
32 The Open Prostate Cancer Journal, 2009, 2, 32-37  

 

 1876-8229/09 2009 Bentham Open 

Open Access 

Racial Differences in 3-D Nuclear Chromatin Patterns of Prostate Cancer 

André Huisman
1
, Lennert S. Ploeger

1
, Hub F.J. Dullens

1
, Jeroen A.M. Belien

2
, Gerrit A Meijer

2
, 

Neal Poulin
1
, William E. Grizzle

3
 and Paul J. van Diest

1,* 

1
Department of Pathology, University Medical Center, Utrecht; 

2
Department of Pathology, VU University Medical  

Center, Amsterdam, The Netherlands and 
3
Department of Pathology, University of Alabama at Birmingham, Alabama, 

USA 

Abstract: Purpose: There is a significant difference in prostate cancer incidence and stage corrected mortality between 

African-American (AA) and Caucasian-American (CA) men. These differences have largely been contributed to social-

economic factors, yet variation in prostate cancer related gene expression has been found as well. The aim of this study 

was to analyze whether these differences are reflected also in the 3-D distribution patterns of the nuclear chromatin. 

Materials and Methods: Prostatectomy sections from 21 prostate cancer patients (10 AA and 11 CA) were cut and nuclear 

DNA was stained with TO-PRO-3. 3-D image stacks of selected malignant areas were obtained by confocal laser scan-

ning microscopy. Image analysis was performed using in-house developed software for 3-D semi-automated segmentation 

and computation of DNA content and our previously developed 3-D nuclear texture features. The power of these features 

to discriminate between AA and CA patients was established by univariate ROC and linear discriminant analyses, stratify-

ing for prognosis. 

Results: Five 3-D texture features discriminated between AA and CA men irrespective of prognosis, 27 features had dis-

criminative value for AA and CA men in the subgroup of bad prognosis patients, and 8 features in the good prognosis 

subgroup. Several features had additional discriminative value in multivariate discriminant analysis.  

Conclusions: There are differences in the 3-D nuclear chromatin distribution between AA and CA men with similar prog-

nosis. This is further evidence that the differences of prostate cancer in AA and CA men are not only related to socioeco-

nomic differences, but also to genomic differences. 
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INTRODUCTION  

 There is a significant difference in prostate cancer inci-
dence and mortality between African-American (AA) and 
Caucasian American (CA) men. Death rates from prostate 
cancer among AA men are more than twice the rates in CA 
men, even when diagnosed at the same clinical stage [1]. AA 
men having prostate cancer generally show higher PSA 
blood levels at a younger age and more extensive disease[2-
4]. These differences have usually been associated with dif-
ferences in social-economic environment [5]. However, it 
remains controversial if the higher mortality rates in AA men 
are explained only by these differences, because molecular 
differences have been found as well [6]. It is known that 
there are racial differences in serum vitamin D levels, which 
is associated with a higher risk for several diseases, among 
which is also prostate cancer [7]. On the genetic level for 
example, a higher frequency of mutations in the EphB2 gene 
was found in tumors from AA patients compared to tumors 
from CA men [8]. Another study showed that the epidermal 
growth factor receptor gene, known to be of importance in 
the oncogenesis of prostate cancer [9], is significantly more 
often overexpressed in AA patients [10].  
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 These genomic differences are reflected in morphological 
differences, used by pathologists in daily practice to diag-
nose malignancy, like increased nuclear size, presence of and 
increased size of nucleoli and aberrant chromatin distribution 
patterns [11-13]. The nuclear chromatin distribution in ge-
netically altered cells is generally coarsely-clumped with 
multiple chromacenters and larger nucleoli, as opposed to 
finely granular with few chromacenters and no or small nu-
cleoli in normal cells. These changes are often rather subtle 
or even subvisible, and are referred to as “malignancy asso-
ciated changes” as they may be detected in morphologically 
benign cells as well [13-15]. They are therefore best not 
visually assessed but mathematically quantified by comput-
erized image analysis as “texture features” that are very sen-
sitive and not prone to observer subjectivity. 

 A number of papers have been published on the clinical 
value of the assessment of DNA content and nuclear texture 
features by image analysis, using conventional 3-4 m thick 
prostate tissue sections has been produced [16-18]. However, 
imaging thin tissue slices obviously may result in loss of 
valuable 3-D texture information. This can be avoided by 
preparing cytospins from cell suspensions, but this intro-
duces artifacts by the flattening of nuclei while spinning 
them down. Furthermore, the morphological context of the 
analyzed nuclei is completely lost.  



Racial Differences in 3-D Nuclear Chromatin Patterns of Prostate Cancer The Open Prostate Cancer Journal, 2009, Volume 2    33 

 These drawbacks can be completely avoided by imaging 
thick sections (typical 10-50 m) by Confocal Laser Scan-
ning Microscopy (CLSM). Thin optical slices are acquired at 
high resolution by confocal imaging, and these are subse-
quently reconstructed in 3-D [19]. In previous studies we 
described 3-D segmentation procedures to obtain individual 
nuclei from an acquired image stack [20], established the 
required nuclear sample size to achieve proper 3-D DNA 
histogram quality [21], developed an optimal tissue process-
ing technique for 3-D Confocal Laser Scanning Microscopy 
(CLSM) [22], described the successful software implementa-
tion of 3-D nuclear texture features [23] and performed a 
pilot study on the clinical value of the assessment of DNA 
content and nuclear texture features by CLSM [13]. The aim 
of the present study was to analyze whether the racial differ-
ences in clinical presentation and genomics between prostate 
cancer in AA and CA men are reflected in the 3-D distribu-
tion patterns of nuclear chromatin in prostate cancer cells. 

MATERIALS AND METHODS 

Tissue Preparation 

 Prostatectomy tissue sections from 10 AA men and 11 
CA men having prostate cancer were selected by a patholo-
gist (WEG) from the archives of the Department of Pathol-
ogy, University of Alabama at Birmingham, USA. Twelve of 
these patients had a good prognosis (AA n=8, CA n=4) and 9 
had a bad prognosis (AA n=2, CA n=7). The patients in-
cluded in this study were approximately matched on age 
(range: 50-71 years, average 63 years, standard deviation: 6 
years), stage and Gleason score (Table 1). 
 

Table 1. Distribution of Gleason Scores and Stage Among the 

African-American (AA) and Caucasian American 

(CA) Patients Studied  

  AA CA 

 Good Bad Good Bad 

Gleason 6-7 

Gleason 8-10 

Gleason unknown 

8 

  

  

1 

1 

  

3 

  

1 

6 

 

1 

Stage T2 

Stage T3 

Stage Unknown 

5 

3 

  

  

2 

  

3 

1 

  

 

5 

2 

 

 Fourteen micron thick sections were cut from representa-
tive paraffin-embedded tissue blocks. Our previously devel-
oped protocol [22] was used for staining: incubation with 
RNase-A for 1 hour and staining with TO-PRO-3 (Molecular 
Probes, Eugene, OR, USA) in a concentration of 1:2,200 for 
2 hours at room temperature [24]. After rinsing with distilled 
water the samples were mounted in Vectashield (Vector 
Laboratories, Burlingame, CA, USA). The coverslip was 
sealed with nail polish. 

Image Acquisition and Analysis 

 Image stacks were acquired with a confocal microscope 
(TCS SP2 AOBS, Leica Microsystems, Heidelberg, Ger-

many) using the 40/1.25 NA oil immersion objective with a 
zoom factor of 2.0 (total magnification of 80). To obtain 
measurements for at least 300 nuclei as previously estab-
lished [21], between the 10 and 15 image stacks were ac-
quired, depending on the number of nuclei per image stack. 
The different microscopic fields were selected approximately 
3.0 mm apart from each other to avoid potential bleaching of 
neighboring fields during image acquisition. The x-y coordi-
nates of each field were stored using in-house developed 
add-on software for the confocal microscope [13]. These 
coordinates were used for automated acquisition of the de-
fined fields. Subsequently, the bottom and top of the defined 
fields were identified interactively as the slices where hardly 
any signal was detectable [20]. Stacks of approximately 120 
2-D digital images (512x512 pixels) were obtained, depend-
ing on the effective thickness of the tissue. Resolution at the 
specimen level was 0.292x0.292x0.285 μm

3
 and the dynamic 

range was 12 bits. 

 The image stacks were segmented to obtain the bounda-
ries for the individual nuclei. These nuclei were analyzed 
off-line using in-house developed software, as described 
previously [21]. Segmentation was stopped when 300 nuclei 
were collected. 

Texture Feature Computation 

 Our in-house developed software for the computation of 
35, 3-D texture features was used as described previously 
[23]. In short, the selected texture features are from three 
different classes: discrete features, Markovian features and 
fractal features. General descriptive statistical features of the 
grey-value distribution were computed as well [25]. Discrete 
texture features summarize several general statistics for the 
different chromatin condensation states in the nucleus, corre-
sponding to different ranges of grey-values. The Markovian 
features involve second order grey level statistics and are 
computed from co-occurrence matrices, representing the 
joint probability that pairs of grey-level combinations co-
occur together. Several statistics can be computed from those 
matrices: heuristic features, statistical features and features 
taken from information theory [26]. Fractals are mathemati-
cal objects which have similar details on every scale. Frac-
tals have a strong correlation with human judgment of tex-
ture roughness [27]. Fractal texture features are used to de-
scribe the fractal properties of the nuclei. 

Data Analysis 

 First, Receiver Operating Characteristic (ROC) curves 
were plotted for each feature as a graphical representation of 
the trade off between the false negative and false positive 
rates, and the area under curve (AUC) was calculated as a 
measure of discriminative power. ROC computation was 
performed for the complete dataset (AA versus CA men) as 
well as on the nuclei grouped by prognosis group (AA good 
versus CA good; AA bad versus CA bad). Discriminative 
texture features had an AUC of 0.5-1, and features with an 
AUC  0.70 were arbitrarily considered to have good dis-
criminative power. 

 Further, multivariate linear discriminant analysis with 
step-wise addition of new variables was applied, minimizing 
Wilks’ lambda statistic. Leave-one-out was used as cross 
validation technique. The five most discriminative texture 
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features were selected according to the steepest descent in 
Wilks’ lambda statistic. This approach was used to discrimi-
nate between the pooled AA and CA nuclei as well as be-
tween the pooled AA and CA nuclei within the good and bad 
prognosis subgroups. Finally, the pooled nuclei of good and 
bad prognosis patients were discriminated, irrespective of 
race. 

RESULTS 

 The number of patients per prognosis group and some 
tumor characteristics are given in Table 1. The number of 
segmented nuclei per prognosis group is given in Table 2 for 
both races. AUC values for the 35 3-D nuclear texture fea-
tures for discriminating between pooled nuclei from AA men 
versus CA men are shown in the second column of Table 3. 
Five features yielded AUC values above 0.7. The second and 
third columns show the AUC values after performing an 
ROC analysis on the pooled nuclei within the subgroups of 
good and bad prognosis. For the subgroup of patients with 
bad prognosis, 27 features yielded AUC values above 0.7 
when discriminating nuclei from AA and CA men. For the 
subgroup of patients with good prognosis, 8 features yielded 
AUC values above 0.7 when discriminating nuclei from AA 
and CA men. In Fig. (1), examples are given of nuclei from 
AA and CA men of the bad and good prognosis subgroups, 
showing that also visually there are differences in nuclear 
texture. 

 ROC analysis for discriminating between patients having 
a good and bad prognosis without grouping by race revealed 
6 well discriminative features (AUC  0.70): Grey skewness, 
Grey kurtosis, Average extinction ratio of low density re-
gion, Low versus medium average extinction ratio, Low ver-
sus medium high average extinction ratio, and Low versus 
high average extinction ratio, but none of these had values 
above 0.8.  

 In Table 4, the nuclear texture features that were selected 
in multivariate linear discriminant analysis are presented, 
together with the absolute values of their standardized dis-
criminant function coefficients that indicate their relative 
importance in discriminating between nuclei from AA men 
and CA men. The discriminant analysis was separately ap-
plied on all pooled nuclei of AA and CA men (complete 
dataset), as well as on the pooled nuclei of AA and CA men 
of the good and bad prognosis subgroups.  

 Table 5 shows the performance of the classification func-
tions in terms of the relative amounts of correctly classified 
nuclei. For the complete dataset, 67% of the nuclei were cor-

rectly identified as being of AA or CA origin. The nuclei 
from patients having a good prognosis were classified cor-
rectly as being from an AA or a CA man in 80% of the 
cases, and 89% of nuclei from patients having a bad progno-
sis were classified correctly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Examples of maximum intensity projections of nuclei from 

AA (left) and CA men (right) of the good prognosis (top row) and 

bad prognosis (bottom row) subgroups, showing that also visually 

there are differences in nuclear texture. These nuclei are obtained 

from a stack of prostate tissue stained with TO-PRO-3, acquired by 

CLSM, imaged with a 40/1.25 NA oil immersion objective with a 
zoom factor of 2.0 (total magnification of 80). 

DISCUSSION 

 The aim of this study was to establish the differences in 
nuclear chromatin texture between AA and CA patients hav-
ing prostate cancer. Although technically challenging, we 
did this in 3-D, as theoretically this should yield more infor-
mation than conventional 2-D analysis, which we indeed 
proved in a previous study [23]. Since previous studies 
showed that 2-D texture have prognostic value in prostate 
cancer [16, 17], we stratified for prognosis. 

 In univariate ROC analysis, five 3-D texture features 
could discriminate well between the nuclear chromatin from 

Table 2. Summary of the Number of Segmented Nuclei Per Race and Prognosis Group is Depicted*, as well as the Average Num-

ber of Segmented Nuclei Per Image Stack** 

AA Men (10 Patients) CA Men (11 Patients) 

Prognosis 

# Patients # Nuclei # Patients # Nuclei 

Good  8 1621*, 180** 4 637*, 159** 

Bad  2 307*, 154** 7 1619*, 179** 

Totals 10 1928*, 175** 11 2256*, 174** 
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Table 3. AUC Values for the 35, 3-D Nuclear Texture Features for Discriminating between Pooled Nuclei from all AA Men and CA 

Men Independent of Prognosis (Second Column), as well as for the Subgroups with Bad Prognosis (Third Column) and 

Good Prognosis (Fourth Column). Strongly Discriminating Features (Having an AUC Value Greater than or Equal to 0.7) 

are Depicted in Bold 

Feature Type All Cases 
Subgroup with Bad  

Prognosis 

Subgroup with Good  

Prognosis 

Grey sum 0.56 0.79 0.79 

Grey mean 0.53 0.56 0.67 

Grey variance 0.67 0.72 0.68 

Grey skewness 0.65 0.76 0.57 

Grey kurtosis 0.61 0.74 0.66 

Energy 0.65 0.79 0.61 

Entropy 0.54 0.58 0.60 

Inverse difference moment 0.61 0.92 0.66 

Inertia 0.68 0.93 0.53 

Correlation 0.57 0.55 0.67 

Cluster shade 0.67 0.71 0.65 

Cluster prominence 0.65 0.66 0.67 

Volume (pixels) of low density region 0.51 0.85 0.74 

Volume (pixels) of medium density region 0.52 0.85 0.69 

Volume (pixels) of highdensity region 0.51 0.87 0.73 

Average extinction ratio of low dens. region 0.74 0.86 0.56 

Average extinction ratio of med. dens. region 0.67 0.74 0.65 

Average extinction ratio of high dens. region 0.73 0.83 0.64 

Low vs. medium average extinction ratio 0.77 0.89 0.61 

Low vs. med-high average extinction ratio 0.77 0.89 0.60 

Low vs. high average extinction ratio 0.77 0.89 0.60 

Number of unconnected low areas 0.55 0.79 0.71 

Number of unconn. Medium areas 0.51 0.60 0.53 

Number of unconn. high areas 0.55 0.77 0.68 

Low compactnes 0.52 0.53 0.56 

Med compactnes 0.52 0.80 0.74 

High compactnes 0.52 0.69 0.69 

Low avg. distance to geo-center 0.52 0.72 0.57 

Med avg. dist. geo-center 0.52 0.75 0.54 

High avg.dist. geo-center 0.59 0.85 0.54 

Asymetry of low region w.r.t. to nuclear center 0.60 0.84 0.84 

med asym.nuc.cntr 0.61 0.83 0.79 

high asym. nuc. Cntr 0.60 0.85 0.83 

Lacunarity 0.53 0.59 0.54 

Fractal dimension 0.52 0.84 0.66 

#features having AUC  0.7 5 27 8 
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Table 4. Discriminant Function Coefficients of Different 3-D Nuclear Texture Features Selected in Linear Discriminant Analysis 

Separating Pooled Nuclei from AA and CA Men. The Discriminant Analysis was Applied on the Complete Dataset, as well 

as on the Subgroups of Nuclei from Bad and Good Prognosis Cases. Coefficients are Standardized Discriminant Coeffi-

cients 

Complete Dataset Good Prognosis Cases Bad Prognosis Cases 

Texture Feature Coefficient Texture Feature Coefficient Texture Feature Coefficient 

Grey kurtosis 0.50 Grey mean 1.09 Grey sum 1.22 

Compactness of low region 0.75 Grey variance 0.81 Inverse difference moment 0.59 

Inertia 0.75 Inertia 1.58 Entropy (of co-occurrence matrix) 0.20 

Volume of low density area 0.53 Asymmetry w.r.t. nuclear center of high region 0.49 Fractal dimension 0.34 

 

Table 5. Cross Validated Classification Results of the 3-D Nuclear Texture Features Selected in Linear Discriminant Analysis 

Shown in Table 3. The Discriminant Analysis was Applied on the Complete Dataset, as well as on the Nuclei Grouped by 

Prognosis. The Percentages Indicate the Relative Amount of Classified Nuclei as being from a Specified Group
*
, Given the 

Actual Group Membership
**

. The Features in Bold Indicate the Percentage of Correctly Classified Nuclei 

Predicted Group Membership
*
 

 Actual Group Membership
**

 

AA Men (%) CA Men (%) 

% Correctly Classified 

AA men 65 35 
Complete dataset 

CA men 31 69 

67% 

AA men 76 24 
Good prognosis cases 

CA men 18 82 
80% 

AA men 87 13 
Bad prognosis cases 

CA men 4 96 
89% 

 

AA patients and that of CA patients (Table 3). These were 
all from the class of discrete texture features. Being from the 
same class, these features are to some extent correlated as 
well; however, when taking prognosis into account, the clas-
sification rates improved significantly. This confirms the 
idea that prognosis is indeed an important stratification fac-
tor. For the subgroup of patients with bad prognosis, no 
fewer than 27 features (from different classes) yielded AUC 
values above 0.70 when discriminating nuclei from AA and 
CA men, with many features having AUC values around or 
above 0.90. For the subgroup of patients with good progno-
sis, 8 features yielded AUC values above 0.70 when dis-
criminating nuclei from AA and CA men. Therefore, al-
though there are apparently differences in 3-D nuclear chro-
matin patterns of prostate cancer nuclei from AA and CA 
men, these differences are most prominent within the sub-
group of patients with bad prognoses. Because the differ-
ences between AA and CA men having a bad prognosis are 
the most outstanding, this is an indication that although these 
patients have a similar prognosis, there are differences in the 
genomic processes related to the progress of the disease. 
These differences might account for the high mortality rate 
of AA men. The actual underlying genetic events that may 
explain the differences in nuclear chromatin patterns be-
tween AA and CA men are not known, but deserve to be 

further studied by e.g. correlating data from genomic arrays 
and microarray expression analysis with nuclear texture fea-
tures. 

 It was interesting to note that irrespective of grade, many 
of the nuclear texture features could discriminate between 
patients with good and bad prognosis. This implies that our 
3-D features may have prognostic value. It will be interesting 
to evaluate the comparative prognostic value of 2-D and 3-D 
features in a subsequent study. 

 Using the current status of our technology we are able to 
correctly classify a high percentage of nuclei from AA and 
CA men. The statistical power of this study would increase if 
more patient samples would be included. A limitation of the 
current analysis clearly is the number of texture features that 
was analyzed compared to the number of cases included in 
the study. Furthermore, improvements can be made increas-
ing the image quality, especially the resolution in the axial 
direction. Better image quality may also be obtained by de-
convolving the images [28] or by using 4-Pi microscopy 
[29].  

 In conclusion, this is the first study describing that 3-D 
nuclear chromatin texture features obtained by quantitative 
confocal laser scanning microscopy reveal racial differences 
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between prostate cancer nuclei from AA and CA men strati-
fied for prognosis. This underlines the hypothesis that there 
are not only socioeconomic but also genomic differences 
between prostate cancer in AA and CA men. 
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