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Abstract: The integral of the kinetic electrostatic surface wave dispersion relation is asymptotically evaluated to 

determine the frequencies of the normal modes and the corresponding Landau damping for the high frequency surface 

electron plasma wave and the low frequency surface ion acoustic wave. The asymptotically calculated Landau damping 

rates apply to the limiting cases of kx e <<1  and kx e >>1  where kx  is the wavenumber and e  is the electron Debye 

length. We also calculate Landau damping rate of the transverse magnetic (TM) mode surface wave. 
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1. INTRODUCTION 

 In contrast to Landau damping accompanying bulk 

plasma waves which can be immediately evaluated in terms 

of the well-documented plasma dispersion function, Landau 

damping in surface plasma waves is obtained only after 

carrying out the integral of the surface wave dispersion 

relation which requires basically numerical computation. 

Analytic results can be obtained only after resorting to some 

approximation to deal with the integral which involves 

complex algebraic structure and Maxwellian distribution 

function contained in the plasma dielectric function ( L ). 

This is seen from the dispersion relation integral 

1+
kx  

z 0
lim dkz

e
ikzz

k2
L

= 1+
kx  

dkz
k2

L

= 0.  (1) 

 Equation (1) is the well-known electrostatic surface wave 

dispersion relation integral [1-3] which applies to a semi-

infinite Vlasov-Poisson plasma separated from a vacuum by 

the interface z = 0  under the specular reflection boundary 

condition. In Eq. (1), we assumed that the Fourier variable, 

the wave vector, k = (kx , 0, kz ) , which replaces the spatial 

coordinate in Vlasov and Maxwell equations. Putting ky = 0  

is not loss of generality. The geometry which is involved in 

surface wave has two directions: the perpendicular direction 

to the interface (the z -coordinate here) and the direction of 

the propagation of the surface wave which is taken to be the 

x -direction here. We wrote the first expression of Eq. (1) to 

show that the pole at the denominator is associated with the 

attenuation constant of the surface wave. Otherwise, the 

second equality is the object of our analysis. 

 In this work, it is shown that there are transformations 

which facilitate asymptotic evaluation of the integral with 

sufficient rigor in the respective parameter regions of  
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kx e << 1  and kx e >> 1 . With the transformations, we 

expect to obtain almost exact results in the aforementioned 

parameter regions, without expending labor of numerical 

work. 

 Here we consider two normal modes of surface wave: 

high frequency electron plasma surface wave and low 

frequency ion acoustic surface wave. The high frequency 

surface wave (as well as its corresponding bulk wave) is 

such that >> k ve  while the low frequency ion acoustic 

surface wave as well as its corresponding bulk ion acoustic 

wave has frequencies such that k vi << << k ve  ( v  is 

the thermal velocity of species ). Using the expressions 

for L  in the respective frequency ranges, given in standard 

texts, we integrate Eq. (1) to determine real frequency and 

the Landau damping in the following sections. 

 Landau damping rates of the surface waves are reported 

in the monographs written by Alexandrov et al. [1] and 

Sitenko [4]; with very unsimilar results. The longitudinal 

dielectric function L  contains electron term as well as ion 

term (see Eq. (3)). Alexandrov et al. [1] neglected the ion 

term while keeping the electron term. Sitenko [4] opted for 

the opposite choice. In this work, both terms are included, 

and the relative importance of the two terms is weighed. 

Correctness of this work is checked against these earlier 

results. 

 We also calculate in the last section Landau damping rate 

of TM mode surface wave (surface polariton) in two 

asymptotic regions ( pe / k << c  and pe / k >> c ). 

2. SURFACE ION ACOUSTIC WAVE 

 Let us first consider the surface ion acoustic wave. In the 

low frequency range, we have L = r + i i  with [1, 5] 

r = 1+
1

k2
e
2 (1

Te
mi

 
k2

2 ) = 1 pi
2

2 +
1

k2
e
2  (2) 
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i =
=e,i k

2 2 k

m

2T
 exp [

m 2

2T k2 ].  (3) 

 Our general procedure toward obtaining the surface wave 

dispersion relation and the Landau damping is as follows. 

Assuming r >> i , we adopt a kind of perturbation 

approach: the zero order dispersion relation would be 

obtained by neglecting i  in Eq. (1). The real frequency 

determined only by r  would be used, if necessary, to 

simplify the integral. We put L = r (1+ i i / r )  where the 

second term is << 1 . Then the dispersion relation integral in 

Eq. (1) becomes 

1+
kx dkz

k2
r

1 i i

r

= 0.     (4) 

 Approximate eigenfrequency is obtained from the real 
part, 

Dr 1+
kx dkz

k2
r

= 0    (5) 

which takes the form upon using Eq. (2) 

1+
kx
q( )

dkz
kz

2
+

2 = 0    (6) 

q( ) = 1 pi
2

2 , = kx
2
+

1

q e
2  

where pi  =
4 Ne2

mi

 is ion plasma frequency, and 

e =
Te

4 Ne2
, electron Debye length. Now the integral in 

Eq. (6) can be carried out by picking up the residue at the 

pole kz = i  to yield 

Dr = 1+
1

q( )
 

q

1+ q
= 0      ( = kx

2
e
2 ).  (7) 

 The quantity  is the attenuation constant, giving the z -

dependence ~ e z
. Clearly, as is seen from Eq. (7),  q( )  

should be negative to have the ion acoustic surface wave 

supported. Also we need 1+ q < 0 : 

q < 0,   q +
1

< 0.              (8) 

 Squaring Eq. (7) gives q2 + q = 0  which is solved 

by 

q =
1

2
( 1± 1+ 4 2 ).                (9) 

 Here we consider two limiting cases of . 

 

 i) << 1 : In this case, we have 
 

q
1

2
[ 1± (1+ 2 2 )]  

in which the positive sign should be rejected in view of Eq. 

(8), while the ( )  sign is in accord with Eq. (8). Neglecting 

the 
2

 term, we obtain 

 

2 =
kx

2
e
2

pi
2

1+ kx
2

e
2       (q

1
,  << 1).  (10) 

 Equation (10) is the well-known dispersion relation. The 
surface ion acoustic wave dispersion relation is of the same 
form as the bulk ion acoustic wave. 

 ii) >> 1 : In this case, we obtain 
 

q
1

2
( 1± 2 ) . 

Only the ( )  sign is acceptable and we have the solution 

 

2 = pi
2

2
       (q 1,  >> 1).  (11) 

 It should be noted that the surface ion acoustic wave does 

not asymptote to the line 
2 = pi

2
, but approaches the line 

2 = pi
2

2
. 

 We write for future reference 

kx
=

2

1+ 2 << 1   when << 1,  (12) 

kx
=

2 1

2 +1
1   when >> 1.  (13) 

 Next we calculate the imaginary part of Eq. (4): 

Di i
kx  dkz  

i

k2
r
2 .  

 Using the relation k2 r = q(kz
2
+

2 )  and Eq. (3), the 

above expression can be put into the form 

Di = i
kx

q2  
dkz

(kz
2
+

2 )2 kz
2
+ kx

2
 

1
2

m

2T
exp

m 2

2T (kz
2
+ kx

2 )
.

 (14) 

 We first deal with the ion term, and consider integral 

Ii =  

dkz  exp[ i

kz
2
+ kx

2 ]

(kz
2
+

2 )2 kz
2
+ kx

2
,   i =

mi
2

2Ti
.  (15) 

 We integrate Eq. (15) along the real kz -axis without 

resorting to contour integration. It is useful to make a change 

of variable via 

y =
kz

kz
2
+

2
,   or  kz =

y

1 y2
.   (16) 
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 Then, integral Ii  becomes 

Ii =
2

3 0

1
dy

(1 y2 ) exp i (1 y2 )

y2 ( 2 kx
2 ) + kx

2

y2 ( 2 kx
2 ) + kx

2
.   (17) 

 Equation (17) is appropriate for asymptotic analysis for 
the limiting cases. 

 i) case of << 1  

 In this case, we have << kx . Neglecting 
2

 as 

compared to kx
2
, we obtain 

Ii =
2

kx
3 e

i

kx
2

 I0 ,    I0 =
0

1
(1 y2 ) dy =

4
.        

 Here we have i

kx
2 =

mi

2Ti
e
2

pi
2 =

Te
2Ti

. Thus 

Ii =
2kx

3  e

Te
2Ti .      (18) 

 The corresponding electron integral is calculated 

similarly by replacing i e =
me

2

2Te
 in Eq. (17). Here 

e

kx
2 =

me

2mi

<< 1  and the exponential term can be put to unity. 

We obtain 

Ie =
2kx

3 .  (19) 

 Then Eqs. (14), (18), (19), and the relations 

q = 1 / , = pikx e , = kx  give 

Di = i
8

 
1

kx
4

e
4

Te
Ti

3

2

e

Te
2Ti +

me

mi

 .  (20) 

 The Landau damping rate is obtained from the formula 

i =
Di ( )

Dr ( ) /
.     (21) 

 We calculate from Eq. (7): 

=
Dr

q

q
       

 

Dr

q
=

1

q

1

2

1

2
,    

q 2

pikx
3

e
3 .  

 Using the above relations in the formula (21) yields the 

Landau damping rate for << 1  

i = pikx e 8

Te
Ti

3

2

e

Te
2Ti +

me

mi

 .  (22) 

 In Eq. (22), the mass ratio term comes from the electron 

term in i . It is interesting to see that surface ion acoustic 

wave Landau damping in Eq. (22) is equal to the 

corresponding Landau damping of the bulk ion acoustic 

wave [5]. In section 5, we explain about the analytical reason 

why the two damping rates are the same. 

 ii) case of >> 1  

 In this case, we have 
 

kx , so Ii  in Eq. (17) reduces to 

Ii =
2

kx
3 e

i

kx
2

Ji ,  (23) 

Ji =
o

1
dy(1 y2 )e

iy
2

kx
2

.   (24) 

 Integral Ji  can be obtained by integration by parts and 

after some algebra: 

Ji =
1

2x2
ex
2
+
F(x)

x
1+

1

2x2
 (25) 

where F(x)  is the error function: 

F(x) =
0

x
 et

2
dt;  x = i

kx
=

1

2

Te
Ti

 
1

kx e

.  (26) 

 The quantity x  in Eq. (26), which is the ratio of the 

surface wave velocity to the ion thermal velocity, is assumed 

to be >> 1  from the beginning when we wrote Eq. (3). The 

limiting conditions x >> 1  and kx e >> 1  restricts the 

validity of the present analysis ( >> 1)  to the regions 

Te
Ti
>> kx e >> 1.  (27) 

 Using Eq. (25) in Eq. (23) gives 

Ii =
2

kx
3

1

2x2 +
e x2

x
1+

1

2x2 F(x) .    

 The error function F(x)  has asymptotic expansion for 

x >> 1  [6]: 

 

F(x) =
0

x
 et

2
dt

ex
2

2x
(1+

1

2x2 +
3

4x4 + )      (x >> 1).  

 The above two equations give, using 
 

kx , 

= pi / 2 , 

 

Ii
1

kx
3

1

x4
(1+

1

x2
) = 16

Ti
Te

2

e
4 .  (28) 

 Next we calculate the electron integral for this case of 

>> 1 . We redefine the symbol x : 

x = e

kx
=

1

2
 
me

mi

 
1

kx e

<< 1  (29) 
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which is the ratio of the surface wave velocity to the electron 
thermal velocity. The electron integral corresponding to Eq. 
(15) is 

Ie =
2

kx
3 e

x2 Je  (30) 

Je = 0

1
dy(1 y2 )e

ey
2

kx
2

=
1

2x2
ex
2
+
F(x)

x
(1+

1

2x2
)  

which is of the same form as Eq. (25), but x  is now << 1  

and F(x)  is represented by different asymptotic series: 

F(x) = xex
2
(1

2

3
x2

+
4

15
x4 )          (x << 1).  

 Using the above two equations in Eq. (30), we obtain 
simple result with neglect of higher order terms 

Ie =
2

kx
3 .  (31) 

 Using Eqs. (28) and (31) in Eq. (14) gives 

Di =
8i Ti

Te
kx e

i me

mi

1

kx
3

e
3 .  (32) 

 To apply formula (21), we calculate 

 

Dr

q
1,  

q 4 2

pi

.  (33) 

 Using the above values, we obtain for Landau damping 

rate when >> 1  

i =
2 Ti

Te
 pikx e

1

8

2 me

mi

pi

kx
3

e
3 i

i
+ i

e
 (34) 

where the superscripts denote ion and electron contribution 

from i . The ratio of electron contribution to ion's is 

i
i

i
e = 8

mi

me

Ti
Te
kx
4

e
4 >> 1.  

 So the electron term in i  in Eq. (3) contributes 

negligibly to ion acoustic wave Landau damping when 

kx e >> 1 . 

3. SURFACE ELECTRON PLASMA WAVE 

 For the high frequency wave ( >> k ve ) , L = r + i i  

has the expression 

r = 1 pe
2

2 3 pe
4

4 k
2

e
2              (35) 

i =
2

me

Te

3

2
pe
2

k 3 exp
me

2Te

2

k2 .             (36) 

 The real part of dispersion integral in Eq. (4) can be 
evaluated as follows 

dkz
k2 r

=
dkz

k2 (1 pe
2

2 3 pe
4

4 k
2

e
2 )

=
4

3 pe
4

e
2

dkz
(kz

2
+ kx

2 )(kz
2
+

2 )

 

= kx
2

4 (1 pe
2

2 )

3 pe
4

e
2 .      (37) 

 Picking up the residues at the poles kz = ikx  and kz = i , 

the integral has the value 
1 / kx 1 /

1 pe
2 / 2 , and the real part 

of the dispersion relation reads 

Dr = 1+
1

q( )
 (1

kx ),   q( ) = 1 pe
2

2 .      (38) 

 The real frequency is obtained from Dr = 0 . We seek the 

solution with the condition q < 0 , which insures that the 

quantity in the square root of Eq. (37) is positive. 

Accordingly, we have > kx . The relation Dr = 0  gives 

after squaring 

1+ (2 x)2 (1 x)(2 x)2

3kx
2

e
2  x2 = 0        (x = pe

2

2 ).       

 It is seen that x = 2  is an approximate solution when 

kx
2

e
2 << 1 . Note that x =1  or q = 0  (in this case = kx ) is 

not a root of Dr = 0 . Let us look for a solution of the above 

equation in the vicinity of x = 2 . So put x = 2 +  

(  << 1) , and obtain  in the region of kx e << 1 . One 

obtains 

= pe

2
(1+

3

2
 kx e ).        (39) 

 This frequency is obtained in Ref. [2]. See also Ref. [7]. 
Using Eq. (39) in Eq. (37) gives 

kx = 2 3 kx e << 1.       (40) 

 Next we calculate the Landau damping corresponding to 
the mode (39). The imaginary part of the dispersion integral 
in Eq. (4) upon using Eqs. (35) and (36) takes the form 

Di = iAI ,    A =
1

9 2

me

Te
 
kx

e
6  

9

pe
8     (41) 

 I = dkz  

exp [
kz

2
+ kx

2 ]

(kz
2
+ kx

2 )
5

2 (kz
2
+

2 )2

       ( =
me

2

2Te
).   (42) 

 It is useful to make a change of variable via 
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y =
kz

kz
2
+ kx

2
   or  kz =

kxy

1 y2
.  

 Then the integral I  in Eq. (42) becomes 

I =
2

kx
4 e

x2

0

1
dy(1 y2 )3 ex

2y2

[kx
2y2

+
2 (1 y2 )]2        (x2 =

kx
2 ).  (43) 

 In the region where kx << , integral I  takes simple 

form 

I =
2

kx
4 4 e

x2
J,    J =

0

1
dy(1 y2 ) ex

2y2
     (44) 

x =
kx

=
1

2

1

kx e

>> 1.      (45) 

 After integration by parts in Eq. (44), one obtains 

J =
1

x
F(x)(1+

1

2x2 )
1

2x2 e
x2

       (Eq.(25)).  

 Using the asymptotic series for the error function 

F(x) (x >> 1) , we obtain 

J =
ex

2

2x4 (1+
1

x2 ).        (46) 

 Using Eqs. (45) and (46) in Eq. (44) yields 

I =
1

kx
4 4x4

(1+
1

x2
) = 9 28 e

8 (1+ 4kx
2

e
2 )  

where the last term will be neglected. Then Eq. (41) gives 

Di = i
8
kx e .     (47) 

 Landau damping rate will be obtained by the formula 
(21). Equation (38) gives 

Dr =
1

q2

q
(1

kx ) +
kx
q

1
2 .      (48) 

 We have 

 

q 4 2

pe

, 
 
q 1 , >> kx . The first term of 

Eq. (48) is 

 

4 2

pe

, and the second term is 

 

12 2

pe

kx
2

e
2

 

which will be neglected. So we finally obtain for the Landau 

damping rate 

i =
2
kx e pe .    (49) 

4. TRANSVERSE MAGNETIC MODE SURFACE 
WAVE 

 The transverse magnetic (TM) mode surface wave is 
known as surface polariton in solid state physics and a wave 
of partly electromagnetic and partly electrostatic nature 
whose kinetic dispersion relation is [1] 

D 1+
1

 
1

kx
2

2

c2

 
dkz
k2

kx
2

L

+
kz

2

T c2k2 / 2 = 0  (50) 

where the longitudinal dielectric function L  is expressed by 

Eqs. (35) and (36) which are rewritten: 

L =1
pe
2

2 3 pe
4

4 k
2

e
2
+ i

2
pe
2

2

3

k 3
me

Te

3

2

exp
me

2

2Tek
2  (51) 

where the wave velocity is such that >> k ve . The 

transverse dielectric function T  for such a fast wave is 

represented by [1] 

T =1
pe
2

2

pe
4

4 k
2

e
2
+ i

2
pe
2

2 k

me

Te

1

2

exp
me

2

2Tek
2 .  (52) 

 The real part of the dispersion function D  is determined 

by the real parts of L  and T : 

Dr = 1+
1

 
1

kx
2

2

c2

 
dkz
k2

kx
2

L
r +

kz
2

T
r c2k2 / 2  (53) 

where the superscript 'r  denotes the real part. Assuming 

L
r >> L

i
, T

r >> T
i

 (the superscript 'i  denotes the 

imaginary part), the imaginary part of the dispersion function 

is written 

Di =
i
 

1

kx
2

2

c2

 
dkz
k2

kx
2  L

i

( L
r )2 +

kz
2  T

i

( T
r c2k2 / 2 )2 .  (54) 

 The real frequency of the wave is determined by Dr = 0 . 

To carry out the integral in Eq. (53), we write 

L
r = q L

2
+ kz

2

L
2 kx

2 ,     T
r c2k2

2 = q T
2
+ kz

2

T
2 kx

2  (55) 

q = 1 pe
2

2 ,   L = kx
2 q 4

3 pe
4

e
2 ,   T = kx

2 q 4

pe
4

e
2
+ c2 2 .  (56) 

 Then Eq. (53) is contour-integrated to yield 

Dr = 1+ 
1

kx
2

2

c2

 
1

q L

 ( L T kx
2 ).  (57) 

 Using Eq. (55) in Eq. (54) gives 

Di =
i
 

1

kx
2

2

c2

 (TL + TT )  (58) 

TL =
2

  pe
2  

me

Te

3

2 ( L
2 kx

2 )2

q2  kx
2  IL  (59) 
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TT =
2

pe
2

me

Te

1

2 ( T
2 kx

2 )2

q2  IT  (60) 

IL =  dkz  

 exp
me

2

2Te (kz
2
+ kx

2 )

(kz
2
+ kx

2 )
5

2 (kz
2
+ L

2 )2

 (61) 

IT =  dkz  

kz
2  exp

me
2

2Te (kz
2
+ kx

2 )

(kz
2
+ kx

2 )
3

2 (kz
2
+ T

2 )2

.  (62) 

 The eigen frequency of the electromagnetic surface wave 

can be found by solving the equation Dr = 0 . However the 

algebraic equation is unwieldy, and we consider the limiting 

case of kx e << 1 . In this case L T >> kx
2
, and the 

dispersion relation, Eq. (57), reduces to 

Dr = 1+ 
1

kx
2

2

c2

 T

q
= 0.  (63) 

 We see that q  should be negative for the above equation 

to be satisfied. Also the condition insures the quantities in 

the square root of T ,L  be positive. When e 0  (cold 

plasma limit), Eq. (63) takes the form 

(1 pe
2

2 ) kx
2

2

c2 + kx
2
+

pe
2 2

c2 = 0.  (64) 

 It is fortunate that Eq. (64) allows for exact solution by 
quadrature after squaring [8]: 

2 = c2kx
2
+

pe
2

2

1

2 pe
4
+ 4c4kx

4 .  (65) 

 It is interesting to note that Eq. (65) is identical in the 
structure with the surface ion acoustic wave dispersion 
relation 

2 = pi
2

e
2kx

2
+

pi
2

2

1

2 pi
4
+ 4 pi

4
e
4kx

4 .  (66) 

which is the solution of Eq. (9). The plot of Eq. (65) is 
available in Alexandrov et al. (figure 9.2) [1]. 

 Case (i): pe
2 >> 2c2kx

2
. The dispersion curve, frequency 

 vs ckx , shows linear increase, starting from ckx = 0 . We 

have from Eq. (65) 

 

2 c2kx
2  (1 2

c2kx
2

pe
2 ),   q pe

2

c2kx
2  

 

L

kx
 

1

3

c

ve
>> 1,   T

kx
 
ve

2

c2 +
c2kx

2

pe
2

1

2

>> 1  (67) 

where ve
2 =

Te
me

, electron thermal velocity squared. 

 Case (ii): pe
2 << 2c2kx

2
. This case corresponds to the 

nearly flat portion of the dispersion curve which asymptotes 

to the line = pe / 2 . 

 

2 pe
2

2
1 pe

2

4c2kx
2 ,   q 1  

 

L

kx
 

1

12kx e

>> 1,   T

kx
 1+ pe

2

2c2kx
2  1.  (68) 

 Guided by the cold plasma solution, we shall consider the 
integrals in Eqs. (61) and (62) corresponding to the limiting 
cases (i) and (ii). 

 Case (i). IL  in Eq. (61) is identical with Eq. (42) with 

L =  in Eq. (37). So we can use the result in section 3, 

IL =
1

kx
4

L
4x4 ,   x2 =

me
2

2Tekx
2 =

c2me

2Te
.  (69) 

 Using Eq. (67) in the above gives 

IL = 36 
Te

4

me
4c8kx

8  (70) 

which in turn gives 

TL = 8  kx  e
2kx

2  
c

Te / me

.  (71) 

 Next, let us calculate IT . Since we have T >> kx , we 

can use the same transform as that used in Eq. (42), giving 

IT =
2

T
4  e x2

0

1 y2

1 y2  ex
2y2
dy.  (72) 

 The integral above can be asymptotically evaluated to 

obtain the value x 2ex
2

 for the leading term, giving 

IT =
2

x2 T
4 .  (73) 

 Using Eqs. (67) and (73) in Eq. (60) yields 

TT = 8  kx  e
2kx

2  
c

Te / me

 (74) 

which is the same as TL . Using Eqs. (71) and (74) in Eq. 

(58) gives 

Di =
4

 ekx  (75) 

which is valid in the region ckx << pe / 2 . 

 Case (ii). To evaluate IL  in Eq. (61) in this case, we note 

that L >> kx  (Eq. (68)). So using the result in section 3, we 

have 
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IL =
1

kx
4

L
4x4 ,   x2 =

1

4kx
2

e
2 .  (76) 

 Using Eq. (68) in the above gives 

IL =16 12
2

e
8

 (77) 

which is used in Eq. (59) to obtain 

TL = 8 ekx
2 .  (78) 

 Next, to evaluate IT  in Eq. (62), we transform the 

integral as in Eq. (42). Since we have 
 T kx , IT  takes the 

value 

 

IT =
2

T
4  e x2

 
0

1
 y2 (1 y2 ) ex

2y2
dy

2

T
4  e x2

 
ex

2

2x4 =
1

T
4  x4 (79) 

where x2  is given by Eq. (76). Using Eqs. (68) and (79) in 

Eq. (60) yields 

TT = 4  
ve

4

c4  
1

e

.  (80) 

 Using Eqs. (78) and (80) in Eq. (58) gives 

Di =
8
kx e 1+

1

2
 
ve

4

c4  
1

kx
2

e
2 .  (81) 

 The second term in the parenthesis is not necessarily 

small because it is a product of a small quantity ( ve
4 / c4 ) and 

a large quantity (1 / kx
2

e
2

). 

 Next, in order to calculate Dr /  we use Eqs. (63) 

and (56) to obtain 

Dr =
1

q
 

1

kx
2

2

c2

c2  T

(kx
2 2 / c2 )

2 T pe
2

q 3 +
T  (82) 

T =
T

 pe
4

e
2 (2 2

pe
2 ) + c2 4

( pe
4

e
2
+ c2 2 )2 .  (83) 

 Equations (82) and (83) will be evaluated according to 
the conditions of cases (i) and (ii) expressed in Eqs. (67) and 
(68). 

 Case (i): The last two terms in the large bracket in Eq. 

(82) add up to yield a simple result 3 T /  which in turn is 

negligible as compared to the first term. Thus, we obtain 

Dr =
1

2 2
 pe

c2kx
2  

ve
2

c2 +
c2kx

2

pe
2

1

2

.  (84) 

 The Landau damping rate is obtained with Eqs. (75) and 
(84): 

i = 8
2

 pe (kx e )
4  
c3

ve
3 1+

ve
4

c4  
1

kx
2

e
2 .  (85) 

 This result is valid around the linear portion of the 
dispersion curve. 

 Case (ii): The first term and the third term in the large 
bracket in Eq. (82) cancel. Due to the sole contribution from 
the second term, we have 

Dr =
4 2

pe

.  (86) 

 The Landau damping rate in this case is obtained with 
Eqs. (81) and (86): 

i =
2

 pekx e 1+
1

2

ve
4

c4  
1

kx
2

e
2 .  (87) 

 This result is valid on the flat portion of the dispersion 
curve. 

5. DISCUSSION 

 We compare the results obtained in this work with earlier 
works. 

 Concerning ion acoustic wave, Landau damping rate in 

Eq. (22) for the case of kx e << 1  is identical with Equation 

(11.29a) of Sitenko [4]. Sitenko's Eq. (11.29b) (for the case 

kx e >> 1 ) [4] is identical with the first term of Eq. (34) with 

a numerical difference of factor 3 . The second term of Eq. 

(34) agrees with Alexandrov et al.'s equation (9.1.40) [1] 

with a small discrepancy of numerical factor. It appears that 

the electron term in i  in Eq. (3) can be safely neglected in 

the consideration of ion acoustic wave damping. The 

electron plasma wave damping in Eq. (49) agrees with the 

results of Alexandrov et al. (Eq. 9.1.34) [1] and Sitenko (Eq. 

11.27) [4]. 

 We can see how the two Landau damping rates of bulk 

and surface ion waves for the case of kx e << 1  are the same 

from the following equation: 

Di

Dr /
=

dkz
k2  i

r
2  ÷ 

dkz
k2  

r

r
2 = i (kx , )

r (kx , ) /
 

 If we make change of variable by the transform in Eq. 

(16), we have k2 kx
2

 for kx >> , and thus i (k, )  inside 

the integral can be taken out of the integral with the value 

i (kx , ) . r  is also independent of kz . Hence the above 

equation holds. The surface ion acoustic wave in the region 

kx e << 1  obeys the same dispersion relation as the bulk 

wave (Eq. (10)) and has attenuation constant much smaller 

than kx . The surface ion wave is almost indistinguishable 

from the bulk ion acoustic wave and Landau damps with the 

same rate as the bulk wave. 

 Surface wave Landau damping is interesting not only on 
its own right but also for study of nonlinear Landau damping 
of surface wave which is the basic mechanism of a certain 
parametric instability. Stenflo [9] addresses nonlinear 
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problem of surface waves in semi-infinite plasma, including 
three wave surface wave interactions. 
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