PCR are generally 
used for pure linear calibration models or linearly-
transformable (nonlinear) calibration. Just recently, through 
developments in the field of multivariate statistical analysis, 
a kernel-based method has appeared with the emergence of 
the support vector machines (SVMs) including the kernel 
trick [17, 18]. This kernel trick is one of several useful 
methods for converting a linear classifier algorithm into a 
nonlinear one. The SVMs method is also currently regarded 
as one of the strongest methods of supervised learning 
applied to classification and regression. 

 This paper deals, firstly, with an attempt to apply the 
nonlinear method, SVMs, to "pulse glucometry" to obtain a 
multivariate calibration regression model. This is then 
compared with our prior use of the PLS method reported 
previously [13, 15] and the conventional PCR. Secondly, the 
classification of BGL levels using SVMs is attempted by 
application to "pulse glucometry." 

MATERIALS AND METHODS 

A. Basic Principle of Pulse Glucometry 

 Details of the previously proposed method of "pulse 
glucometry" are reported elsewhere [13, 15]. Briefly, we 
assume a simplified optical model of biological tissue, 
comprising of three compartments, as shown in Fig. (1): 
arterial; venous; bloodless tissue. The essence of this new 
method is to utilize a blood volume change in a tissue 
segment under optical interrogation, such as a finger, and 
then, with a subtraction process, to remove the influences of 
basal interfering elements such as bone, skin, muscle, water 
and non-pulsatile blood [13]. We perform very rapid 
spectrophotometry in a finger such that the changes in 
optical absorption and scattering properties of the tissue 
produced by cardiac related blood volume pulses can be 
determined accurately. 

 If we use incident radiation at various wavelengths ( ) 
with intensity (I 0) to interrogate the tissue, the transmitted 
radiation intensity, I , can be obtained. This transmitted 
intensity I  contains very small pulsatile changes in intensity 
( I ). These observed pulsatile optical changes are due to 
cardiac related arterial volume changes. The overall optical 
signal obtained is the photoplethysmograpm (PPG). If the 
transmitted intensities at time ti and ti+1 (I  (ti), I  (ti+1)) are 
detected during the same cardiac cycle, we can obtain the 
optical densities at ti (OD  (ti)=log(I o/I  (ti)) and ti+1 (OD  
(ti+1)=log(Io /I  (ti+1)). Hence we can calculate the difference 
between OD  (ti) and OD  (ti+1), ( OD  (ti)=log(I  (ti+1)/I  
(ti))=log(1+ I  (ti)/I  (ti)), where I  (ti+1)=I  (ti)+ I  (ti), as 
shown in the upper-right part of Fig. (2). This has the effect 
of removing the interfering elements to acquire only the 
change in intensity due to the pulsating blood volume. 

 When we choose I  (ti) as a pulsatile component I  for 
different wavelengths, 1, 2, --- n, OD

 
can be calculated 

as a function of . If such spectra are derived at different 
BGL levels (BGLi), we can obtain a family of spectra, as 

schematically shown in the right part of Fig. (2), which may 
then be used for multivariate analyses. Calibration models 
constructed by several multivariate analyses are applied for 
spectrophotometric BGL measurements: Measured spectra 
of OD

 
vs  for the unknown BGL derived from in vivo 

measurements (see the left lower part of Fig. (2)) on a finger 
can be compared with the derived models and predicted BGL 
values thereby calculated. 

 

Fig. (1). Simplified optical model of living tissue. 

B. Experimental Setup 

 For the present study the measurement system consisted 
of a light source (halogen lamp: maximum power 150 W), an 
optical fiber of 10-mm diameter for the incident radiation 
and a single low-OH optical fiber of 1.2-mm diameter for 
collecting the transmitted radiation, a spectrometer 
(polychromator, M25-TP; Bunkoh-Keiki Co. Ltd., Japan), a 
linear, liquid nitrogen cooled ( 50 to 100 °C), InGaAs 
photodiode-array (multi-photodetector, OMA V: 512-
1.7(LN); Princeton Instruments Co., USA), and a 
conventional personal computer with an appropriate 
interface. Using this system, the transmitted radiation 
intensity (I ) over the wavelength ( ) range from 900 to 1700 
nm was measured with a resolution of better than 8 nm and 
with 16-bit digitization. The maximum spectrum sampling 
speed achievable with this system is 1800 spectra/s, but in 
the experiment described here we adopted a speed of 100 
spectra/s, which was sufficient to obtain accurately the 
cardiac-related transmitted intensity change superimposed on 
the intensity (I ) ( I : i.e., photoplethysmographic pulsation) 
over this wavelength range. 

C. Subjects and Experimental Procedures 

 In order to carry out in vivo measurements, oral glucose 
tolerance tests (OGTT) were carried out to create varying 
BGL levels in 10 healthy volunteers (22 to 59 years old; 8 
males and 2 females). Prior to the experiments, the local 
ethics committee approved the experimental procedures and 
informed consent was obtained from each subject. The 
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subjects were asked to abstain from food and alcohol from 9 
p.m. on the previous day until the end of the experiment on 
the next morning. The experiment began at 9 a.m., in a room 
maintained at a temperature of 25 ˚C. During the experiment, 
the subjects were also requested to sit quietly in a chair to 
undergo the test. 

 In this study, radiation intensity measurements were 
made in the left index fingertip at 10 min intervals before 
and after oral uptake of glucose solution (75 g/225 ml, 
Trelan-G75, Shimizu Seiyaku, Co. Ltd., Japan) for a study 
period of 100 or 120 min. During the optical measurement, 
the subject’s left hand was held horizontally at heart level. 
Immediately after each optical measurement blood samples 
(about 3 ml) were collected from the cephalic vein of the left 
forearm and analyzed by an automatic blood analyzer (DRI-
CHEM 7000, Fujifilm Medical Co. Ltd., Japan) to obtain the 
reference (measured) BGL values (regressand for calibration 
models). The BGL values obtained in the present study 
ranged from 100.7 to 246.3 mg/dl (5.59-13.7 mmol/l). 

 For the optical intensity measurements, the fingertip was 
placed carefully in an adjustable space between the ends of 
the transmitting and detecting fibers so as to ensure gentle 
contact with the skin, as shown in the left upper part of Fig. 
(2). The intensity measurements were made for about 20 to 
30 s (corresponding 20 to 30 cardiac pulses), and stable and 
almost constant intensity signals (I  and I ) for 3 to 5 
successive cardiac beats were used as analytical data. 

 

D. Signal Pre-Processing 

 To improve further the signal-to-noise ratio (S/N) of the 
pulsatile intensity change ( I ) superimposed on the I  signal 
over the wavelength range from 900 to 1700 nm, the 
Savitzky-Golay filtering method, which is used generally for 
signal pre-processing, was applied for both wavelength ( ) 
and time (t). Parameters of the Savitzky-Golay filterers were 
empirically selected; the polynomial order was 2 and the 
frame size was 3 for the wavelength direction and the 
polynomial order 2 and the frame size 15 for the time-
sequential direction. With these parameters an S/N of more 
than 25 dB was obtained. 

 The mean OD
 
spectrum calculated from the 3 to 5 

successive cardiac beats was used for multivariate analyses, 
and a family of these spectra for different BGL levels 
(known BGL values) served as the data-set. The OD

 

spectra thus obtained were then normalized ( OD norm) using 
the OD  value at 1100 nm as 1.0 together with its minimum 
value as 0 in each spectrum [13]. Finally, the second order 
difference spectra (

2
OD norm/

2
; =8 nm) were derived 

to reject baseline fluctuations of spectra. This second order 
difference spectral method is usually applied in the field of 
chemometrics, in order to remove low frequency sources of 
variations that are not related to solution concerned [19]. In 
the calculation of the spectra  was equivalent to the 
wavelength resolution of the measurement system (8 nm). 

 The processing of these data was carried out using 
MATLAB

TM
 version 7.x software and a conventional 

 

Fig. (2). Measurement setup (left upper part), procedures for constructing multivariate regression calibration models (right part), and 

prediction of BGL using optical measurement with unknown BGL (left lower part) based on "pulse glucometry". 
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personal computer (Dimension 9100 with a CPU Pentium D 
830 and 2GB memory, DELL Inc., Japan). 

E. Multivariate Calibration Regression and Classification 
Models 

 Using the data-sets of the difference spectra (regressor) 
and the corresponding known (measured) BGL values 
(regressand), two linear regression methods, PCR and PLS, 
and a non-linear regression method, SVMsR, were applied to 
create multivariate calibration models. Table 1 shows 
features of each multivariate regression method. 5-fold 
cross-validation was introduced to evaluate the calibration 
models. In order to obtain the resultant calibration model, 
parameters on each regression were searched repeatedly. 

 Then, the classification model constructed by SVMsC 
was attempted for the data-sets described above. Firstly, the 
known BGL levels were classified into three classes on the 
basis of criteria used for diabetes screening [20]. In this 
study, optical data 

2
OD norm/

2
 were classified by SVMsC 

in the case of fasting blood glucose (FBG) as "Normal class 
(BGL < 110 mg/dl)", "Impaired Fasting Glycaemia (IFG) 
class (110  BGL  126)" or "Diabetes Mellitus (DM) class 
(BGL > 126)". On the other hand, data were classified in the 
case of 2-hour postprandial blood glucose (PBG) as "Normal 
class (BGL < 140)", "Impaired Glucose Tolerance (IGT) 
class (140  BGL  200)" or "Diabetes Mellitus class (BGL 
> 200)". Then, 5-fold cross-validation was also applied to 
evaluate the calibration models. Parameters on each 
classification were also searched repeatedly. 

 To implement these calibration procedures, the software 
"R" version 2.3.1 and the kernlab module version 08-2 for 
the software "R" [21-23] were used on a conventional 
personal computer. 

RESULTS 

 Obtained optical data containing noise and/or artifact 
were rejected manually and then 100 data-sets were selected. 
Fig. (3) shows an example of the differential optical density 
((a): OD ), normalized OD

 
((b): OD norm), and the 2

nd
 

derivatives of OD norm spectrum ((c): 
2

OD norm/
2
) 

obtained in the fingertip of a healthy female subject. Using a 
family of these spectra determined in all subjects studied, 
multivariate calibration models were constructed and 
evaluated. Resultant parameters for each method were 
obtained as follows. For PCR, the 1st to 20th principal 
components were introduced into the regression model. For 
PLS, the number of latent variable was reduced to 15 against 
a data dimension (dimension of regressor) of 100. For PCR 
the parameter determination was done by evaluating models 
for the first n principle components with the parameter n 
from 1 to 100. Then, the best parameter n = 20 was selected 
by counting the number of plots falling within Region A of 
Clarke error grid. In the parameter determination of PLS, the 
models with latency variables from 1 to 100 were evaluated, 
and the variable of 15 was selected in the same way. For 
SVMsR, the ANOVA RBF (radial basis function) kernel 
with a degree of 0.01 and sigma of 1 was used in training 
and  in Vapnik's insensitive-loss function was 0.123. For 
SVMsC, the ANOVA RBF kernel with degree of 0.01 and 
sigma of 1 was used in training and  in Vapnik's insensitive-
loss function was 0.15. Table 1 summarizes these 
multivariate analysis methods and the obtained parameters. 

 Fig. (4) includes scatter plots showing a comparison of 
the estimated and measured BGL values by Clarke error grid 
analysis. As shown in this diagram, almost all data points 
were within clinically acceptable regions [24], that is, the 
regions A and B in each calibration. Among them, the 
SVMsR calibration model provided the best plot 
distributions (Region A: 84/100, Region B: 16/100 and 
Region C-E: 0/100) compared with the PCR model (Region 
A: 78/100, Region B: 22/100 and Region C-E: 0/100) and 
the PLS model (Region A: 80/100, Region B: 19/100 and 
Region C-E: 1/100). Therefore, it might reasonably be 
suggested that SVMsR can be used for constructing a 
multivariate calibration model as part of the procedure of 
implementing "pulse glucometry". Table 2 shows the result 
using the nonlinear classification model (SVMsC). In the 
case of FBG (Table 2a), the accuracy rate (and the 
probability of misclassification) was 2/4 (2/4) for Normal, 
3/11 (8/11) for IFG, and 80/85 (5/85) for DM. In the case of 

Table 1 Summary of Multivariate Regression and Classification Methods and Parameters Used in the Present Study 

 

Aspects on multivariate analysis 

Methods 
Regression/Classification Linear/Non Linear Calculation Time Parameters Values 

PCR Regression Linear Short Applied Principal Components 1st to 20th 

PLS Regression Linear Short Number of Latency Variable 15 

Kernel ANOVA RBF 

Kernel Parameter Degree 1 

Kernel Parameter Sigma 0.01 
SVMsR Regression Non Linear Intermediate 

 in Vapnik's Insensitive Loss Function 0.123 

Kernel ANOVA RBF 

Kernel Parameter Degree 1 

Kernel Parameter Sigma 0.35 
SVMsC Classification Non Linear Intermediate 

 in Vapnik's Insensitive Loss Function 0.05 
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PBG (Table 2b), these were 13/23 (10/23) for Normal, 53/69 
(16/69) for IGT and, 4/8 (4/8) for DM. Additionally, the 
mean square errors of each calibration model were as 
follows: PCR; 28.15 [mg/dl], PLS; 31.54 [mg/dl] and 
SVMsR; 28.27 [mg/dl]. 

 

Fig. (3). Optical data obtained over the wavelength range from 900 

nm to 1700 nm by the very-fast NIR spectrophotometric system 

obtained in the fingertip of a healthy female subject: (a) differential 

optical density ( OD ), (b) normalized differential optical density 

( OD norm), and (c) the 2nd derivatives of normalized optical 

density spectrum (
2

OD norm/
2
). 

DISCUSSION 

 In the present study, in order to predict blood glucose 
(BGL) levels using “pulse glucometry”, we introduced two 
linear (PCR and PLS) and one nonlinear (SVMsR) 
calibration methods. Our results indicated that there were no 
significant differences in the performance of these three 
calibration methods, as shown in the Clarke error plots (see 
Fig. 4), although the SVMsR model appears to produce a 
better regression than the others. However, it is not to say 
that the regression by SVMsR is superior to the other 
methods, since each has strengths and weaknesses. It is the 
case that the PLS appraoch is one of the most widely used 
regression techniques in the chemometrics field [16]. From a  
 

 

Fig. (4). Scatter diagrams evaluated by 5-fold cross validation 

showing comparison of measured and predicted BGL values by 

Clarke error grid analysis: (a) PCR, (b) PLS, and (c) SVMsR. 
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theoretical viewpoint, it can be said that the conventional PLS is 
only applicable to a linear model. If nonlinear elements are 
involved in a system then the PLS based calibration cannot 
avoid erroneous factors originating from the nonlinearity. At the 
same time, also from the theoretical viewpoint, the SVMsR can 
give solutions for nonlinear problems [17, 18]. In fact, there 
have been some studies attempting to compare the performance 
of the SVMsR with the PLS for spectral regression applications 
in the chemometrics field and these have, in fact, pointed out the 
superiority of the SVMsR over the PLS [25, 26]. In their work 
on powdered milk analysis using near infra-red 
spectrophotometry, Borin et al. [26] clearly showed that starch, 
whey protein and sucrose concentrations could be accurately 
predicted by the SVMsR method. Their model gave clearly 
superior results for calibration sets than those derived by the 
PLS. In contrast, taking the present consistent results of majority 
(around 80%) of measurements within region A of the Clarke 
error plot into considering, it is demonstrated that the optical 
technique “pulse glucometry” provides clinically promising 
BGL measurements. 

 It is relevant to consider the well-known method of ‘pulse 
oximetry’ which is used for in vivo measurement of blood 
oxygenation. This method also uses a photoplethysmographic 
technique to measure the optical intensity corresponding to 
arterial blood volume pulsations, in this case at two wavelengths 
[27]. A simple ratio calculated from the transmitted or reflected 
optical intensities and their pulsatile components at two 
wavelengths is used to determine the relative proportions of the 
two most significant chromophores, oxy- and 
deoxyhemoglobin. In this method, the processing to calculate 
the ratio can be considered as a linearization function. Similarly, 
in our "pulse glucometry" approach, the processing of OD

 

normalized to
 

OD norm can also achieve such linearization. It is, 
in general, difficult to determine the most appropriate 
linearizing method and, in fact, we introduce a nonlinear 
problem solver, SVMsR, in this study. 

 It is perhaps unrealistic at present to expect that non-
invasive BGL measurement could be a more accurate 
alternative to invasive methods. From the standpoint of practical 
use, the classification type calibration (qualitative in nature), 

attempted in the present study, might be valuable to consider in 
favour of the regression type calibration (providing quantitative 
BGL levels). At present, diabetes sufferers seem compelled to 
rely on frequent and long-term finger-pricking for the control of 
BGL levels using an SMBG device. The classification approach 
using a non-invasive method like “pulse glucometry” could 
therefore be a viable alternative available for those with 
established diabetes, for pre-diabetes screening, as well as for 
health care in normal subjects, offering an easier and more 
convenient way of achieving rapid self BGL monitoring during 
normal daily life. It is also notable that, in the field of urine 
glucose test strips, rough quantification of urine glucose levels 
has been successful and is widely utilized. Needless to say, 
regression type calibration is necessary for accurate 
management of diabetes, such as self-adjustment of insulin 
dosage. The present study therefore deals with both possible 
approaches of the quantitative and qualitative BGL assessment 
using multivariate calibration and classification models. The 
present classification result seems to be good for groups with a 
large number of subjects; DM group in the case of FBG and 
IGT group in the case of PBG. Since the numbers of data sets in 
this study were not sufficient for the groups of Normal and IFG 
in FBG and for those of Normal and DM in PBG, it is at present 
difficult to lead make firm conclusions on the adequacy of 
classification. Further investigations will be needed to obtain an 
appropriate number of data sets so as to allow a statistical 
analysis. 

 Since the present study is a first stage to validate the 
applicability of multivariate calibration and classification 
methods to the newly proposed “pulse glucometry”, further 
work is still required to obtain comprehensive optical data in a 
large group of diabetic subjects and also to assess the full 
potential of this method for clinical and research purposes. 
Currently, OGTT is recommended for evaluation of patients in 
whom diabetes is still strongly suspected but who have normal 
FPG (fasting plasma glucose) or IFG (impaired fasting glucose) 
[28]. Therefore, diabetes mellitus patients were not selected as 
subjects in this preliminary phase study. In the near future, 
however, we will plan a safe experimental procedure for 
diabetic patients. In addition, the present experimental setup is 
laboratory-based and thus further development is needed to 

Table 2. Results of Classification Type Calibration by SVMsC 

 

(a) In the Case of Fasting Blood Glucose (FBG)  

Measured BGL Value (mg/dl) 

  
110(Normal) 110 126 (Impaired Fasting Glycaemia) 126 (Diabetes Mellitus) 

110(Normal) 2 0 0 

110 126 (Impaired Fasting Glycaemia) 0 3 5 

C
la

ss
if

ie
d
 

B
G

L
 (

m
g
/d

l)
 

126 (Diabetes Mellitus) 2 8 80 

(b) In the Case of 2-Hour Postprandial Blood Glucose (PBG)  

Measured BGL value (mg/dl) 

  
140(Normal) 140 200 (Impaired Glucose Tolerance) 200 (Diabetes Mellitus) 

140(Normal) 13 12 1 

140 200 (Impaired Glucose Tolerance) 10 53 3 

C
la

ss
if

ie
d
 

B
G

L
 (

m
g
/d

l)
 

200 (Diabetes Mellitus) 0 4 4 
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design a small portable device using several LEDs as light 
sources which will be suitable for use by patients and normal 
subjects to achieve self-monitoring of BGL. 

CONCLUSION 

 A recently proposed non-invasive in vivo BGL optical 
measurement technique named "pulse glucometry" was 
combined with three types of regression analyses (PCR, PLS 
and SVMsR) and a classification analysis (SVMsC) to construct 
multivariate calibration models. The present method provides 
clinically promising BGL measurements with multivariate 
regressions. Also, a proper classification model was obtained 
using the nonlinear method, SVMsC. These results provide 
preliminary evidence that "pulse glucometry" with SVMsR can 
be applied effectively to predict BGL levels non-invasively and 
a classification type calibration could be applicable for diabetes 
screening and health care in normal subjects in a more practical, 
easier and more convenient way through rapid BGL assessment. 
Further comprehensive studies will need to be carried out in 
order to investigate an optimal construction of multivariate 
regression and classification models including data from 
diabetic subjects as well as to design a compact BGL device 
based on “pulse glucometry” for practical use. 
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