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Abstract: In this paper, we give a review of the tensor method for treating the propagation of scalar and electromagnetic 
Gaussian Schell-model (GSM) beams. Partially coherent complex curvature tensor is introduced to describe a scalar 
astigmatic partially coherent GSM beam with twisted phase (i.e., twisted anisotropic GSM beam). A tensor ABCD law for 
treating the propagation of scalar twisted anisotropic GSM beam through a paraxial astigmatic optical system is derived. 
The tensor method is then applied to treat the propagation of a scalar twisted anisotripic GSM beam through an apertured 
optical system, fractional Fourier transform optical system, dispersive and absorbing media, turbulent media. 
Furthermore, we applied the tensor method to treat the propagation of an electromagnetic GSM beam. Propagation 
formulae for an electromagnetic GSM beam passing through a paraxial astigmatic optical system in free space and in 
turbulent atmosphere are derived. The propagation properties of an electromagnetic GSM beam in a Gaussian cavity and 
in turbulent atmosphere are also reviewed. 
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INTRODUCTION 

 Partially coherent beams have important applications in 
free-space optical communications, inertial confinement 
fusion, optical imaging, optical projection, laser scanning, 
photography, nonlinear optics and optical trapping [1-13]. In 
the past decades, especially since Wolf first found that a 
partially coherent beam undergoes a spectral shift during its 
propagation in free space [14-16], partially coherent beams 
have been extensively studied both in experiment and theory.  

 Conventionally scalar partially coherent beams are 
characterized by a second-order correlation function of the 
electric field which depends on two spatial arguments and 
the oscillation frequency and being called the cross-spectral 
density (CSD) [1]. Gaussian Schell-model (GSM) beam is a 
typical partially coherent beam, whose spectral density and 
spectral degree of coherence have Gaussian shapes [17-22]. 
By scattering a coherent laser beam from a rotating grounded 
glass, then transforming the spectral density distribution of 
the scattered light into Gaussian profile with a Gaussian 
amplitude filter, a GSM beam can be generated [17, 22]. 
GSM beams can also be generated with specially synthesized 
rough surfaces, spatial light modulators and synthetic 
acousto-optic holograms (c.f. [23]).  

 A more general partially coherent beam can possess a 
twist phase, which differs in many respects from the 
customary quadratic phase factor. Simon and Mukunda first 
introduced the partially coherent twisted Gaussian Schell-
model (GSM) beam opening up “a new dimension” in the 
area of partially coherent fields [24-26]. Unlike the usual 
phase curvature, the twist phase is bounded in strength due 
to the fact that the cross-spectral density function must be  
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nonnegative and, moreover, it is absent in a coherent 
Gaussian beam [24-28]. The twist phase has an intrinsic 
chiral or handedness property and is responsible for the 
rotation of the beam spot on propagation [24-30]. An essen-
tial aspect of the twist phase is that it is intrinsically two-
dimensional, and it cannot be separated into a sum of one-
dimensional contributions [24-30]. Experimental observation 
of the twisted GSM beam has been reported in Ref. [30]. 
Later the studies relating to coherent-mode decomposition 
[31], the analysis of the transfer of radiance [32], radiation 
efficiency [33], the orbital angular momentum [34] of the 
twisted GSM beams have been carried out.  

 The conventional method for treating the propagation of 
GSM and twisted GSM beams is Wigner-distribution func-
tion [24-28, 35, 36]. Lin and Cai have introduced a con-
venient alternative tensor method for treating propagation of 
GSM and twisted GSM beams [37]. With the help of the 
tensor method, paraxial propagation of the GSM and twisted 
GSM beams through free space, paraxial optical systems, 
dispersive and absorbing media, turbulent atmosphere, have 
been then studied in details [38-46]. The influence of the 
twist phase on the second-harmonic generation by a twisted 
GSM beam has been investigated [11]. Ghost imaging with 
GSM and twisted GSM beams was examined recently [6, 
47].  

 Polarization is another important property of a laser 
beam. In the past decades the two important properties of 
light waves: coherence and polarization were studied separa-
tely (cf. [1], [48]). Only a few years ago it was found that the 
degree of polarization of a stochastic electromagnetic beam 
(i.e., partially coherent and partially polarized beam) may 
change on propagation, and such changes depend on the 
coherence properties of the source of the beam [49-51]. The 
electromagnetic GSM beams (also called partially coherent 
and partially polarized GSM beams or vectorial GSM 
beams) were introduced theoretically as the natural extension 
of the scalar GSM beams [52-55]. In the past several years, 
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electromagnetic GSM beam has been investigated widely 
due to its importance in theories of coherence and 
polarization and in some applications, e.g. free-space optical 
communications [56-71]. Several methods have later been 
proposed for their synthesis [56, 57]. The realizability condi-
tions, i.e. conditions that the parameters of the source should 
satisfy to produce a physically realizable field, have also 
been established for electromagnetic GSM beam [58, 59]. 
Propagation of electromagnetic GSM beams through free 
space, turbulent atmosphere, human tissue and gradient-
index fiber have been extensively studied [60-71]. Cai and 
co-workers have applied the tensor method to obtain the 
analytical propagation formulae for electromagnetic GSM 
beams passing through paraxial ABCD optical system in free 
space and in turbulent atmosphere [72-74], and investigated 
the evolution properties of electromagnetic GSM beam in 
dispersive media and in resonators [75-78]. Furthermore, 
they applied electromagnetic GSM beam for Lidar systems 
in turbulent atmosphere with the derived formulae [79]. With 
the help of tensor method, twist phase-induced polarization 
changes in electromagnetic Gaussian Schell-model beams 
were studied recently [80]. 

 In this paper, we review our work done about the 
propagation of scalar and electromagnetic GSM beams by 
introducing the convenient tensor method.  

PARTIALLY COHERENT COMPLEX CURVATURE 
TENSOR AND TENSOR ABCD LAW 

 The cross-spectral density of a scalar twisted anisotropic 
GSM beam is expressed as [24-31] 
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μ  is a scalar real-valued twist factor with inverse length 

dimension. 

 Eq. (1) can be expressed in following alternative tensor 
form [37] 
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1 is a 4 x 4 matrix, called partially coherent complex 
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 If we set 
 
μ = 0  in Eq. (4), Eq. (3) can be used to describe 

an anisotropic GSM beam. If 
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where I is a 2 x 2 unit matrix, 
 I

 and 
g

 denote the 

transverse beam width and spectral coherence width, 
respectively, Eq. (3) can be used to describe a twisted 
isotropic GSM beam. If we set μ = 0 in Eq. (5), Eq. (3) can 
be used to describe a isotropic GSM beam. 

 After propagation through a general astigmatic (i.e., 
nonsymmetrical) ABCD optical system, the cross-spectral 
density of the GSM beam in the output plane is expressed as 
follows [37] 
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with A, B, C and D being the 2 x 2 sub-matrices of the 
astigmatic ABCD optical system. Symbol “*” in Eq. (8) 
which denotes the complex conjugate is required for a 
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general optical system in the presence of loss or gain, 
although it does not appear in Eq. (13) of Ref. [37]. 

 In practice, most optical systems are slightly misaligned 
more or less, and it is necessary to take the misalignment of 
the optical systems into consideration. Following [38], after 
propagation through a stigmatic (i.e., symmetrical) ABCD 
optical system, the cross-spectral density of the GSM beam 
in the output plane is expressed as follows 
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where 
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1  is related with 
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ABCD law [38] 
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A, B, C and D take the following form 
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 For forward-going optical elements, 
  T

 is chosen for 

“+”sign; for backward-going ones, 
  T

 is chosen for “-”sign. 

Eqs. (6) and (9) can be used conveniently to study the 
propagation of isotropic or anisotropic GSM beam with or 
without twist phase through paraxial aligned and misaligned 
ABCD optical systems. With these formulae, the focusing 
properties and spectral shift of GSM beam were investigated 
in [39-41]. 

PROPAGATION OF A GSM BEAM THROUGH 
APERTURED OPTICAL SYSTEM 

 Aperture is commonly encountered in practical optical 
system, and it has been found some interesting phenomena 
such as focal shift and focal switch [81, 82], spectral shift 
and spectral switch [83], are closely related to the aperture 
size. The typical method for treating the propagation of 
partially coherent light through an apertured optical system 
is the time-consuming numerical integration. Thus it is 
important and interesting to derive analytical propagation 
formulae for a GSM beam passing through apertured optical 
system.  

 Following [84], the hard aperture function of a circular 
aperture with radius a1 can be expanded as the following 
finite sum of complex Gaussian functions 
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where 
m
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computation, a table of
m
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After some arrangement, we can express 
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here “*” denotes the complex conjugate. Substituting Eqs. 
(3) and (19) into the generalized Collins formula, we obtain 
following analytical propagation formula for a GSM beam 
passing through an circularly apertured ABCD optical 
system [42] 
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 In a similar way, we obtain following analytical 
propagation formula for a GSM beam passing through a 
rectangulary apertured ABCD optical system [42] 
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with 
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directions. Under the condition of 
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, Eq. 

(21) or (23) reduces to Eq. (6), and Eq. (22) or (25) reduces 
to Eq. (7). 

 As a numerical example, we calculate in Fig. (1) the 
normalized intensity (cross line, y=0) of a twisted 
anisotropic GSM beam at z = 60mm after passing through a 
square aperture (

1 1
a b= ) in front of a thin lens with focal 

length 50f mm= (located at z = 0) versus different values of 
aperture widths by using analytical formula (solid line) and 
by direct numerically integration (dots). We choose the 
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as those in Ref. [84] with M=N=10. From Fig. (1), we can 
find that the simulation results calculated by analytical 
formula are in a good agreement with those obtained by 
numerical integration, except for some slight deviations as 
aperture widths increase. Such deviations increases 
dramatically when M and N decrease from 10 to a smaller 
value, while almost don’t change when M and N increase 
from 10 to a larger value, thus M=N=10 is necessary and 

 

Fig. (1). Normalized intensity (cross line, y=0) of a twisted anisotropic GSM beam at z=60mm versus different values of aperture widths 
[42]. 
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sufficient. Our analytical formula is very fast for calculation 
while the direct numerical integration is very time-
consuming. It takes 75s to calculate the solid lines by 
analytical formula, while it takes over 20 hours to calculate 
the dots by numerical integration using the algorithm named 
successive adaptive Simpson rule with the truncation error 

assumed to be 10
6 . One can also see from Fig. (1) that the 

influence of the aperture on the irradiance distribution 
gradually disappears as aperture widths increase. In 
conclusion, the analytical propagation formula avoids time-
consuming numerical integration and provides a convenient 
and effective way for studying the propagation and 
transformation of a partially coherent GSM beam through an 
apertured paraxial optical system. 

FRACTIONAL FOURIER TRANSFORM FOR A GSM 
BEAM: THEORY 

 The fractional Fourier transform (FRT) is the generali-
zation of the conventional Fourier transform, which was first 
introduced into optics by Ozaktas, Mendlovic and Lohmann 
in 1993 [85, 86], and has been extensively studied due to its 
important applications in signal processing, optical image 
encryption, beam shaping and beam analysis [87,88]. In this 
section, we introduced the tensor method to treat the FRT for 
a GSM beam. 

 The two types of optical system for performing the FRT 
are shown in Fig. (2). Assume a stationary polychromatic 
source field 

   
E(r) . The FRT achieved by a thin lens system 

under paraxial approximation performs the following 
operation [86]:  
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 After some arrangement, Eq. (28) can be expressed in 
following alternative tensor form [43] 
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 Substituting Eq. (3) into Eq. (29), we obtain (after some 
vector integration and tensor operation) [43] 

 

Fig. (2). Optical system for performing the FRT. (a) one lens system, (b) two lenses system [86]. 
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 Eq. (31) is the analytical propagation formula for a GSM 
beam passing through the FRT optical system, and Eq. (32) 
is the equivalent tensor ABCD law for a GSM beam 
performing a FRT. 

FRACTIONAL FOURIER TRANSFORM FOR A GSM 

BEAM: EXPERIMENT 

 Now we introduced the experimental observation of FRT 
for a isotropic GSM beam in this section. Fig. (3) shows our 
experimental setup for realizing the FRT for a GSM beam. A 
focused laser beam generated by a He-Ne laser 
(  = 632.8nm ) is used to illuminate a rotating ground-glass 
disk, and the transmitted light can be considered as a 
partially coherent light with Gaussian statistics. A small 
circular aperture (diameter  d 1.2cm ) located behind 
ground-glass disk is used to select a portion of the scattered 
light, and a Gaussian amplitude filter located behind the 
aperture is used to transform the intensity distribution of the 
partially coherent light into Gaussian distribution. The 
transmitted beam behind the Gaussian amplitude filter can be 
approximately regarded as a isotropic GSM beam, and we 
take the transmitted light just behind the Gaussian amplitude 
filter as the light source in the input plane.  

 The intensity distributions in the source plane and the 
FRT plane are measured directly by a CCD (DXM1200F), 
and the corresponding software for CCD is supplied by 
Nikon corporation. Fig. (4) shows our experimental results 
of the intensity distribution and the corresponding 
normalized intensity distribution at cross line y=0 in the 
input plane. In Fig. (4b), the dotted line is the experimental 
result and the solid line is the result of Gaussian fit for the 
experimental data. One can see from Fig. (4) that the 
intensity distribution in the input plane agrees well with the 
Gaussian distribution and the transverse spot width 

  I 0
2mm . We use the coincidence optical system similar 

to Fig. (3) of Ref. [89] to measure the spectral degree of 
coherence of partially coherent beam. The detailed principle  
 

 

(a) 

 
(b) 

Fig. (4). Experimental results of (a) the intensity distribution, and 
(b) the corresponding normalized intensity distribution at cross line 
y=0 in the input plane (dotted line). The solid line is a result of 
Gaussian fit [90]. 

for measuring the spectral degree of coherence can be found 
in Ref. [89]. Fig. (5) shows our experimental result (dotted 
line) of the modulus of the square of the spectral degree of 

coherence 
  
| g

2
x

1
x

2( ) |  (along 
  
x

1
x

2
) for the partially 

coherent beam in the input plane and the corresponding 
result of the Gaussian fit (solid line) for the experimental 
data. One sees from Fig. (5) that the spectral degree of 
coherence is also of Gaussian distribution and the coherence 

width 
  g0

0.079mm . Thus, the partially coherent beam in 

the input plane can be approximately regarded as a isotropic 
GSM beam. By varying the focused beam spot on the 
ground-glass disk, we can control the coherence of the 
generated GSM beam in the input plane. 

 

Fig. (3). Experimental setup for observing the FRT for a GSM beam [90]. 
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Fig. (5). Experimental result of the modulus of the square of the 
spectral degree of coherence 
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 Fig. (6) shows the experimental results of the intensity 
distributions and the corresponding normalized intensity 
distributions (dotted lines) at cross line v = 0 in the FRT 
plane for different fractional order p with f = 40cm. For 
comparison, the corresponding theoretical results (dashed 
line) and curves of Gaussian fit for experimental results 
(solid line) are also shown in Fig. (6). Fig. (7) show the 
experimental results of the modulus of the square of the 

spectral degree of coherence 
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) for 

the partially coherent beam in the FRT plane for different 
fractional order p. For comparison, the corresponding 
theoretical results (dashed line) and curves of Gaussian fit 
for experimental results (solid line) are also shown in Fig. 
(7). One finds from Figs. (6 and 7) that both intensity 
distribution and spectral degree of coherence in the FRT 
plane have Gaussian distributions. The beam width and 
coherence width depends on the fractional order p. The 

 

Fig. (6). Experimental results of the intensity distributions and the corresponding normalized intensity distributions (dotted lines) at cross 
line v=0 in the FRT plane for different fractional order p (a) p=0.44 (b) p=0.60 (c) p=0.68. The solid lines are the corresponding results of 
Gaussian fit for the experimental results and the dashed lines are the corresponding theoretical results [90]. 
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experimental results also agree reasonably well with the 
theoretical results. Thus the tensor method and derived ana-
lytical formulae provide an effective and reliable way for 
analyzing the properties of a GSM beam in the FRT plane. 

 With the help of tensor method, we have also derived the 
analytical propagation formulae for a GSM beam passing 
through a truncated FRT optical system [91], and we have 
carried out experimental observation of the truncated FRT 
for a GSM beam. The experimental results are consistent 
with the theoretical results. Our results show that initial 
source coherence, fractional order, and aperture width (i.e., 
truncation parameter) have strong influences on the intensity 
and coherence properties of the partially coherent beam in 
the FRT plane. When the aperture width is large, both the 
intensity and the spectral degree of coherence in the FRT 
plane are of Gaussian distribution. As the aperture width 
decreases, the diffraction pattern gradually appears in the 
FRT plane, and the spectral degree of coherence becomes of 
non-Gaussian distribution. The truncated FRT optical system 
provides a flexible way to control the intensity distribution 
and coherence properties of partially coherent beam. 

PROPAGATION OF A GSM BEAM THROUGH 
DISPERSIVE AND ABSORBING MEDIA 

 Supposing that light beam propagates through the media, 
which occupies the half space    z > 0 . The diffraction 

integral formula for a beam passing through the media reads 
[92]:  

   
E(ñ

1
) =

ik

2 z
E(r

1
) exp ikl( ) dr

1
,   (33) 

where
    
k = k

0
n( ) = n( ) / c  is the wavenumber in the 

medium, 
   
n( )  is the refractive index of the medium that is 

generally complex, c is the speed of light in vacuum, 

    
k

0
= / c  is the wavenumber in free space. l is the 

Hamiltonian’s point characteristic function (or called eikonal 
function) between the incident and output planes, given by 
[92]: 

   
l = l

0
+

1

2z
(r

1

2 2r
1

ñ
1
+ ñ

1

2 ) ,  (34) 

here 
0

l  is the optical path along axis.  

 Using Eq. (33), we can get the generalized diffraction 
integral formula for the cross-spectral density of partially 
coherent beam in dispersive and absorbing media as follows 
[9] 

   

W ñ
1
, ñ

2( ) =
kk

*

4 2
z

2
W r

1
,r

2( )exp
ik

2z
(r

1

2 2r
1

ñ
1
+ ñ

1

2 )

                    exp
ik

2z
(r

2

2 2r
2

ñ
2

+ ñ
2

2 ) dr
1
dr

2
,

 (35) 

 

Fig. (7). Experimental results of the modulus of the square of the spectral degree of coherence 
  
| g

p

2
u

1
u

2( ) |  (along 
  
u

1
u

2
) for the partially 

coherent beam in the FRT plane for different fractional order p (a) p = 0.44 (b) p = 0.60 (c) p = 0.68. The solid lines are the corresponding 
results of Gaussian fit for the experimental results and the dashed lines are the corresponding theoretical results [90]. 
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 Eq. (35) can be express in following alternative tensor 
form 

    

W(ñ) =
exp ikl

0
ik l

0( )
2 det(B)

1/2
W (r)

         exp r
T
B

1
r 2r

T
B

1ñ + ñT
B

1ñ( ) dr

 (36) 

 For the convenience of integration, we express Eq. (1) in 
following alternative tensor form 

    
W r( ) = G

0
exp r

T
M

1

1
r( ) ,  (37) 

where 
1

1

~
M  is expressed as 

    

M
1

1 =

i

2c
R

1 +
1

4
ó

I

2( )
1

+
1

2
ó

g

2( )
1 1

2
ó

g

2( )
1

+
i

2c
μJ

1

2
ó

g

2( )
1

+
i

2c
μJ

T ik

2
R

1 +
1

4
ó

I

2( )
1

+
1

2
ó

g

2( )
1

 

 (38) 

 Substituting Eq. (37) into Eq. (35), we obtain (after 
vector integration and tensor operation) [45] 

    

W (ñ) =
G

0
exp ikl

0
ik l

0( )
det I + BM

1

1( )
1/2

exp ñT (M
1
+ B) 1 ñ  (39) 

where   I is a  4 4  unit matrix. Eq. (39) can be used 
conveniently to analyze the intensity, coherence and 
spectrum properties of a GSM beam propagating in 
dispersive and absorbing media. 

PROPAGATION OF A GSM BEAM IN TURBULENT 
ATMOSPHERE 

 Propagation characteristics of different types of beams 
propagating in the turbulent atmosphere are of interest for 
optical communications, imaging and remote sensing appli-
cations [92, 93]. Within the framework of paraxial approxi-
mation, the propagation of the cross-spectral density of a 
partially coherent laser beam in a turbulent atmosphere can 
be treated with the following extended Huygens-Fresnel 
integral formula [92, 93] 

   

W ñ
1
, ñ

2
, z( ) =

k
2

4 2
z

2
W

0
r

1
,r

2
,0( )

                     exp
ik

2z
r

1
ñ

1( )
2

+
ik

2z
r

2
ñ

1( )
2

                     exp r
1
, ñ

1( ) +
*

r
2
, ñ

2( ) dr
1
dr

2
,

 (40) 

where < > denotes ensemble average over the turbulent 
medium. The ensemble average term in Eq. (40) can be 
expressed as [92, 93] 

   

exp r
1
, ñ

1( ) +
*

r
2
, ñ

2( ) =

exp
r

1
- r

2( )
2

0

2

r
1

- r
2( ) ñ

1
- ñ

2( )

0

2

ñ
1

- ñ
2( )

2

0

2
,
 (41) 

where 
  

0
= 0.545C

n

2
k

2
z( )

3/5

is the coherence length of a 

spherical wave propagating in the turbulent medium with 
  
C

n

2  

being the structure constant. In the derivation of Eq. (41), we 
have employed Kolmogorov spectrum and quadratic 
approximation for Rytov’s phase structure function [92, 93]. 

 Eq. (40) can be expressed in following alternative tensor 
form [46, 94] 

    

 W(ñ, z) =
k

2

4 2 det ñ( )
1/2

W
0
(r,0)

exp
ik

2
r

T
B

1
r 2rB

1ñ + ñT
B

1ñ( )

exp
ik

2
r

T
P r

ik

2
r

T
P ñ

ik

2
ñT

P ñ dr,

 (42) 

where    B
1  and   P are given by  

    

B =
zI 0

0 zI
,    P =

2

ik
0

2

I I

I I
,  (43) 

 Substituting Eq. (3) into Eq. (42), we obtain (after vector 
integration) following analytical propagation formula for a 
GSM beam in turbulent atmosphere [46, 94] 

    

 W(ñ, z)=
1

det I + BM
1

1
+ BP

1( )
1/2

exp
ik

2
ñT

M
2

1ñ ,  (44) 

where 1

2
M  is the partially coherent complex curvature tensor 

in the receiver plane, and is related to 1

1
M  by following 

relation 

    

M
2

1
= P

1
+ B

1
B

1 1

2
P

1

T

          M
1

1
+ B

1
+ P

1( )
1

B
1 1

2
P

1

 (45) 

 The average intensity in the receiver plane is given by 
I( , )=W( , , )z zñ ñ ñ . 

 As a numerical example, we study the propagation 
properties of a twisted anisotropic GSM beam in turbulent 
atmosphere. We calculated in Fig. (8a-e) (contour graph) 
show the normalized irradiance distribution of a twisted 
anisotropic GSM beam (  = 632.8nm ) at several different 
propagation distances in a turbulent atmosphere. The initial 
parameters at z = 0 are set as 

  R
1

= 0,
  
μ = 0.000005 mm( )

1

 

 For comparison, the far field irradiance distribution of a 
twisted anisotropic GSM beam in free space is also shown in 
Fig. (8f). From Fig. (a)-(c) one sees that in the near field the 
propagation of a twisted anisotropic AGSM beam is similar 
to that in free space, for example, the elliptical beam spot 
rotates clockwise (it will rotates anti-clockwise if 

 
μ < 0 ) 

gradually as z increases. While in the far field, the twisted 
anisotropic GSM beam eventually becomes a partially 
coherent stigmatic beam (see Fig. (8d-e) under the isotropic 
influence of the atmospheric turbulence on the beam profile, 
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and then spreads as z increases further. These interesting 
propagation  properties  are quite different from those in free  
space. In free space, the beam spot remains elliptical in the 
far field (cf. Fig. (8 a and f)). The propagation properties of a 

TAGSM beam are closely related to the parameters of the 
beam and turbulent atmosphere. Numerical results in [46] 
clearly show tht the conversion of a twisted anisotropic GSM 
beam to a stigmatic beam in a turbulent atmosphere becomes 

 

Fig. (8). Normalized irradiance distribution (contour graph) of a twisted anisotropic GSM beam at several different propagation distances in 
a turbulent atmosphere (with 

  
C

n

2
= 10

13
m

2/3 ). (a) z=0; (b) z=0.15km; (c) z=1km; (d) z=10km; (e) z=40km; (f) the free space case (i.e., 2
0

n
C = ) 

with z=40km [46]. 
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slower as the coherence decreases and the absolute value of 
the twist factor increases. In other words, low coherence and 
larger twist have an effect of anti-circularization of the beam 
spot. The conversion of a twisted anisotropic GSM beam to a 
stigmatic beam also becomes quicker as the structure 
constant 2

n
C  increases (i.e., stronger turbulence). Further-

more, the beam spot spreads more rapidly for a lower 
coherence width matrix, larger twist, or stronger turbulence. 

  
μ = 0.000005 mm( )

1

, 
  
C

n

2
= 10

13
m

2/3 , 

  

ñ
I

2( )
1

=
0.05 0.05

0.05 0.1
mm( )

2

,  
   

ó
g

2( )
1

= 0.05I mm( )
2

.  

 With the help of tensor method, the propagation proper-
ties of off-axis GSM beams, coherent partially coherent laser 
array beams, astigmatic Gaussian beams, flat-topped beam 
and dark hollow beams have also been investigated [94-99]. 

PROPAGATION OF AN ELECTROMAGNETIC GSM 
BEAM THROUGH PARAXIAL OPTICAL SYSTEM IN 

FREE SPACE 

 The second-order statistical properties of the electro-
magnetic GSM beam can be characterized by the 2 x 2 cross-
spectral density matrix 

1 2W( , ,0)r r  specified at any two 
points with position vectors 

1
r  and 

2
r  in the source plane 

with elements [53-58] 

   

W (r
1
,r

2
) = A A B exp

r
1

2

4
a

2

r
2

2

4 2

r
1

r
2( )

2

2 2
, 

  
( = x, y; = x, y) ,  (46) 

where 
1

r  and 
2

r  are the transverse position vectors (on the 

input plane),  is the r.m.s width of the spectral density 

along  direction, 
 xx

, 
 yy

 and 
 xy

 are the r.m.s widths of 

auto-correlation functions of the x component of the field, of 
the y component of the field and of the mutual correlation 
function of x and y field components, respectively, 

xy
B  is the 

complex correlation coefficient between the x and y 

components of the electric field; Parameters 
 
A , 

  
B = B exp i( ) = B

* ,  and  are independent of 

position and, in our analysis, of frequency. The nine real 

parameters
 
A

x
, 

 
A

y
, 

 x
, 

 y
, 

 
B

xy
, 

 xy
, 

 xx
, 

 yy
 and 

 xy
 

entering the general model are shown to satisfy several 
intrinsic constraints and obey some simplifying assumptions 
(e.g. the phase difference between the x- an y-components of 

the field is removable, i.e.
 

= 0 ) [58, 59]. 

 After some arrangement, Eq. (46) can be expressed in 
following tensor form [72-80]  

    

W (r) = A A B exp
ik

2
r

T
M

0

1
r ,   

                             ( = x, y; = x, y)

 (47) 

where the 4 4  matrix
  
M

0

1 is expressed as follows 

   

M
0

1
=

1

ik

1

2
a

2
+

1
2

I
i

k
2

I

i

k
2

I
1

ik

1

2
2

+
1
2

I

,  (48) 

 After propagating through a general astigmatic ABCD 
optical system in free space, the element of the cross-spectral 
density matrix 

1 2W( , )r r  can be expressed in the following 

tensor form [72-80] 

    

W (ñ) = A A B det A + BM
0

1( )

                    exp
ik

2
ñT

M
1

1 ñ ,   

                           ( = x, y; = x, y)

 (49) 

where 
  
M

1

1 and 
  
M

0

1  are related by the following known 
tensor ABCD law [37] 

   
M

1

1
= C + DM

0

1( ) A + BM
0

1( )
1

 (50) 

 In a similar way, with the help of tensor method, we can 
easily obtained the propagation formula for an electromag-
netic GSM beam through a misaligned ABCD optical system 
in free space [73]. 

EVOLUTION PROPERTIES OF AN ELECTROMAG-
NETIC GSM BEAM IN A GAUSSIAN CAVITY 

 Now we study the evolution properties of an electro-
magnetic GSM beam in a Gaussian cavity by applying Eqs. 
(49) and (50). For the sake of convenience, we will confine 
our analysis to a bare Gaussian cavity of length L [see Fig. 
(9a)]. Here M1 and M2 are spherical mirrors each with radius 
of curvature R and Gaussian reflectivity profile with radius 

. Such resonator is equivalent to a sequence of identical 
thin spherical lenses with focal length / 2f R= , followed 
by the amplitude filters with a Gaussian transmission 
function [see Fig. (9b) for the equivalent (unfolded) optical 
system] [100]. The distance between each lens-filter pair is 
equal to L.  

 

Fig. (9). Schematic diagram of a Gaussian cavity and its equivalent 
(unfolded) version [77].  

 By applying the ABCD-matrix approach for a Gaussian 
aperture [27] we find that if the electromagnetic GSM beam 
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travels once between two mirrors [see Fig. (1b)], the 
matrices 

  A,B, C and D are  

   

A
1

B
1

C
1

D
1

=

I L I

2

R
i

2
I 1

2L

R
i

L

2
I

 (51) 

 Here the subscript 1 denotes single pass propagation and 
 can be regarded as the mirror spot size. After the Nth trip, 

  A,B, C and D  for the equivalent optical system become  

   

A B

C D
=

A
1

B
1

C
1

D
1

N

  (52) 

 On substituting from Eq. (52) into Eqs. (8), (49) and (50), 
we can determine how various statistical properties of an 
electromagnetic GSM beam evolve in a Gaussian cavity with 
increased number of passages between the mirrors. 

 We now study numerically the behavior of the degree of 
polarization of a typical electroamgnetic GSM beam in a 
Gaussian cavity. The resonator is characterized by the 
classical cavity parameter 1 /g L R= , the resonators with 

0 1g <  being stable and the ones with
  
g 1 being unstable. 

The degree of polarization of the beam is defined by the 
expression [53-58]. 

    

P(r) = 1
4detW(r,r)

[TrW(r,r)]2
,   (53) 

where Tr denotes the trace of the matrix. In the following 
numerical examples, the initial beam parameters are chosen 

to have the following values   = 590nm ,
  
A

x
= A

y
= 0.707,  

  
B

xy
= B

yx
= 0.2  and 

  x
=

y
= 1mm . In this case the 

polarization properties are uniform across the source plane 
with

   
P(r) = 0.2 . 

 We calculate in Fig. (10) the degree of polarization (on-
axis) versus N for different values of cavity parameter g and 
initial correlation coefficients with   = 0.8mm  One finds 
from Fig. (10a and b) that the degree of polarization 
increases as N increase, and its value approaches different 
constant values for different resonators when N is enough 
large (  N > 30 ). The growth shows an oscillatory behavior in 
stable resonators (

  
0 g < 1 ). For unstable resonators, the 

degree of polarization decreases for higher values of g. This 
behavior is similar to that of a spectral shift of a scalar GSM 
beam in a Gaussian cavity [100]. One finds from Fig. (10c 
and d) that the degree of polarization decreases as the 
correlation coefficients in the input plane take larger values 
both in stable and unstable resonators.  

 

Fig. (11). Degree of polarization (on-axis) versus N for different 
values of mirror spot size  in a Gaussian plane-parallel cavity 

(
  
g = 1) with 

  
x

=
y

= 0.1mm  and 
  

xy
=

yx
= 0.2mm [77]. 

 

Fig. (10). Degree of polarization (on-axis) versus N for different values of cavity parameter g and the source correlation 
coefficients.

1
m : 0.1 ,

x y
mm= =  

0.2 .
xy yx

mm= = 2
m : 0.25 ,

x y
mm= = 0.5 .

xy yx
mm= = 3

m : 0.5 ,
x y

mm= =
 1

xy yx
mm= =

 [77]. 
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 In order to better understand how the mirror spot size  
affects the degree of polarization, we calculate in Fig. (11) 
the degree of polarization (on-axis) versus N for different 
values of  in a Gaussian plane-parallel cavity ( 1g = ). We 

can observe that the growth of the degree of polarization is 
more pronounced in response to higher values of  (i.e., the 
losses per trip are smaller) when N is sufficiently large.  

 In the ideal case of a lossless cavity ( ), we calcu-
late in Fig. (12) the degree of polarization (on-axis) versus N 
for different values of parameter g. One sees that in stable 
lossless cavities, the degree of polarization has an oscillatory 
behavior, and its value does not saturate even for large 
values of N. In unstable cavities, the degree of polarization 
grows rapidly and reaches a saturation value in a few trips, 
and this value decreases as g increases. 

 Above discussions were confined to the on-axis degree of 
polarization. In Fig. (13), we calculate the degree of 
polarization versus one transverse dimension x for different 
values of the mirror spot size and the source correlation 
coefficients in a Gaussian plane-parallel cavity (

  
g = 1 ) with 

N=200. One finds from Fig. (13) that after N trips in the 
cavity, an initially uniformly polarized electroamgnetic GSM 

beam has different values of the degree of polarization across 
the transverse plane of the output mirror and the distribution 
is Gaussian. We also find that the width of Gaussian 
distribution is much larger for lower value of  (i.e. when 
the losses per trip are higher) and lower values of the source 
correlation coefficients. Similar results can be observed also 
for the cavities with different values of g. 

 From above discussion, we finds that we can control the 
polarization properties of an electromagnetic GSM beam 
within a Gaussian cavity by controlling the cavity parameters 
and the correlation properties of the source. We have also 
applied our formula to analyze the correlation properties pro-
perties and of the state of coherence of an electromagnetic 
GSM beam in a Gaussian cavity [77, 78]. 

PROPAGATION OF AN ELECTROMAGNETIC GSM 
BEAM THROUGH PARAXIAL OPTICAL SYSTEM IN 

TURBULENT ATMOSPHERE 

 Within the framework of paraxial approximation, the 
propagation of the cross-spectral density of a partially 
coherent beam propagating through a general astigmatic 
optical system is given by the expression [101, 102]. 

 

Fig. (12). Degree of polarization (on-axis) versus N for different values of g in a lossless cavity ( ) with 

0.1
x y

mm= = and 0.2 .
xy yx

mm= =  

 

Fig. (13). Degree of polarization versus one transversal dimension x for different values of the mirror spot size  and the source correlation 
coefficients in a Gaussian plane-parallel cavity ( 1g = ). 

1
m , 

2
m and

3
m takes the same values as used in Fig. (10). 
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 The term 
  

exp r
1
, ñ

1( ) +
*

r
2
, ñ

2( )  in Eq. (54) is 

given by Eq. (41). While in this case, the coherence length 

 0
 is given by the expression [101, 102] 

   
0

= det[B]1/2 1.46k
2
C

n

2 det[B(z)]5/6
dz

0

l
3/5

,  (55) 

 Here ( )zB  is the sub-matrix for back-propagation from 
output plane to propagation distance z. 

 After some arrangement Eq. (4) can be expressed in the 
tensor form as 
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where 
    
dr = dr
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2
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T
ñ

2

T( )  and 

    

A =
A 0I

0I A
*

,  B =
B 0I

0I B
*

,  C =
C 0I

0I C
*

,  

D =
D 0I

0I D
*

,  P =
2

ik
0

2

I I

I I
,  

 (57) 

 Substituting from Eq. (47) into Eq. (56), after some vec-
tor integration and tensor operations, we obtain the following 
expression for the elements of the cross-spectral density 
matrix of an electroamgnetic GSM beam after propagating 
through an astigmatic ABCD optical system in a turbulent 
atmosphere 

    

W (ñ, l) =
A A B

det A + BM
0

1
+ BP( )

1/2

exp
ik

2
ñT

M
1

1 ñ
ik

2
ñT

Pñ

              exp
ik

2
ñT

B
1T 1

4
P

T
M

0

1
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 (58) 

where 

   
M

1

1
= C + DM

0

1
+ DP( ) A + BM

0

1
+ BP( )

1

,  (59) 

 In the absence of turbulence (when 
  
C

n

2
= 0 , and hence, 

 0
)   P = 0 . Eq. (58) then reduces to the propagation 

formula for an electromagnetic GSM beam passing through a 
general astigmatic ABCD optical system in free space. If we 

replace 
  
M

0

1  in Eqs. (58) and (59) with those of anisotropic 

electromagnetic GSM beam [103] or twised electromagnetic 
GSM beam [80], then Eqs. (58) and (59) can also be used to 
study the propagation of such beams through an astigmatic 
ABCD optical system in turbulent atmopshere. We have also 
applied Eqs. (58) and (59) to apply electromagnetic GSM 
beam for lidar system operating through turbulent 
atmosphere [79]. 

 

Fig. (14). Focusing geometry [74]. 

 As an application example, now we study the focusing 
properties of an electromagntic in a turbulent atmosphere. 
The focusing geometry is shown in Fig. (14). Here the 
transformation matrix of the total optical system between the 
source plane and the output plane has the form 

   

A B

C D
=

I fI

0 I

I 0I

1 / f( )I I

I l
1
I

0I I

              =
0I fI

1 / f( )I 1 l
1

/ f( )I

 (60) 

 For 
  
0 < z l

1
, the transformation matrix for back-propa-

gation from output plane to plane located at distance z from 
the source is given by 

   

A z( ) B z( )
C z( ) D z( )

=
I (l

1
z)I

0 I

                                  
I 0I

1 / f( )I I

I fI

0I I
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z l
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f
)I fI

1 / f( )I 0I

 (61) 
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 For 
  
l
1

< z l
1
+ f , the transformation matrix for back-

propagation from output plane to plane located at distance z 
from the source is given by 

   

A z( ) B z( )
C z( ) D z( )

=
I f + l

1
z( )I

0I I

 (62) 

 Substituting the expression for 
  
B z( )  into Eq. (55), we 

obtain (after integration) 

  
0

= 0.1825C
n

2k 2 (3 f + 8l
1
)

3/5

 (63) 

 The spectral density and the degree of polarization of an 
electromagnetic GSM beam at point are defined by the 
expressions 

   
I ñ

1
, l( ) = TrW ñ

1
, ñ

1
, l( )  (64) 

 Now we study the statistical properties of an 
electromagnetic GSM beams at the geometrical focal plane 
in a turbulent atmosphere numerically. For all the figures in 
following text, the parameters of the source of the beam and 

of the optical system are chosen to be 

  
A

x
= A

y
= 0.707,

  
B

xy
= B

yx
= 0.2,

  
f = 50m ,

   = 590nm,

  x
=

y
= 1mm  and 

  
 l

1
= 4.95km . The polarization pro-

perties are uniform across the source plane with 

  
P r

1
,0( ) = 0.2 . We calculate in Figs. (15 and 16) the norma-

lized intensity distribution and corresponding cross line 
(y=0) of an electroamgnetic GSM beam at the geometrical 
focal plane for different values of the structure constant of 
turbulent atmosphere and of the source correlation 
coefficients. One can see that all the statistical properties of 
the electromagnetic GSM beam in turbulent atmospheric are 

closely related to the structure constant 
  
C

n

2  and the source 

correlation coefficients. It is clear from Fig. (15) that the 
intensity distribution of the electroamgnetic GSM beam at 
the geometrical focal plane is of Gaussian distribution, and 
its width increases as the value of the structure constant 2

n
C  

increases (i.e., the local strength of atmospheric turbulence 
increases), which shows that an electromagnetic GSM beam 
can be focused more tightly in free space than in turbulent 
atmosphere. From Fig. (15d) and Figs. (16a and b) one finds 

 

 

 

 

Fig. (15). Normalized intensity distribution and corresponding cross line (y=0) of an electromagnetic GSM beam at the geometrical focal 
plane for three different values of the structure constant of turbulent atmosphere [74]. 
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that an electromagnetic GSM beam with lower values of the 
source correlation coefficients is less affected by the 
atmospheric turbulence than that with higher values of the 
source correlation coefficients, which is similar to the fact 
that a scalar GSM beam with lower degree of coherence is 
less affected by the atmospheric turbulence [2]. One also 
finds from Figs. (16c and d) that source corre-lation 
coefficients control the intensity distribution of the focused 
electromagnetic GSM beam both in free space and in 
turbulent atmosphere, and an electroamgnetic GSM beam 
with higher values of the source correlation coefficients can 
be focused more tightly, which is also similar to the fact that 
a scalar GSM beam with higher coherence can be focused 
more tightly [1]. 

 We calculate in Figs. (17 and 18) the degree of polari-
zation and corresponding cross line (y=0) of an electro-
magnetic GSM beam at the geometrical focal plane for 
different values of the structure constant of turbulent 
atmosphere and the source correlation coefficients. One finds 
that the initial uniformly polarized electromagnetic GSM 
beam becomes non-uniformly polarized after focusing, and 

the degree of polarization is of Gaussian profile. It is evident 
from Fig. (17) that as the strength of atmospheric turbulence 
increases, the width of the Gaussian profile increases, the 
value of the on-axis polarization decreases while the value of 
the off-axis polarization increases gradually. From Figs. 
(18a-d), one finds that the shape of the Gaussian profile is 
affected differently by the refractive index structure 

parameter 2

n
C  and by the source correlation coefficients: 

with increase in 2

n
C  the distribution becomes shorter and 

flatter, with increase in source correlations it becomes higher 
and narrower.  

CONCLUSION 

 In summary, a review of the tensor method for treating 
the propagation of scalar and electromagnetic Gaussian 
Schell-model beams was address. We have introuded a 
tensor method to describe a twisted anisotropic GSM beam 
and treat its propagation through unapertured and upertured 
ABCD optical systems, fractional Fourier transform optical 
system, dispersive and absorbing media and turbulent media. 

 

 

 

 

 

 

Fig. (16). Normalized intensity distribution (cross line, y=0) of an electromagnetic GSM beam at the geometrical focal plane for different 
values of the structure constant of turbulent atmosphere and the source correlation coefficients [74]. 
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We have generated GSM beam experimentally and observed 
its  propagation  properties,  our  experimental   results  agree  

well with the theoretical results, which verify the validity of 
the tensor method. We have also applied the tensor method 

 

 

Fig. (17). Degree of polarization and corresponding cross line (y=0) of an electromagnetic GSM beam at the geometrical focal plane for 
three different values of the structure constant of turbulent atmosphere [74]. 

 

 

Fig. (18). Degree of polarization (cross line, y=0) of an electromagnetic GSM beam at the geometrical focal plane for different values of the 
structure constant of turbulent atmosphere and the source correlation coefficients [74]. 
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to derive the propagation formulae for an electromagnetic 
GSM beam passing through a paraxial astigmatic optical sys-
tem in free space and in turbulent atmosphere, and studied 
the propagation properties of an electromagnetic GSM beam 
in a Gaussian cavity and in turbulent atmosphere. The tensor 
method was used widely to treat the propagation of partially 
coherent beam with special profiles, such as dark hollow 
beam, flat-topped beam and laser array beam, and was also 
used to study the second harmonic generation, ghost imaging 
and optical trapping with scalar partially coherent beams. We 
expect to applied the tensor method to study the second 
harmonic generation, ghost imaging, optical trapping and 
other applications with electromagnetic partially coherent 
beams in the future. 
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