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Abstract: In this research application paper, the usefulness of an intelligent mechanism (a cubic spline smoothing 

technique) for determining when to switch from one algorithm to another within a meta heuristic search process is 

explored. We concentrated on a typical planning problem for a southern United States forestry company where the net 

present value of management activities is maximized subject to wood flow and harvest adjacency constraints. We found 

that more than 75% of the 3-algorithm meta heuristics examined produced consistently better solutions than the best 

standard heuristic (threshold accepting) in terms of mean and maximum solution values. However, a 2-algorithm meta 

heuristic (threshold accepting + tabu search) performed the best in terms of the average solution value and the absolute 

maximum solution value, improving solution quality 1.4% over the best standard heuristic solution value. Results also 

indicate meta heuristics which began a search with a relatively fast, stochastic search process (simulated annealing or 

threshold accepting) and end a search with a relatively slow, deterministic search process (e.g., tabu search) produced 

better solutions than other model configurations for the problem examined. Further, results suggest that the time to switch 

from one heuristic to another should be based on when the improvement in solution quality stagnates. Without 

recognizing this point, a search process may switch prematurely or be computationally wasteful. 

Keywords: Operations research, forest planning, combinatorial optimization. 

INTRODUCTION 

 Spatial forest planning has gained wide acceptance over 

the past decade, as people have gradually recognized the 
importance of tactical planning, and as forest sustainability 

concepts have been more closely integrated with planning 

processes [1]. Knowing the exact location of management 

activities can help forest managers better understand forest 

planning problems, account for spatial restrictions and 

wildlife habitat concerns, and thus allow them to make 

appropriate decisions. Many forest regulations and voluntary 

guidelines require or suggest that harvesting activities follow 

certain rules regarding clearcut sizes and landscape patterns 

[1]. Therefore, involving spatial components in forest 

planning processes helps planners more closely model 
operational issues. However, it is widely acknowledged that 

spatial forest planning problems can be difficult to solve [2], 

especially for those with green-up or adjacency constraints 

that control the timing and juxtaposition of harvests, since 

they are combinatorial in nature [1, 3-5]. Using exact math-

ematical methods (mixed integer programming and integer 

programming) to solve large spatial forest planning problems 

can be difficult, and can involve an excessively long comput-

ational times. 
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 For these reasons, heuristic methods have been explored 

for addressing spatial forest planning problems, and they 

have been accepted as a practical approach to generate near-

optimum solutions in a reasonable amount of time. The most 
commonly used heuristic methods in the field of forestry 

include simulated annealing [2, 4, 6-9], tabu search [10-12], 

genetic algorithms [12-14], threshold accepting [15, 16], and 

Monte Carlo random search [17]. Some of the heuristic 

methods have been enhanced to further explore the solution 

space and possibly improve the quality of solution values. 

For example, Richards and Gunn [18] designed an 

oscillating reactive tabu search and found it can improve 

solution values by about 20%. Bettinger et al. [5] developed 

2-opt tabu search and also obtained better results over 

standard tabu search. Other forestry research efforts have 
shown that combining two algorithms may allow one to 

locate better solutions [12, 15]. However, this combination 

has generally been limited to two heuristic algorithms, and 

the decision criteria for switching processes has been 

relatively rote and determined by the experiences and 

expertise of the researcher (i.e., change after x number of 

iterations). While our assessment includes only the heuristic 

techniques commonly used in forest management and 

planning, applications and demonstrations of soft computing 

tools for decision support in fields other than forest 

management may inspire researchers to adapt the concepts to 

forestry problems. Advances in other areas of operations 
research include the use of neural network algorithms 
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coupled with fuzzy reasoning [19] and fuzzy iteration 

methodologies [20] for addressing hydrologic concerns, ant 

colony optimization for risk management [21], and 

evolutionary techniques, which includes particle swarm 

optimization and others, for a variety of issues [22]. 

 In this study, we examine the search behavior of four 

heuristic algorithms: simulated annealing (SA), threshold 
accepting (TA), tabu search (Tabu), and the raindrop method 

[23]. We then combine these heuristics into twelve 2-

algorithm meta heuristics, and track search progress using a 

statistical measure that is continuously updated as the search 

proceeds. The statistical measure provides a queue for 

switching from one heuristic search process to another. 

Results from these tests are compared against those obtained 

from the four basic heuristic algorithms. Further, we 

systematically evaluate twenty-four 3-algorithm meta 

heuristics and compare their solution values and computing 

times against the four basic heuristic algorithms and the 2-

algorithm meta heuristics. A 2-algorithm meta heuristic 
allows one heuristic (e.g., simulated annealing) to operate 

first, then switches to another (e.g., tabu search) at a point 

when the solution process has matured. A 3-algorithm meta 

heuristic uses a series of three standard heuristics (e.g., 

simulated annealing, threshold accepting, and tabu search) to 

located near-optimal solutions to the problem at hand. We 

hope our results and discussion can give a useful insight into 

intelligent and informed meta heuristic development in the 

forest planning field. 

MATERIALS AND METHODOLOGY 

 We begin the discussion of our methods by describing 

the forest planning problem that we use to assess the 

combined meta heuristics. We then discuss the search 

techniques used to build a forest plan, along with the 

parameterization for each. A discussion of some preliminary 

work with combining algorithms, using break-point analysis, 

is then presented. Break-point analysis is then employed 

within the search processes to help us understand and 

evaluate the informed development of meta heuristics. 

Problem Formulation 

 A vector-based geographic information system (GIS) 

database containing 1,123 polygons of stands covering 

37,626 ha was used in the forest planning exercise. Forest 

stand polygons in this dataset were based on an actual 

southern United States forest land ownership. We modified 

polygon boundaries to ensure that the area of each stand 

polygon ranged from 24.3 ha to 48.6 ha (60 to 120 acres), 

because we assumed later that the maximum clearcut size 
was 48.6 ha. The initial forest age class distribution over the 

entire forest land was simulated as a uniformly distributed, 

near-normal forest with tree ages ranging from 1 to 30 years. 

This step was necessary since we were unable, through a 

confidentiality agreement, to disclose and use the original 

forest inventory provided by the cooperating company. As a 

result, approximately 1,300 hectares were assigned to each 

forest age class. 

 The spatial forest planning problem in this study was 

formulated with the objective of maximizing the net present 

value of planned management activities. We assumed that 

timber products were the only financially valued outcome. 

The planning horizon is 15 years long with 1-year planning 

periods. For simplicity, we also assumed that the only 

treatment on the forestland was to clearcut forested stands. 

Four constraints were considered. First, a unit restriction 

(URM) adjacency constraint [24] was assumed, under which 
any two contiguous stands are not allowed to be treated in 

the same planning period. Wood-flow constraints, which 

ensured sustainable and stable yields over the 15 year 

planning horizon were also assumed. In other words, the 

harvested volume in each time period should not deviate too 

far from the average harvested volume (maximum ±20% 

deviation in this case). An ending inventory constraint was 

also assumed, which prevents the depletion of timber stands 
at the end of planning horizon. Here, an amount equal to at 

least 90% of the original timber volume was required to 

remain at the end of the time horizon. Finally, a minimum 

harvest age constraint was assumed, where trees less than 20 

years old are not considered for harvest. In sum, this is 

similar to a typical planning problem for a southern United 

States forestry company. 

 The problem formulation is described as the following: 

 Maximize 
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if Ageit 20, then Xit  (0,1), otherwise Xit = 0         (6) 

where: 

Ai = the area of management unit i 
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Ageit = the age of management unit i at time t period 

Ca = the annual management cost ($/unit land area) 

Cr = the regeneration cost ($/unit land area) 

d = the discount rate assumed 

i, j = an arbitrary harvested unit 

N = the total number of harvest units 

Ni = the set of all harvest units adjacent to unit i 

Pcns = the stumpage price for chip-n-saw timber 

Ppulp = the stumpage price for pulpwood 

Psaw = the stumpage price for sawtimber 

t = the period in which harvest activities occur 

T = the total number of time periods in the planning horizon 

TA = the total planning area 

Vi0 = the total timber volume in the stands before any harvest 

activities 

Vil = the timber volume left on the stands after the planning 

horizon 

Vit = the timber volume harvested in time period t, from 

management unit i 

Vit.cns = the chip-n-saw volume harvested in time period t, 

from management unit i 

Vit.pulp = the pulpwood volume harvested in time period t, 
from management unit i 

Vit.saw = the sawtimber volume harvested in time period t, 

from management unit i 

Xit =
1  if management unit i is treated in time period t

0  otherwise
 

 The decision variables are the Xit variables, and all others 

are either indices, parameters, or coefficients related to the 

planning model. This problem has been reported previously 

in a doctoral dissertation [25]. Equation 2 refers to the URM 

adjacency constraint for harvested areas. Here, only one of 
two adjacent timber stands can be scheduled for harvest in 

the same time period. The wood flow constraints (equation 

3) control the amount of wood scheduled in each time 

period. Essentially, this set of constraints limits deviations in 

scheduled harvested volume in any time period (t), and 

requires that the deviation be no more or less than 20% from 

the other time periods. Equation 4 represents an ending-

inventory constraint, where the remaining standing volume 

at the end of the time period be at least 90% of the standing 

volume that was available at the beginning of the time 

horizon. Equation 5 indicates that a stand can only be 
harvested once during the planning horizon. Finally, 

equation 6 represents the logic used to implement the 

minimum harvest age constraint. We used a growth and yield 

model developed for southern United States pine stands by 

the Plantation Management Research Cooperative (Warnell 

School of Forest and Natural Resources, University of 

Georgia). Prices for timber stumpage were obtained from 

Timber-Mart-South (fourth quarter of calendar year 2006), 

and were $36.58 (U.S. dollars) per ton for potential 

sawtimber products, $20.40 per ton for potential chip-n-saw 

products, and $6.68 per ton for potential pulpwood products. 

The regeneration costs are $606.14 per ha (site preparation, 

planting, seedling costs, and herbaceous weed control). The 

annual management cost is assumed to be $11.12 per ha. 

Heuristic Algorithms 

 The heuristics examined in this study include simulated 

annealing, threshold accepting, tabu search, and the raindrop 

method. All but the latter have been used extensively in 

forestry harvest scheduling research and practice. The 

raindrop method is a recently introduced heuristic that has 

been shown to very effectively solve certain kinds of forest 

harvest scheduling problems [23]. Each of these heuristics is 

briefly described below. 

Simulated Annealing 

 Simulated annealing (SA) is inspired by the process of 

annealing of metals, and was first described in 1953 [26]. As 

a search process, simulated annealing began to be used in a 

widespread manner in the early 1980s [27]. A number of 

papers have shown the usefulness of simulated annealing in 

forest harvest scheduling [2, 4, 6, 9]. The search process is 

initiated with a high temperature parameter, and as the 

search proceeds the temperature cools off. The temperature 

acts, in part, as a threshold, and the search process terminates 
when the stopping criterion is met (e.g., the temperature gets 

too low). As the temperature declines, the search moves 

about in a random fashion around a limited group of good 

candidate solutions. If a change to a solution results in an 

improved solution, the change remains in the solution set. If 

a new solution does not result in an improvement, whether 

this new solution should be accepted or not depends on the 

resulting solution quality and a probability defined by the 

following equation: 

P(T ) = e
Sc Sp /Tz             (7) 

where: 

Sc = the current solution value 

Sp = the previous solution value 

Tz = the temperature at iteration z 

P(T) = probability critical value 

 The calculated value of P(T) is then compared to a 

randomly drawn number between 0 and 1. The process 

accepts the change to the new, yet inferior solution if P(T) is 

greater than the randomly drawn number. In essence, an 

inferior solution is likely to be accepted at a high 

temperature level (at the beginning of the search) and likely 

to be refused at a low temperature level (near the end of the 

search), since at a higher temperature the critical probability 

value is larger. 

 An essential component of a simulated annealing 

algorithm is the cooling schedule that it employs. The 

parameters required for a cooling schedule include the initial 
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temperature (T0) and the cooling function, so that Tz+1 = f 

(Tz). The cooling function can be very complicated, and may 

involve a self-adapting process at each temperature during 

the searching process. For simplicity, we chose to use a fixed 

cooling schedule in present study, which only includes an 

initial temperature and a cooling rate. 

Threshold Accepting 

 Threshold accepting (TA) was introduced in 1990 [28] 

and applied to forest planning problems about a decade later 

[15, 16]. Threshold accepting is similar to simulated 

annealing, except there is no annealing criterion to compute. 

A small, random change to a solution is proposed, and if 

there is an improvement in solution quality, the proposed 

change is incorporated into the solution. The difference 

between this and simulated annealing lies in how one deals 

with changes to a solution that do not improve the quality of 

a forest plan. Instead of using a probability to determine 

whether the change is acceptable, any solution that is worse 
than the current solution value by more than the amount of a 

threshold value is rejected. The threshold value is initially 

large, allowing the search process to move relatively freely 

throughout the solution space. The threshold gets smaller as 

the search progresses, usually either using a geometric rate 

of change (new threshold = 0.995 x old threshold) or using a 

constant rate of change (new threshold = old threshold - Y 

dollars). At some point, when the threshold is very small, the 

search process terminates. Threshold accepting is viewed as 

a fast and effective heuristic that is easier to conceptually 

understand than simulated annealing. 

Tabu Search 

 Tabu search was introduced in 1989 [29, 30], and has 

been applied to a number of forestry problems [5, 10, 31, 

32], thus along with simulated annealing, tabu search is one 

of the most frequently used techniques in forest planning. 

Unlike other heuristic techniques, tabu search largely 

involves a deterministic component in its search activity, 

which may result in high computation costs. However, the 

deterministic search process may provide very good 
solutions that are close to the global optima if the search 

process can avoid becoming trapped in local optima. A basic 

tabu search process can be summarized as having two 

aspects: 1) a neighborhood local search, which has the goal 

of locating the best feasible solution in the nearby 

neighborhood (solution space) of the current solution; and 2) 

an improvement mechanism which attempts to use tabu 

tenure to avoid being trapped in the local optima. Other 

variations of tabu search may use diversification techniques 

to explore further the feasible solution space, or 

intensification techniques to exploit deeper areas 
surrounding elite solutions. However, in this study only the 

basic 1-opt tabu search is developed and tested. 

 The neighborhood developed examines all of the 

potential changes to the current solution, and the best of 

these is selected. This change could either increase the 

quality of a forest plan or decrease it. In the latter case, a 

change that reduces the quality the least is chosen, no matter 

how much reduction in solution quality occurs. The 

improvement mechanism is called the aspiration criteria. 

Within tabu search, a choice is generally forbidden (taboo) if 

it has been made recently (within the last x number of 

iterations, where x is the tabu tenure). However, if a choice is 

considered tabu, yet will result in the highest quality solution 

found thus far during the search, the change is accepted, and 

the tabu tenure is thus over-ridden. The search process 

develops a new neighborhood of potential changes to a 

solution with each iteration, and terminates when a pre-
defined number of iterations have been used. A high 

computational cost may be incurred if the size of the 

neighborhood is large, which suggests that many potential 

changes must be examined before one is chosen. In 

simulated annealing and threshold accepting, only one (or a 

few, if constraint violations occur) potential changes are 

assessed with each iteration of a search process. 

Raindrop Method 

 The raindrop method was first developed in 2006 [23] 
and is aimed at mitigating forest harvesting adjacency 

constraint violations (clearcuts that should not be placed next 

to one another) by radiating changes in a manner away from 

an initial forced choice. It is similar to the other heuristics in 

that it begins with a solution and allows random changes to 

be made. In most other heuristics described in the forestry 

literature, if this change causes any infeasibility (e.g., 

violating the adjacency constraints), the choice will be 

discarded and the heuristic will consider other choices. 

Instead, the raindrop method keeps this change (a forced 

choice), but records all the constraint violations, then 
attempts to mitigate the violations. Activities assigned to 

other land units are altered deterministically, perhaps 

creating more constraint violations that are further away 

(spatially) from the original forced choice. These additional 

constraint violations are recorded as well, and the process 

continues until all the constraint violations are mitigated. 

Decisions planned for land units physically closest to the 

forced choice are altered first, and constraint violations that 

might arise in a direction back to the forced choice in the 

original land unit are avoided. This change-violate-fix 

sequence continues until no constraint violations remain, 

thus ending one iteration of the model. After a certain 
number of iterations, the process reverts to the previous best 

solution if no improvement has been found. Therefore, the 

only two parameters required in raindrop method are the 

total number of iterations and the reversion rate. This method 

has been shown to produce consistently higher quality forest 

plans when the URM model of harvest adjacency is assumed 

in forest plans [31]. 

Parameterization of Heuristic Models 

 In this study, we used empirical methods to find the best 

parameter values for each algorithm by searching a wide 

range of possible parameter values and locating a narrow 

parameter interval. We determined that all values falling in 

this interval would more likely lead to steady and high-

valued solutions. Although we can not guarantee the 

parameter values used are exactly the best choice for the 

problem, we are confident they are reasonable values and 

would allow us to generate high quality solutions. 
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 For simulated annealing, an initial temperature value was 

tested that ranged from 10,000 to 5,000,000 degrees with an 

interval of 10,000. A cooling rate was tested using five 

different reduction values: 0.9999, 0.9995, 0.999, 0.995, 

0.99. Similarly for threshold accepting, an initial threshold 

was tested that ranged from 10,000 to 1,000,000 US dollars 

with an interval of 10,000, and five different reduction 

values were assessed: 0.9999, 0.9995, 0.999, 0.995, 0.99. For 

tabu search, the tabu tenure we tested ranged from 100 to 
20,000 iterations with an interval of 100. For the raindrop 

method, the reversion rate we tested ranged from 5 to 1000 

iterations using an interval of 5. Except for the raindrop 

method, the other methods were terminated when solutions 

did not improve after a certain number of iterations. The 

raindrop method used the total number of iterations as a 

stopping criterion. 

 For simulated annealing, solution quality decreased as 

the cooling rate value assumed decreased. With geometric 

cooling rates of 0.99 and 0.995, solution values appeared to 
be lower in quality as compared to solutions with assumed 

cooling rate values of 0.999, 0.9995 and 0.9999. This 

suggested that we were not allowing free movement in the 

initial period of the search. Therefore, in our implementation 

of simulated annealing, we assumed a 0.9995 cooling rate 

value. When viewing more detailed results, we observed that 

the initial temperature did not matter too much as long as it 

was above about 7,000 degrees. After this point, the quality 

of solutions was stable with respect to the initial temperature, 

and the cooling rate thus had the most influence on solution 

quality. For these reasons, we assumed an initial temperature 
of 10,000 degrees. 

 Our initial tests of threshold accepting showed similar 

results. Threshold change values of 0.9999, 0.9995 and 

0.999 seemed to provide high quality solutions as compared 

to threshold change values of 0.995 and 0.99. As with 

simulated annealing, we assumed 0.9995 was the geometric 

threshold change rate. To determine which initial threshold 

should be used, we examined more closely the solutions 

generated with initial threshold values between 1,000 and 

30,000 US dollars. The quality of solutions stabilized after 
an initial threshold of about 15,000, so we chose to assume 

an initial threshold of 20,000 US dollars for the remainder of 

this work. 

 For tabu search, we located the stable interval for the 

tabu tenure, which ranged from 4,500 to 5,500 iterations. 

This represented about 1/3 of the potential choices available 

in adjusting a solution from one iteration to the next. 

Solutions produced using the tabu tenure in this interval 

maintained a high quality level, therefore we chose 5,000 
iterations, the median of this interval, as the tabu tenure used 

in this work. The process terminated when the solution made 

no improvement after 10,000 iterations. 

 Our initial tests of the raindrop method did not suggest 

any pattern in solution quality with increases in the value of 

reversion rate. Therefore, we assumed a value of 5 iterations 

for this parameter, similar to what has been suggested by 

others [31]. 

Preliminary Analysis 

 A better understanding of the searching pattern of each 

individual algorithm would provide us insightful 

perspectives and logical reasons regarding how to combine 

different algorithms. Before developing combined meta-

heuristics, we applied each standard algorithm to the same 

study problem, and observed and analyzed their different 

solution-development behaviors. Although summarized here, 
a complete analysis of the following discussion can be found 

in Li's dissertation [25]. 

 Bettinger et al. [10] studied tabu search behavior for a 

forestry and wildlife problem, and described a typical search 

process by three phases: a hill-climbing phase, an adjustment 

phase, and a steady-state phase. We have also observed this 

behavior when using other algorithms when applied to forest 

planning problems. To further investigate the search 

patterns, we utilized break-point analysis techniques to 

detect significant changes in search behavior. Break-point 
analysis has been mostly used for analyzing economic, time 

series data. The foundation for estimating breaks in time 

series regression models was proposed in 1994 [33], 

extended to multiple breaks [34-36], and subsequently 

implemented as an algorithm [37]. The basic idea is to 

estimate break points by fitting multiple linear regression 

models simultaneously and minimizing the residual sum of 

squares. In our study, we tracked the searching path of a 

search algorithm by recording, at each iteration, the current 

solution value. We treated this search path as time series 

data, with iterations representing time slices, and current 
solution values as response values. We found two significant 

break points when using the four heuristics on our forestry 

problem. Based on these two break points, we divided the 

searching path into three intervals, which matched with three 

phases of their search behavior: a hill-climbing phase, an 

adjustment phase, and a steady-state phase [10]. In general, 

solution values increase very quickly in the first hill-

climbing phase, slow down in the adjustment phase, 

eventually move to a steady-state phase. 

Algorithm Integration 

 The main concentration of this work was placed on 

developing an intelligent mechanism for combining the 

different algorithms. In other words, we sought methods for 

automatically locating the integration points for switching 

the search from one algorithm to another during the search 

process. An integration point is the time (as denoted by the 

iteration number) during the search process where a second 

(or third) heuristic begins to operate, providing a different 

means for locating solutions of better quality. Simply using a 

fixed break point from the knowledge gained during the 
break point analysis as integration positions turned out to be 

a bad choice, because 1) the positions of the break points are 

constantly changing with different runs of the models; 2) the 

break point analysis was done after an entire solution was 

generated, even though we needed to decide during the 

generation of a solution where to stop one algorithm and 

start another one; and 3) each algorithm had its own internal 

mechanism which determines the searching path pattern. 
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Therefore, the phase separation was only meaningful for one 

algorithm, and thus there was no simple equivalence of the 

same phase between different algorithms. For example, the 

hill climbing phase of the raindrop method was longer, with 

respect to the best solution found, than the same hill-

climbing phase observed with simulated annealing. 

 Since the purpose of combining different algorithms in a 
meta heuristic is to enhance the searching ability by taking 

advantage of the beneficial aspects of different algorithms, 

the best time to switch from one algorithm to another should 

be where the one algorithm’s performance wanes. In order to 

quantify the subjective term “wane,” we needed to know the 

relative solution improvement speed at each iteration. 

Because solution values increase and decrease constantly 

during any one search, it is moot to calculate the solution 

improvement speed by using the difference between the 

current solution value and the previous solution value. If one 

could generalize the searching path into a smooth line with a 

clear trend, ignoring all small deviations, one could derive 
the slope, or relative rate of change (i.e., the solution 

developing speed) for the process. A cubic spline smoothing 

technique [38] was utilized to address this task. Schoenberg 

[39] was one of the first to describe the smoothing technique, 

which was later described statistically [38]. Using this 

technique, cubic smoothing splines are fitted to each search 

path during the search process. In other words, while the 

heuristic algorithm searches for the best solution, cubic 

smoothing splines are simultaneously fitted to the current 

search path with a frequency of every 200 iterations. Since 

the fitted lines are smoothed, the first derivative (i.e., slope) 
can be obtained. Based on the value of the derivative, one 

could decide whether a switch should be made at that 

moment. A large positive derivative value indicates a strong 

and fast search process (a trend of increasing solution 

values), and a small positive derivative value indicates a 

slow and weak search process (a trend of minor increases in 

solution values). A negative derivative value suggests a trend 

of decreasing solution values. Derivative values that stay 

around zero for a certain number of iterations indicate that 

the search has stagnated. The events we considered to 

determine when to switch heuristic algorithms were when 
derivative values turned from positive to negative, and when 

derivative values became constant at zero for a number of 

iterations. 

 There are 12 possible two-heuristic combinations of the 

algorithms we studied (e.g., SA-TA, TA-SA, etc.). All 

permutations are examined because each heuristic has a 

different manner in which solutions are developed, since we 

were not convinced of the appropriate order (first or second). 

The four positions for linking them that we evaluated were: 

1) the first point at which derivatives changed from positive 
to negative; 2) the second point at which derivatives changed 

from positive to negative (after having changed from 

negative to positive); 3) the third point at which derivatives 

changed from positive to negative; and 4) the point where 

the derivatives suggested search stagnation. We developed 

50 solutions to the planning problem with each meta 

heuristic, using each of four integration positions. Each 

solution (run) began with a randomly-selected initial feasible 

solution. We calculated the mean and the standard deviation 

of the final solution values, the computing time, and the 

maximum solution value for each of the 50 solutions. An 

analysis of variance (ANOVA) was used to test whether any 

significant differences in the solution values occurred due to 

varying the integration positions, allowing us to identify the 

best integration position for each of twelve combinations of 

heuristics. Using the best integration position from the two-

heuristic pairs, sets of three heuristics (3-algorithm meta 
heuristics) were then combined and applied to the same 

forestry planning problem. In sum, one heuristic is allowed 

to develop a high quality solution, then another is employed 

to fine-tune or adjust the solution, and finally a third is used 

to fine-tune or adjust the final solution. The point at which 

the meta heuristic switches from one to another is the focus 

of this work. 

 When simulated annealing or threshold accepting are the 

second or third algorithms in a meta heuristic, the initial 

temperature each assumed needed to be adjusted 
accordingly. In other words, through our empirical testing of 

these heuristics, we had located the appropriate initial 

temperature (SA) and threshold (TA) assuming they would 

be the first algorithm in a meta heuristic, not if they were the 

second or the third. When SA or TA are used as the second 

or third heuristic in a meta heuristic, we set the beginning 

temperature (SA) or threshold (TA) as a proportion of the 

original parameter assumption. 

Validation 

 The preferred way to validate the performance of a 

heuristic is to locate the exact optimal solution to a problem, 

and compare it to the solutions provided by the heuristic. 

However, it is impractical to locate the exact optimum 

solution for the planning problem used in this manuscript, 

due to its size (1,123 management units, each with 16 

potential choices) and due to the number of adjacency 

constraints necessary. Boston and Bettinger [4] listed other 

ways to validate heuristic solutions, including comparing 

heuristic solutions with solutions generated from other 

heuristic methods, locating the upper bound solution value 
through linear programming (using a relaxed version of the 

problem), and using the extreme value theory. In this study, 

we compared solutions produced by the 2-algorithm and 3-

algorithm meta heuristics with solutions produced by 

standard heuristics. However, each of the heuristics used 

here has been validated for use in very similar forest 

planning problems [15, 23]. 

 All of the standard heuristics and each of the meta 

heuristic algorithms were developed using the C# language 
under the Microsoft.Net platform. The break point analysis 

was performed using the statistical package ‘strucchange’ in 

the R software program [37]. 

RESULTS AND DISCUSSION 

 In examining the results, we first consider the four 

standard heuristics, then the 2-algorithm meta heuristics, and 

finally the 3-algorithm meta heuristics. Table 1 provides a 

summary of the solution quality and the computing time 
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required for sets of 50 runs of each standard heuristic. 

Simulated annealing produced the highest mean solution 

value ($25.55 million), and threshold accepting produced the 

highest single maximum solution value ($25.73 million). 

The standard deviation for simulated annealing solutions was 

slightly lower than that for threshold accepting solutions. An 

ANOVA analysis indicated that there was no significant 

difference between these two methods in terms of solution 

quality, although their results were significantly different 
(p=0.05) than those provided by tabu search and the raindrop 

method. As for the average computing time needed for 

generating a single solution, simulated annealing and 

threshold accepting were also the two fastest heuristics 

(12.35 s per solution and 13.05 s per solution, respectively). 

Simulated annealing was slightly faster than threshold 

accepting and also had a tighter standard deviation for the 

computing time. The performance of tabu search suggested 

that this algorithm could produce good quality solution 

values, but it needed exceedingly longer time (158.57 s on 

average) to generate one solution compared with all other 

standard algorithms. These results were consistent with 
forest planning problems solved in Bettinger et al. [15]. The 

raindrop method did not seem to perform well on its own, 

and was deemed to be less efficient for the problem at hand 

(longer computing time and lower solution values) compared 

to simulated annealing and threshold accepting. While the 

raindrop method performs well in simpler forest planning 

problems [23], Zhu et al. [40] noted that the raindrop method 

may not perform well in forest planning problems containing 

wood flow constraints. 

 Table 2 provides results comparing the sets of 50 

solutions generated while employing the four integration 

positions in association with the 2-algorithm meta heuristic 

models. Overall, improvements in the maximum solution 

values (over the standard heuristics) were observed using 

several models (e.g., SA-TA, TA-SA, Tabu-SA, and Tabu-

TA). This suggests that either version of the SA-TA 

combination seems fruitful for problems such as the one 

solved here, as well models that begin with a slow 

deterministic algorithm (tabu search) and end with one of the 

fast algorithms (TA or SA). However, the TA-Tabu 
algorithm (fast start, slow finish) using the longest delay 

before integrating the algorithms (integration position 4) 

produced the single best solution and the highest average 

solution value. In a few of these 2-algorithm combinations,  

 

we could not determine a difference (p=0.05) in solution 

quality when considering the four integration positions (e.g., 

Tabu-SA, Tabu-TA, Raindrop-TA and Raindrop-Tabu). 

However, most of the 2-algorithm meta heuristic models 

showed strong significant differences among the different 

integration positions. Further, Tukey’s multiple comparison 

was used to point out which of the integration position 

groups are different. We noticed that the difference mostly 

occurred between integration position 4 (stagnation) and 
other integration positions. From these results we observed 

that the mean solution values using integration position 4 

were larger than those of other integration positions. We 

noted the best integration position for each two-heuristic 

pair, and used this in the development of each 3-algorithm 

meta heuristic. 

 When evaluating the 3-algorithm meta heuristics, we 

found that most of the combinations improved on the 

solution qualities obtained via the standard heuristics. A 

small set of meta heuristics (Table 3) produced results which 
were significantly better (p=0.05) than other combinations of 

heuristics. Most of the better 3-algorithm meta heuristic 

combinations began with a relatively fast heuristic (SA or 

TA) to move quickly through the hill-climbing phase, then 

incorporated tabu search either in the adjustment or steady-

state phases. The raindrop method was also employed in 

some of these meta heuristics for adjusting or fine-tuning the 

solution. In only one case high-quality solutions were 

obtained where the raindrop method was used during the 

hill-climbing phase, followed by a fast heuristic (TA) then a 

deterministic process (tabu search). Meta heuristics that had 
tabu search or the raindrop method employed during the hill-

climbing phase were not as good as the other combinations 

tested. Compared with the best mean solution value from 

five standard algorithms (SA, $25.55 million), eighteen 3-

algorithm meta heuristics (75%) produced higher mean 

solution values. Interestingly, while each of the top seven 3-

algorithm meta heuristics produced results superior to most 

of the 2-algorithm meta heuristics, one 2-algorithm meta 

heuristic (TA-Tabu) produced better results. This limits the 

suggested usefulness of the notion that utilizing the search 

behavior of three heuristics could provide better solutions to 
the problem at hand. 

 The standard deviation of solution values for most 3-

algorithm meta heuristics were around $0.08 or $0.09 

million, with a few exceptions. Compared with standard  

 
 

Table 1. A Summary of Solution Quality and Solution Speed for a Sample of 50 Runs of Four Standard Heuristics 

 

Solution Quality Computing Time 

Algorithms 
Mean 

 (Million $US) 

Standard Deviation  

(Million $US) 

Maximum 

(Million $US) 
ANOVA Groups Mean (s) 

Standard  

Deviation (s) 

SA 25.55 0.08 25.72 A 12.35 0.11 

TA 25.51 0.10 25.73 A 13.05 0.28 

Tabu 24.79 0.27 25.47 B 158.57 49.92 

Raindrop 21.76 0.25 22.41 C 63.77 3.89 

SA = Simulated annealing, TA = Threshold accepting, Tabu = Tabu search, Raindrop = Raindrop method. 
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Table 2. A Summary of Solution Quality and Solution Speed for 50 Runs of Twelve 2-Algorithm Heuristics Using Four Different 

Integration Positions 

 

Solution Quality Multiple Comparison Result Computing time 

Link Type 
Integration 

 Position Mean  

(Million $) 

Standard  

Deviation (Million $) 

Maximum 

(Million $) 
p-Value Groups

a
 Mean (s) 

Standard 

Deviation (s) 

1 25.56 0.13 25.78 AB 14.95 0.33 

2 25.55 0.13 25.78 B 14.98 0.14 

3 25.53 0.13 25.76 B 15.05 0.12 
SA-TA 

4 25.62 0.08 25.78 

0.002 

A 52.46 2.24 

1 25.61 0.08 25.75 AB 14.39 0.12 

2 25.57 0.09 25.72 BC 14.39 0.13 

3 25.57 0.07 25.73 C 14.40 0.12 
TA-SA 

4 25.64 0.08 25.81 

0.000 

A 64.49 1.30 

1 25.05 0.18 25.45 A 53.40 22.45 

2 24.99 0.22 25.34 A 53.23 17.93 

3 25.02 0.26 25.55 A 59.33 19.74 
SA-Tabu 

4 25.77 0.10 25.97 

0.000 

B 70.61 8.17 

1 25.60 0.09 25.79 A 15.27 0.25 

2 25.59 0.08 25.75 A 15.26 0.46 

3 25.58 0.07 25.76 A 15.64 1.01 
Tabu-SA 

4 25.60 0.08 25.78 

0.692 

A 182.96 269.27 

1 25.05 0.17 25.37 A 60.71 25.00 

2 25.09 0.17 25.36 A 63.13 22.12 

3 25.07 0.16 25.36 A 58.65 22.56 
TA-Tabu 

4 25.89 0.10 26.09 

0.000 

B 92.71 12.84 

1 25.54 0.13 25.77 A 15.04 0.31 

2 25.54 0.13 25.77 A 15.27 0.58 

3 25.50 0.13 25.73 A 15.57 0.95 
Tabu-TA 

4 25.55 0.11 25.77 

0.123 

A 223.12 257.69 

1 23.50 0.31 24.06 A 75.18 3.88 

2 23.51 0.27 24.01 A 86.89 5.08 

3 23.52 0.32 24.07 A 98.88 3.58 
SA-Raindrop 

4 25.61 0.07 25.86 

0.000 

B 159.70 16.37 

1 25.49 0.08 25.65 A 482.09 5.24 

2 25.53 0.08 25.69 A 491.83 11.82 

3 25.50 0.07 25.65 A 488.89 10.45 
Raindrop-SA 

4 25.49 0.09 25.66 

0.039 

A 15.21 0.58 

1 23.47 0.24 23.84 A 73.92 4.09 

2 23.47 0.22 23.84 A 86.35 5.27 

3 23.57 0.22 23.95 A 98.21 3.66 
TA-Raindrop 

4 25.61 0.09 25.79 

0.000 

B 167.23 9.19 

1 25.47 0.12 25.68 A 483.12 5.22 

2 25.49 0.12 25.72 A 504.08 9.19 

3 25.49 0.14 25.75 A 525.90 8.42 
Raindrop-TA 

4 25.45 0.12 25.63 

0.267 

A 15.65 0.32 

1 21.67 0.27 22.44 A 76.06 5.70 

2 21.70 0.40 22.44 A 88.09 7.05 

3 21.81 0.39 22.78 A 100.99 4.70 

Tabu-
Raindrop 

4 23.71 0.54 24.99 

0.000 

B 248.14 245.02 

1 24.33 0.41 25.13 A 563.25 36.94 

2 24.35 0.31 24.98 A 632.38 44.13 

3 24.30 0.41 25.09 A 564.99 34.19 

Raindrop-
Tabu 

4 24.42 0.37 25.13 

0.402 

A 84.24 25.53 

SA = simulated annealing, TA = threshold accepting, Tabu = tabu search, Raindrop = raindrop method. 
a Significantly different groups within the “link type”. 
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algorithms TA ($0.10 million) and SA ($0.08 million), more 

than 85% of meta heuristics have the same variability of 

solution values as the standard TA and SA algorithms. But 

compared with standard tabu search ($0.27 million) and the 

raindrop method ($0.25 million), the standard deviations of 

most 3-algorithm meta heuristic results were much tighter. 

As for computing time, as a general trade-off, all 2-algorithm 

or 3-algorithm meta heuristics required much longer 

computing time to generate a good solution than did the 

standard heuristics. This extended computing time was 
expected, and not only included the running time for three 

different standard algorithms, but also included time for 

fitting smoothing splines to a search path and calculating the 

integration points for switching among algorithms. Some 

meta heuristics had very large standard deviation values for 

computing times, which was due to the trouble involved in 

finding the integration point for tabu search to switch to the 

next algorithm. In some of the runs of these models, the 

integration point appeared early in the search, but in other 

runs, it only occurred after a large number of iterations. 

CONCLUSIONS 

 Rather than modifying a single standard heuristic, we 

chose to use standard heuristics in combination to understand 

if their respective search behaviors can be combined 

efficiently and effectively to solve a typical forest planning 

problem. For example, due to its deterministic component, 

standard 1-opt tabu search is an average performer in most 

forest planning problems, and it loses its effectiveness soon 

after a short hill-climbing phase. Therefore, the goal of this 

research was to determine whether the unique search 

behavior of multiple heuristics could be used to address 

forest planning problems. While our initial hypothesis was 

that an early transition from one heuristic to another would 

be beneficial in the search process, we found that the best 

integration point seems to be when the improvement in 

solution values of using one algorithm wanes (i.e., solution 

values stagnate). The only exception is when starting with 

tabu search, although as we have shown for this one 

problem, meta heuristics starting with tabu search are not as 

effective as the others. The best 2-algorithm meta heuristic 
combines a fast random search (TA) with a slower 

deterministic process (tabu search). The best 3-algorithm 

meta heuristic combines fast random search (TA) with a 

slower deterministic process (tabu search), and ended with a 

combined random-deterministic process (raindrop method). 

However, this 3-algorithm meta heuristic is relatively slow, 

when considering computing time, and the addition of the 

raindrop method does not seem to add to an increase in 

solution quality. 

 This work has shown that meta heuristics that combine 

the beneficial aspects of standard heuristics and how they 

behave in the three phases of a search, will generally produce 

consistently better solutions than standard heuristics alone. 

In general, a forest planning meta heuristic that begins with 

simulated annealing or threshold accepting, then utilizes tabu 

search or the raindrop method, seems to enable one to 

develop better solutions than when using the standard 

heuristics alone. In other words, starting with tabu search or 

the raindrop method is not as effective as starting with 

simulated annealing or threshold accepting. Ending with tabu 

search or raindrop method presents better results than ending 

Table 3. A Summary of Solution Quality and Solution Speed for 50 Runs of Some of the 3-Algorithm Meta Heuristics 

 

Solution Quality Computing Time 

Model 
Mean 

(Million $US) 

Standard Deviation 

(Million $US) 

Maximum  

(Million $US) 

Percentage  

Improved (%)
a
 

p-Value
b
 

ANOVA 

Groups 

Mean 

(s) 

Standard 

Deviation (s) 

TA-Tabu-Raindrop 25.87 0.10 26.01 1.23 0.000 A 155.39 27.10 

TA-Raindrop-Tabu 25.86 0.08 26.02 1.23 0.000 A 84.86 8.73 

TA-Tabu-SA 25.85 0.09 26.04 1.18 0.000 AB 99.08 23.54 

SA-TA-Tabu 25.85 0.09 25.98 1.16 0.000 AB 115.81 7.75 

TA-SA-Tabu 25.85 0.08 26.03 1.16 0.000 AB 119.62 7.94 

SA-Tabu-TA 25.84 0.08 26.02 1.12 0.000 AB 119.06 9.99 

SA-Raindrop-Tabu 25.78 0.09 25.98 0.90 0.000 ABC 72.18 8.07 

Raindrop-TA-Tabu 25.76 0.11 25.98 0.81 0.000 ABC 83.00 7.28 

SA-Tabu-Raindrop 25.74 0.08 25.87 0.74 0.000 BCD 143.75 25.79 

Tabu-Raindrop-SA 25.55 0.26 25.73 -0.01 0.538 FGHI 245.35 261.61 

Raindrop-SA-TA 25.54 0.08 25.73 -0.03 0.687 FGHI 53.68 2.99 

Tabu-Raindrop-TA 25.52 0.14 25.74 -0.13 0.926 GHI 265.77 289.30 

Raindrop-Tabu-SA 25.49 0.09 25.68 -0.25 1.000 HI 206.37 259.12 

Raindrop-Tabu-TA 25.47 0.14 25.72 -0.32 1.000 HI 282.72 289.87 

Tabu-SA-Raindrop 25.46 0.48 25.74 -0.37 0.913 I 260.66 247.24 
aOver the mean solution value generated with simulated annealing. 
bCompared with solutions generated with simulated annealing. 
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with simulated annealing or threshold accepting. We 

demonstrate that determining when to switch, or integrate, 

algorithms can successfully be made based on the behavior 

of the search, rather than being made based on some a priori 

decision of the planner. While this transition seems to be 

when the quality of solutions generated by the prior heuristic 

stagnate, this knowledge can prevent premature switching of 

heuristic methods or prevent wasteful computational effort 

should the search extend well beyond a stagnation phase. 

 This study is limited in that only standard versions of the 

individual heuristic techniques were used to form meta 

heuristics. Improvements in tabu search performance, for 

example, have been reported by incorporating strategic 

oscillation [18] or 2-opt processes [5] into a search process. 

Further, we explored only the set of heuristic techniques 

which have been commonly used in forest management 

planning, and other techniques that have been reported 

through the broader operations research community may be 

of value in solving the type of forest planning problems 
described here. Therefore, one suggested improvement and 

future direction for this work may involve assessing a 

broader collection of heuristic techniques to combine and 

evaluate as meta heuristics. Another suggestion would be to 

focus on the top five or ten meta heuristics found here, and 

refine the individual heuristic techniques used to emulate the 

recent advances suggested earlier. However, we feel that our 

work represents an advance in exploring efficient and 

effective methods for locating near-optimal solutions to 

complex forest planning problems. Further refinement of the 

techniques used, along with the knowledge gained by 
intelligently understanding when to switch from one 

heuristic technique to another in a meta heuristic model, may 

lead to the development of search processes that can locate 

near-optimal solutions to combinatorial problems that are 

difficult (from problem formulation and computational time 

perspectives) to solve with exact techniques (e.g., integer 

programming). 
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