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Abstract: It is shown by Barak and Ben-Aryeh that the quantum fast Fourier transform by linear optics is applicable for 

an n -qubit system. We point out that the quantum fast Fourier transform by linear optics is applicable not only for a qubit 

system but also for a qutrit system and a compound system of qubits and qutrits etc. We compute an upper bound for the 

number of the beam splitters, which gives a basis for planning an experiment.  
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1. INTRODUCTION 

The quantum Fourier transform plays an important role 

in quantum algorithms such as Shor’s prime factorization 

algorithm [1]. Moreover, the quantum Fourier transform by 

linear optics is an indispensable component of the KLM 

scheme [2]. In linear optics, we refer to the quantum Fourier 

transform with smaller number of beam splitters as the quan-

tum fast Fourier transform. To carry out an experiment in 

optics, it is significant to diminish the number of beam split-

ters. Barak and Ben-Aryeh [3] have shown that for 
n

N 2= , 

which corresponds to an n -qubit system, an N -point quan-

tum discrete fast Fourier transform is realizable. For 
n

N 2= , 

the classical Cooley-Tukey algorithm [4, 5] with radix 2 is 

applicable. The radix 2 algorithm consists of the so called 

butterfly operations. Any node connecting two butterfly op-

erations has two inputs and two outputs. Since a beam split-

ter has two inputs and two outputs, Barak and Ben-Aryeh 

have placed a beam splitter on each node connecting two 

butterfly operations. 

Apparently, for 
n

N 2 , it seems difficult to apply the 

Cooley-Tukey algorithm to the quantum discrete Fourier 

transform by linear optics. This is, however, not the case, 

because the quantum fast Fourier transform with radix r can 

be realized by combining 
  
1/ 2r(r 1)  beam splitters as a unit. 

The purpose of this letter is to point out that for N  prime, 

the Cooley-Tukey algorithm is directly applicable to the 

quantum discrete Fourier transform by linear optics and that 

the number of beam splitters can be reduced. We also give 

an upper bound for the number of beam splitters to carry out 

an N-point quantum discrete Fourier transform. 

2. FACTORIZATION OF FOURIER TRANSFORM 

An N-point quantum discrete Fourier transform (FN) in 
optics is described by  
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b
k

† = 1/ N
j=0

N 1

a
j

†W jk ,k = 0,1, , N 1,  (1) 

where   W = e
2 /Ni  and 

†
ja  is the j -th mode input photon 

creation operator and †
k

b  is the k -th mode output photon 

creation operator. Fig. (1) is a schematic depiction of 
N

F . In 

the classical discrete Fourier transform 
†
ja  and †

k
b  are re-

placed by the j -th component and the k -th component of 

two N -vectors, respectively. Since the quantum discrete 

Fourier transform 
N

F  is an NN  unitary transformation, 

N
F  can be realized with 

  
1/ 2N (N 1)  beam splitters and 

some phase shifters in linear optics [6]. 

The NN  unitary matrix in Eq. (1) is common to the 

classical and the quantum cases; therefore, the classical Coo-

ley-Tukey algorithm is directly applicable to the quantum 

case. When N  is factorized as 
21

= rrN , according to the 

Cooley-Tukey algorithm, 
N

F  can be factorized as a se-

quence of 
2

r  
1
r

F 's and 
1
r  

2
r

F 's. Therefore, the number of 

beam splitters to perform 
N

F is diminished to 

  
1/ 2N (r

1
+ r

2
2)  in this case. When N  is prime factorized as 

s
rrrN

21
= , the number of beam splitters is diminished to

   
1/ 2N (r

1
+ r

2
+ + r

s
s) . Especially when 

n
N 3= , which 

corresponds to an n -qutrit system, the number of beam 

splitters is diminished to Nn . The case 
mn

N 32=  corre-

sponds to a compound system of n -qubit and m -qutrit. 

The above situation is illustrated in Fig. (2) for the case 

43=12=N , a one-qutrit and two-qubit system. In this 

case the number of beam splitters is diminished from 66  to 

30 . Each 
4

F  is factorized by four 
2

F ’s, and each 
4

F  is 

realized by four beam splitters [3]. Therefore, the number 

30  diminishes further to 24 .  
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CONCLUSION 

 We have pointed out that the classical Cooley-Tukey al-

gorithm is applicable to the N -point quantum discrete Fou-

rier transform in linear optics and that the number of beam 

splitters can be reduced when N  prime; the cases 
n

N 3=  

and 
mn

N 32=  correspond to the n -qutrit system and the 

compound system of n -qubit and m -qutrit, respectively. 

The case of 
n

N 2= , which corresponds to the n -qubit sys-

tem, studied by Barak and Ben-Aryeh is the most important 

and a special situation of our indication. We have given the 

upper bound for the number of beam splitters to carry out the 

N -point quantum discrete Fourier transform. To carry out 

the N -point quantum discrete Fourier transform we also 

need to know angles and phases of linear optics constituting 

r
F , r  being a prime factor of N . Our result, however, gives 

a basis for planning an experiment. 
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Fig. (1). An N -point quantum discrete Fourier transform. The left 

hand side indicates inputs },,,{ †
1

†
1

†
0 N

aaa , and the right hand 

side indicates outputs },,,{ †
1

†
1

†
0 N

bbb .  

 

 

Fig. (2) A factorization of 
12

F  by four 
3

F ’s and three 
4

F ’s. The 

small box 
m

W  indicates corresponding phase shifter. The inputs 

and outputs are arranged according to the Cooley-Tukey algorithm.  
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